Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations
Abstract
:1. Introduction
1.1. Background & Motivation
1.2. Related Work
1.3. Contributions & Outline
2. Use Case Overview & System Components
- Web-service: In both the centralized and decentralized architectures, a web application is offered to the DER users, which runs as a Service. A GUI (Figure 3, Figure 4 and Figure 5), based on the open-source VueJS and Bootstrap frameworks [32], is provided and hosted in a NodeJS web server. The users interact with the RBAC model in a way that offers transparency to their HTTP CRUD or authorization requests. The CRUD interfaces for the DER administrators include the following: (a) update the information entities, (b) revoke roles, (c) show or confirm user permissions, (d) search, add, or delete users, (e) search or add DER device, (f) verify a user-to-role assignment, and (g) find information and statistics about the RBAC provider. Their HTTP requests are sent asynchronously to a Python Flask RESTful endpoint via the JavaScript library AxiosJS [33].
- Centralized Approach: We utilized an open-source implementation of the Lightweight Directory Access Protocol (LDAP) called OpenLDAP. All the user-to-roles and role-to-permissions assignments of the RBAC model were efficiently stored and queried in the standalone centralized server provided by OpenLDAP. The respective codebase is open-sourced and can be found in [34].
- Decentralized Approach: We deployed a private Ethereum blockchain test network, where each entity within the DER ecosystem is assigned a unique Ethereum account. RBAC logic of the DER environment was stored in Smart Contracts. The RBAC model could be recalled using Ethereum search functions. The respective codebase is open-sourced and can be found in [35].
3. Implementing RBAC in DER Using OpenLDAP
4. Implementing RBAC in DER Using a Smart Contract
5. Operational Demonstrations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, S.; Das, S.; Sidhu, T.; Siva, A. Smart meters for enhancing protection and monitoring functions in emerging distribution systems. Int. J. Elect. Power Energy Syst. 2021, 127, 106626. [Google Scholar] [CrossRef]
- Stellios, I.; Kotzanikolaou, P.; Psarakis, M.; Alcaraz, C.; Lopez, J. A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Commun. Surv. Tutorials 2018, 20, 3453–3495. [Google Scholar] [CrossRef]
- Huh, S.; Cho, S.; Kim, S. Managing IoT devices using blockchain platform. In Proceedings of the 19th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Korea, 19–22 February 2017; pp. 464–467. [Google Scholar] [CrossRef]
- Wachsmann, C.; Sadeghi, A.R. Physically Unclonable Functions (PUFs): Applications, Models, and Future Directions. Synth. Lect. Inf. Secur. Priv. Trust 2014, 9, 1–91. [Google Scholar]
- Roman, R.; Alcaraz, C.; Lopez, J.; Sklavos, N. Key management systems for sensor networks in the context of the Internet of Things. Comput. Electr. Eng. 2011, 37, 147–159. [Google Scholar] [CrossRef]
- Nandy, T.; Idris, M.Y.I.B.; Md Noor, R.; Mat Kiah, L.; Lun, L.S.; Annuar Juma’at, N.B.; Ahmedy, I.; Abdul Ghani, N.; Bhattacharyya, S. Review on Security of Internet of Things Authentication Mechanism. IEEE Access 2019, 7, 151054–151089. [Google Scholar] [CrossRef]
- Patel, C.; Doshi, N. Security Challenges in IoT Cyber World. In Security in Smart Cities: Models, Applications, and Challenges; Hassanien, A.E., Elhoseny, M., Ahmed, S.H., Singh, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 171–191. [Google Scholar]
- Jiayi, H.; Chuanwen, J.; Rong, X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.; Chopra, S.S. Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies 2020, 13, 5739. [Google Scholar] [CrossRef]
- Osborn, S. Mandatory access control and role-based access control revisited. In Proceedings of the ACM Workshop on RBAC, Fairfax, VA, USA, 6–7 November 1997; pp. 31–40. [Google Scholar]
- Moffett, J.; Sloman, M.; Twidle, K. Specifying discretionary access control policy for distributed systems. Comput. Commun. 1990, 13, 571–580. [Google Scholar] [CrossRef]
- Sandhu, R.S. Role-based access control. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 1998; Volume 46, pp. 237–286. [Google Scholar]
- Hu, V.C.; Kuhn, D.R.; Ferraiolo, D.F.; Voas, J. Attribute-based access control. Computer 2015, 48, 85–88. [Google Scholar] [CrossRef]
- Coyne, E.; Weil, T.R. ABAC and RBAC: Scalable, flexible, and auditable access management. IT Prof. 2013, 15, 14–16. [Google Scholar] [CrossRef]
- IEC Webstore, IEC 62351-8:2020. 2020. Available online: https://webstore.iec.ch/publication/61822 (accessed on 15 May 2022).
