Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems
Abstract
:1. Introduction
2. Basic Indicators in Membrane Distillation
- J = distillate flux (L·m−2 h−1) or (kg·m−2 h−1);
- m = mass of distillate produced (kg);
- Amb = membrane area (m2);
- t = time (h).
- = membrane surface temperature at the feed side (°C);
- = bulk temperature of the feed (°C).
- QT = total energy supplied (kW);
- m = mass of distillate produced (kg).
- md = distillate flow rate (kg·h−1);
- ΔH = enthalpy of vaporization (kJ·kg−1);
- QH = overall thermal energy supplied (kJ·h−1).
- J = distillate flux (kg·m−2·s−1);
- ΔH = enthalpy of vaporization (kJ·kg−1);
- I = incident light intensity (kJ·m−2·s−1).
3. Localized Heating with Modified Membranes
3.1. Electrical Heating on Modified Membranes
3.2. Irradiation Heating on Modified Membranes
Heating/Membrane Material | MD Configuration | Feed | Energy Supply | Flux (kg·m−2 h−1) | SEC (kW·kg−1) | Refs. |
---|---|---|---|---|---|---|
NRW/PVDF | VMD | 3.5 wt% NaCl | 3.15 W | 14 | 11.86 a | [17] |
hBN-SSWC/PVDF | DCMD | 100 g/L NaCl | 1–50 | 0.32–42.7 | * calc: 3–1.17 | [18] |
CNT-PVA/PTFE | DCMD | 100 g/L NaCl | 50 W | 7.5 | 1.25 | [19] |
PDMS-multiwalled CNT (MWCNT)/PVDF | Distillation with condensation chamber | 3.5 wt% NaCl | 0.4–1.6 W | 0.24–1.1 | n.a. | [20] |
PDMS-multiwalled CNT (MWCNT)/PVDF | Three-level distillation with condensation chamber | 3.5 wt% NaCl | 1.6 W | 2.77 | 0.36 | [21] |
CNS/PP | DCMD | 10 g/L NaCl | 50.4 W | 22.9 | 1.7 a | [22] |
RGO/PTFE | AGMD | 35 g/L NaCl | 5.5 W | 1.1 | n.a. a | [23] |
Graphene/PVDF | VMD | 3.5 wt% NaCl | 2 W | 23.44 | 0.11 | [24] |
SS-PDMS | SGMD | Water | 12 W | 0.11 | n.a. a | [25] |
Fe-CNT/PTFE ** | VMD | 35 g/L NaCl | 0.781 kW·m−2 (2.46 W) | 4 | 0.2 | [26] |
Heating/Membrane Material | MD Configuration | Feed | Energy Supply (kW·m−2) | Flux (kg·m−2 h−1) | SEC * (kW·kg−1) | Refs. |
---|---|---|---|---|---|---|
Ag/PVDF | VMD | 0.5 M NaCl | 23 | 25.7 | 0.90 a | [27,28] |
Ag/PVDF | DCMD | 3.5 wt% NaCl | 3.2 | 2.5 | 1.28 | [16] |
CB/PVDF | VMD | Deionized water | 0.675 | 2.3 | 0.29 | [29] |
CB-PVA/PVDF | DCMD | 1 wt% NaCl | 0.7 | 0.3 | 2.3 | [30] |
CB/PTFE | VMD | 40 g/L NaCl | 0.088–1 | 0.12–0.77 | 0.73–1.30 | [31] |
CB or SiO2-Au/PVDF | DCMD | 1 wt% NaCl | 1.37 | 6.12 | 0.22 a | [32] |
CB/PVDF | Permeate-side-heated solar MD unit. | Seawater, canal water, wastewater | 1.8 | 1.48, 1.34, 1.32 | 1.21, 1.34, 1.36 | [33] |
FAS17-CB/PVDF | DCMD | 35 g/L NaCl | 1 | 3.19 | 0.31 a | [34] |
FTCS-CB/PVDF | DCMD | seawater | 1–10 | 0.78–9 | 1.28–1.11 | [35] |
FTCS-PDA/PVDF | DCMD | 0.5 M NaCl | 0.75–7 | 0.49–4.23 | 1.53–1.65 | [36] |
FTCS-PDA-graphene/PTFE | AGMD | 0.5 M NaCl | 0.75 | 1.17 | 0.64 | [37] |
ATO/PVDF | VMD | 3.5 wt% NaCl | n.a. (100 W power) | 27 | n.a. a | [38] |
TiN-PVA/PVDF | AGMD | 35 g/L NaCl | 1 | 0.94 | 1.06 | [39] |
Fe3O4/PVDF-HFP | DCMD | 3.5 wt% NaCl | 1–3 | 0.97–2.9 | 1.03 a | [40] |
PDMS/CNT/PVDF | Two-level distillation with condensation chamber | 3.5 wt% NaCl | 1 | 1.43 | 0.7 | [41] |
PDMS-multiwalled CNT (MWCNT)/PVDF | Distillation with condensation chamber | 3.5 wt% NaCl | 0.25–1 | 0.13–0.92 | 1.92–1.09 | [20] |
cESM-CNTs/PVDF | DCMD | 2.9–35 g/L NaCl | 1 | 1.11 | 0.90 | [42] |
MXene/PVDF | DCMD | 200 mg/L BSA in 10 g/L NaCl | 5.8 | 10 | 0.58 a | [43] |
MXene/PTFE | DCMD | 0.36 g/L NaCl | 1 | 0.77 | 1.30 | [44] |
3.3. Some Remarks
4. Localized Heating Inside the Module
Some Remarks
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, P.; Chung, T.-S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. J. Membr. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Thomas, N.; Mavukkandy, M.O.; Loutatidou, S.; Arafat, H.A. Membrane distillation research & implementation: Lessons from the past five decades. Sep. Purif. Technol. 2017, 189, 108–127. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Lee, H.Y.; He, F.; Song, L.M.; Gilron, J.; Sirkar, K.K. Desalination with a cascade of cross-flow hollow fiber membrane distillation devices integrated with a heat exchanger. AICHE J. 2011, 57, 1780–1795. [Google Scholar] [CrossRef]
- Lin, S.; Yip, N.Y.; Elimelech, M. Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling. J. Membr. Sci. 2014, 453, 498–515. [Google Scholar] [CrossRef]
- Guan, G.; Yang, X.; Wang, R.; Fane, A.G. Evaluation of heat utilization in membrane distillation desalination system integrated with heat recovery. Desalination 2015, 366, 80–93. [Google Scholar] [CrossRef]
- Winter, D.; Koschikowski, J.; Wieghaus, M. Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. J. Membr. Sci. 2011, 375, 104–112. [Google Scholar] [CrossRef]
- Zhao, K.; Heinzl, W.; Wenzel, M.; Buttner, S.; Bollen, F.; Lange, G.; Heinzl, S.; Sarda, N. Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module. Desalination 2013, 323, 150–160. [Google Scholar] [CrossRef]
- Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; van Medevoort, J.; van Sonsbeek, E. Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat. Desalination 2013, 323, 55–65. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Boutikos, P.; Mathioulakis, E.; Belessiotis, V. Experimental evaluation of the performance and energy efficiency of a Vacuum Multi-Effect Membrane Distillation system. Desalination 2017, 408, 70–80. [Google Scholar] [CrossRef]
- Tamburini, A.; Pitò, P.; Cipollina, A.; Micale, G.; Ciofalo, M. A thermochronic liquid crystals image analysis technique to investigate temperature polarization in spacer-filled channels for membrane distillation. J. Membr. Sci. 2013, 447, 260–273. [Google Scholar] [CrossRef]
- Taamneh, Y.; Bataineh, K. Improving the performance of direct contact membrane distillation utilizing spacer-filled channel. Desalination 2017, 408, 25–35. [Google Scholar] [CrossRef]
- Soukane, S.; Nacuer, M.W.; Francis, L.; Alsaadi, A.; Ghaffour, N. Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation. Desalination 2017, 418, 43–59. [Google Scholar] [CrossRef]
- Criscuoli, A. Experimental investigation of the thermal performance of new flat membrane module designs for membrane distillation. Int. Comm. Heat Mass Transf. 2019, 103, 83–89. [Google Scholar] [CrossRef]
- Summers, E.K.; Arafat, H.A.; Lienhard, J.H.V. Energy efficiency in comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination 2012, 290, 54–66. [Google Scholar] [CrossRef]
- Ye, H.; Li, X.; Deng, L.; Li, P.; Zhang, T.; Wang, X.; Hsiao, B.S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Ind. Eng. Chem. Res. 2019, 58, 3269–3281. [Google Scholar] [CrossRef]