- Chaudhry, S.A.; Alhakami, H.; Baz, A.; Al-Turjman, F. Securing demand response management: A certificate-based access control in smart grid edge computing infrastructure. IEEE Access 2020, 8, 101235–101243. [Google Scholar] [CrossRef]
- Suciu, G.; Istrate, C.I.; Vulpe, A.; Sachian, M.A.; Vochin, M.; Farao, A.; Xenakis, C. Attribute-based access control for secure and resilient smart grids. In Proceedings of the 6th International Symposium for ICS & SCADA Cyber Security Research, Athens, Greece, 10–12 September 2019; pp. 67–73. [Google Scholar]
- Suciu, G.; Istrate, C.; Sachian, M.A.; Vulpe, A.; Vochin, M.; Farao, A.; Xenakis, C. FI-WARE authorization in a Smart Grid scenario. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1–5. [Google Scholar]
- Barka, E.; Hussien, N.A.; Shuaib, K. Securing Smart Meters Data for AMI Using RBAC. In Proceedings of the 2016 11th Asia Joint Conference on Information Security (AsiaJCIS), Fukuoka, Japan, 4–5 August 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Nagarajan, A.; Jensen, C.D. A Generic Role Based Access Control Model for Wind Power Systems. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2010, 1, 35–49. [Google Scholar]
- Bera, B.; Saha, S.; Das, A.K.; Vasilakos, A.V. Designing blockchain-based access control protocol in IoT-enabled smart-grid system. IEEE Internet Things J. 2021, 8, 5744–5761. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving efficient and Privacy-preserving energy trading based on blockchain and ABE in smart grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Yang, W.; Guan, Z.; Wu, L.; Du, X.; Guizani, M. Secure Data Access Control With Fair Accountability in Smart Grid Data Sharing: An Edge Blockchain Approach. IEEE Internet Things J. 2021, 8, 8632–8643. [Google Scholar] [CrossRef]
- Agyekum, K.O.B.O.; Xia, Q.; Sifah, E.B.; Cobblah, C.N.A.; Xia, H.; Gao, J. A Proxy Re-Encryption Approach to Secure Data Sharing in the Internet of Things Based on Blockchain. IEEE Syst. J. 2021, 16, 1685–1696. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, Y.; Zhang, Z.; Li, F. A blockchain-based access control scheme for smart grids. In Proceedings of the Internaltional Conference on Networking and Network Applications, Daegu, Korea, 10–13 October 2019; pp. 368–373. [Google Scholar]
- Alcaraz, C.; Rubio, J.E.; Lopez, J. Blockchain-assisted access for federated Smart Grid domains: Coupling and features. J. Parallel Distrib. Comput. 2020, 144, 124–135. [Google Scholar] [CrossRef]
- Gai, K.; Wu, Y.; Zhu, L.; Xu, L.; Zhang, Y. Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE Int. Things J. 2019, 6, 7992–8004. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Ding, Y. Blockchain-based decentralized and secure keyless signature scheme for smart grid. Energy 2019, 180, 955–967. [Google Scholar] [CrossRef]
- Saleem, D.; Johnson, J. Distributed Energy Resource (DER) Cybersecurity Standards; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2017. [Google Scholar]
- Johnson, J.T. Recommendations for Distributed Energy Resource Access Control; Technical Report; Sandia National Lab.: Albuquerque, NM, USA, 2021. [Google Scholar] [CrossRef]
- Howes, T.A.; Howes, T.; Smith, M.; Good, G.S. Understanding and Deploying LDAP Directory Services; Addison-Wesley Prof.: Reading, MA, USA, 2003; Available online: https://tinyurl.com/3ztjm4ps (accessed on 14 May 2022).