- Song, L.; Huang, Q.; Huang, Y.; Bi, R.; Xiao, C. An electro-thermal braid-rein- forced PVDF hollow fiber membrane for vacuum membrane distillation. J. Membr. Sci. 2019, 591, 117359. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, W.; Deshmukh, A.; Jia, S.; Guo, H.; Xin, R.; Elimelech, M.; Ajayan, P.M.; Lou, J.; Li, Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nat. Nanotechnol. 2020, 15, 1025–1032. [Google Scholar] [CrossRef]
- Dudchenko, A.V.; Chen, C.; Cardenas, A.; Rolf, J.; Jassby, D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat. Nanotechnol. 2017, 12, 557–563. [Google Scholar] [CrossRef]
- Huang, J.; Tang, T.; He, Y. Coupling photothermal and Joule-heating conversion for self-heating membrane distillation enhancement. Appl. Therm. Eng. 2021, 199, 117557. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Shen, Z. Joule heating membrane distillation enhancement with multi-level thermal concentration and heat recovery. Energy Convers. Manag. 2021, 238, 114111. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Enhanced performance of direct contact membrane distillation via selected electrothermal heating of membrane surface. J. Membr. Sci. 2020, 610, 118224. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Wang, Z.; Liu, L.; Liu, H.; Wang, J. Electrothermally Driven Membrane Distillation for Low-Energy Consumption and Wetting Mitigation. Environ. Sci. Technol. 2019, 53, 13506–13513. [Google Scholar] [CrossRef]
- Subrahmanya, T.M.; Lin, P.T.; Chiao, Y.-H.; Widakdo, J.; Chuang, C.-H.; Rahmadhanty, S.F.; Yoshikawa, S.; Hung, W.-S. High Performance Self-Heated Membrane Distillation System for Energy Efficient Desalination Process. J. Mater. Chem. A 2021, 9, 7868–7880. [Google Scholar] [CrossRef]
- Shukla, S.; Méricq, J.P.; Belleville, M.P.; Hengl, N.; Benes, N.E.; Vankelecom, I.; Sanchez Marcano, J. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation. J. Membr. Sci. 2018, 545, 150–157. [Google Scholar] [CrossRef]
- Anvari, A.; Kekre, K.M.; Azimi, Y.A.; Yao, Y.; Ronen, A. Membrane distillation of high salinity water by induction heated thermally conducting membranes. J. Membr. Sci. 2019, 589, 117253. [Google Scholar] [CrossRef]
- Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H.A.; Curcio, E. Photothermal Membrane Distillation for Seawater Desalination. Adv. Mater. 2017, 29, 1603504. [Google Scholar] [CrossRef]
- Politano, A.; Di Profio, G.; Fontananova, E.; Sanna, V.; Cupolillo, A.; Curcio, E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination 2019, 451, 192–199. [Google Scholar] [CrossRef]
- Pagliero, M.; Alloisio, M.; Costa, C.; Firpo, R.; Mideksa, E.A.; Comite, A. Carbon Black/Polyvinylidene Fluoride Nanocomposite Membranes for Direct Solar Distillation. Energies 2022, 15, 740. [Google Scholar] [CrossRef]
- Dongare, P.D.; Alabastri, A.; Pedersen, S.; Zodrow, K.R.; Hogan, N.J.; Neumann, O.; Wu, J.; Wang, T.; Deshmukh, A.; Elimelech, M.; et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA 2017, 114, 6936–6941. [Google Scholar] [CrossRef]
- Said, I.A.; Wang, S.; Li, Q. Field Demonstration of a Nanophotonics-Enabled Solar Membrane Distillation Reactor for Desalination. Ind. Eng. Chem. Res. 2019, 58, 18829–18835. [Google Scholar] [CrossRef]
- Wu, J.; Zodrow, K.R.; Szemraj, P.B.; Li, Q. Photothermal nanocomposite membranes for direct solar membrane distillation. J. Mater. Chem. A 2017, 5, 23712–23719. [Google Scholar] [CrossRef]
- Tanvir, R.U.; Sujon, S.A.; Yi, P. Passive Permeate-Side -Heated Solar Thermal Membrane Distillation: Extracting Potable Water from Seawater, Surface Water, and Municipal Wastewater at High Single-Stage Solar Efficiencies. ACS EST Engg. 2021, 1, 770–779. [Google Scholar] [CrossRef]
- Chen, Y.R.; Xin, R.; Huang, X.; Zuo, K.; Tung, K.L.; Li, Q. Wetting-resistant photothermal nanocomposite membranes for direct solar membrane distillation. J. Membr. Sci. 2021, 620, 118913. [Google Scholar] [CrossRef]
- Gong, B.; Yang, H.; Wu, S.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K.K. Superstructure-Enabled anti-fouling membrane for efficient photothermal distillation. ACS Sustain. Chem. Eng. 2019, 7, 20151–20158. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, Q.; Ghim, D.; Singamaneni, S.; Jun, Y.-S. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 2018, 6, 18799–18807. [Google Scholar] [CrossRef]
- Ghim, D.; Wu, X.; Suazo, M.; Jun, Y.S. Achieving Maximum Recovery of Latent Heat in Photothermally Driven Multi-Layer Stacked Membrane Distillation. Nano Energy. 2021, 80, 105444. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, S.; Huang, Y.; Zhang, M.; Xiao, C. Study on photothermal PVDF/ATO nanofiber membrane and its membrane distillation performance. J. Membr. Sci. 2019, 582, 203–210. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Liu, L.; Wang, K.; Xiang, J.; Hou, D.; Wang, J. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere 2020, 256, 127053. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Yao, L.; Ren, X.; Li, Y.; Deng, L. Fe3O4/PVDFHFP Photothermal Membrane with in-Situ Heating for Sustainable, Stable and Efficient Pilot-Scale Solar-Driven Membrane Distillation. Desalination 2020, 478, 114288. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Bai, Y.; He, Y.; Zhu, J. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating. Desalination 2020, 489, 114529. [Google Scholar] [CrossRef]
- Han, X.; Wang, W.; Zuo, K.; Chen, L.; Yuan, L.; Liang, J.; Li, Q.; Ajayan, P.M.; Zhao, Y.; Lou, J. Bio-derived ultrathin membrane for solar driven water purification. Nano Energy 2019, 60, 567–575. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Wang, H.; Han, L.; Tanis-Kanbur, M.B.; Pranav, M.V.; Chew, J.W. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J. Membr. Sci. 2018, 565, 254–265. [Google Scholar] [CrossRef]
- Mustakeem, M.; El-Demellawi, J.K.; Obaid, M.; Fangwang, M.; Alshareef, H.N. MXene-Coated Membranes for Autonomous Solar-Driven Desalination. ACS Appl. Mater. 2022, 14, 5265–5274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Li, K.; Hou, D.; Wang, J. Enhancement of Energy Utilization Using Nanofluid in Solar Powered Membrane Distillation. Chemosphere 2018, 212, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Schwantes, R.; Seger, J.; Bauer, L.; Winter, D.; Hogen, T.; Koschikowski, J.; Geißen, S.U. Characterization and Assessment of a Novel Plate and Frame MD Module for Single Pass Wastewater Concentration–FEED Gap Air Gap Membrane Distillation. Membranes 2019, 9, 118. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.; Zhang, C.; Hong, S.; Shi, L.; Chang, J.; Li, R.; Jin, Y.; Ong, C.; Zhuo, S.; et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 2019, 10, 3012. [Google Scholar] [CrossRef]
- Mustakeem, M.; Qamar, A.; Alpatova, A.; Ghaffour, N. Dead-end membrane distillation with localized interfacial heating for sustainable and energy-efficient desalination. Water Res. 2021, 189, 116584. [Google Scholar] [CrossRef]
- Han, F.; Liu, S.; Wang, K.; Zhang, X. Enhanced Performance of Membrane Distillation Using Surface Heating Process. Membranes 2021, 11, 866. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Rao, U.; Dudley, M.; Ebrahimi, N.D.; Lou, J.; Han, F.; Hoek, E.M.V.; Tilton, N.; Cath, T.Y.; et al. Conducting thermal energy to the membrane/water interface for the enhanced desalination of hypersaline brines using membrane distillation. J. Membr. Sci. 2021, 626, 119188. [Google Scholar] [CrossRef]
- Ang, E.H.; Tan, Y.Z.; Chew, J.W. A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater. J. Mater. Chem. A 2019, 7, 10206. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Ang, E.H.; Chew, J.W. Metallic spacers to enhance membrane distillation. J. Membrane Sci. 2019, 572, 171–183. [Google Scholar] [CrossRef]
- Gong, B.; Yang, H.; Wu, S.; Xiong, G.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. Nano-Micro Lett. 2019, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Alsaati, A.; Marconnet, A.M. Energy efficient membrane distillation through localized heating. Desalination 2018, 442, 99–107. [Google Scholar] [CrossRef]
Heating Type | MD Configuration | Feed | Energy Supply (kW·m−2) | Flux (kg·m−2 h−1) | SEC (kW·kg−1) | Refs. |
---|---|---|---|---|---|---|
Photothermal nanofluid (TiN) | AGMD | 35 g/L NaCl | 1–5 | 0.74–2.77 | * 1.35–1.8 | [45] |
Heating with a heating solution through a polymer film | FGAGMD | 155 g/L NaCl | n.a. | 1.2 | n.a. | [46] |
Solar cell-Photovoltaic panel | Three-stage MD | 3.5 wt% NaCl | 1 | 1.71 (dead-end)-1.65 (cross-flow) | * 0.58–0.61 | [47] |
Heating coil in the module | LHIF | Red seawater | 1 kW | 9.8 | 1.18 | [48] |
Aluminum layer | SHVMD-3 | 35 g/L NaCl | n.a. | 9 | 1.17 | [49] |
Aluminum layer and aluminum meshes | VMD | 100 g/L NaCl | 25 W | 7.6 | 0.87 | [50] |
Pt-MBT@Ag NSs/NF spacer | DCMD | 0.5 M NaCl | 0.8 | 3.6 | 2.5 | [51] |
Pt-Ni foam spacer | DCMD | 5 g/L NaCl | 50 W | 13 | 2.8 ** a | [52] |
P-G-Nifoam light absorber | SVGMD | 3.25–16.70 wt% NaCl Oil-contaminated water | 1 1 | 1.13–0.96 1.07 | * 0.88–1.04 * 0.93 | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criscuoli, A.; Carnevale, M.C. Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. Energies 2022, 15, 5990. https://doi.org/10.3390/en15165990
Criscuoli A, Carnevale MC. Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. Energies. 2022; 15(16):5990. https://doi.org/10.3390/en15165990
Chicago/Turabian StyleCriscuoli, Alessandra, and Maria Concetta Carnevale. 2022. "Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems" Energies 15, no. 16: 5990. https://doi.org/10.3390/en15165990
APA StyleCriscuoli, A., & Carnevale, M. C. (2022). Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. Energies, 15(16), 5990. https://doi.org/10.3390/en15165990