- Hong, P. Practical Web Design: Learn the Fundamentals of Web Design with HTML5, CSS3, Bootstrap, jQuery, and vue. js; Packt Publ.: Birmingham, UK, 2018; Available online: https://tinyurl.com/mr3b5wzh (accessed on 14 May 2022).
- AxiosJS. 2022. Available online: https://axios-http.com/docs/intro (accessed on 14 May 2022).
- Fragkos, G.; Johnson, J. Centralized LDAP Codebase. GitHub. 2021. Available online: https://github.com/geofragkos/RBAC_Centralized (accessed on 25 May 2022).
- Fragkos, G.; Johnson, J. Decentralized LDAP Codebase, GitHub. 2021. Available online: https://github.com/geofragkos/RBAC_Decentralized (accessed on 25 May 2022).
- ldap3 Python Library. 2022. Available online: https://ldap3.readthedocs.io/en/latest/welcome.html (accessed on 13 May 2022).
- RFC4510. 2006. Available online: https://www.ietf.org/rfc/rfc4510.txto (accessed on 13 May 2022).
- Mohanty, D. Frameworks: Truffle and Embark. In Ethereum for Architects and Developers; Springer: Berlin/Heidelberg, Germany, 2018; pp. 181–195. [Google Scholar]
- Hildenbrandt, E.; Saxena, M.; Rodrigues, N.; Zhu, X.; Daian, P.; Guth, D.; Moore, B.; Park, D.; Zhang, Y.; Stefanescu, A.; et al. Kevm: A complete formal semantics of the ethereum virtual machine. In Proceedings of the 31st Computer Security Foundations Symposium, Oxford, UK, 9–12 July 2018; pp. 204–217. [Google Scholar]
- Lee, W.M. Testing smart contracts using ganache. In Beginning Ethereum Smart Contracts Progr.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–167. [Google Scholar]
- Dannen, C. Introducing Ethereum and Solidity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 318. [Google Scholar]
- IEEE Std 1547-2018 (Rev. of IEEE Std 1547-2003); IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- California Public Utilities Commission. Electric Rule No. 21 Generating Facility Interconnections; California Public Utilities Commission: San Francisco, CA, USA, 2018.
- Wani, S.; Imthiyas, M.; Almohamedh, H.; Alhamed, K.M.; Almotairi, S.; Gulzar, Y. Distributed Denial of Service (DDoS) Mitigation Using Blockchain—A Comprehensive Insight. Symmetry 2021, 13, 227. [Google Scholar] [CrossRef]
- Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63. [Google Scholar] [CrossRef]
- Saraf, C.; Sabadra, S. Blockchain platforms: A compendium. In Proceedings of the International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11–12 May 2018; pp. 1–6. [Google Scholar]
- Park, D.; Zhang, Y.; Rosu, G. End-to-end formal verification of ethereum 2.0 deposit smart contract. In Proceedings of the International Conference on Computer Aided Verification; Springer: Berlin/Heidelberg, Germany, 2020; pp. 151–164. [Google Scholar]
- Saad, M.; Spaulding, J.; Njilla, L.; Kamhoua, C.; Shetty, S.; Nyang, D.; Mohaisen, A. Exploring the attack surface of blockchain: A systematic overview. arXiv 2019, arXiv:1904.03487. [Google Scholar]
- Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work blockchains. In Proceedings of the Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 3–16. [Google Scholar]
- Weber, I.; Gramoli, V.; Ponomarev, A.; Staples, M.; Holz, R.; Tran, A.B.; Rimba, P. On availability for blockchain-based systems. In Proceedings of the 36th Symposium on Reliable Distributed Systems (SRDS), Hong Kong, China, 26–29 September 2017; pp. 64–73. [Google Scholar]
- Pierro, G.A.; Rocha, H. The influence factors on ethereum transaction fees. In Proceedings of the IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain, Montreal, QC, Canada, 27 May 2019; pp. 24–31. [Google Scholar]
Approaches | Contributions |
---|---|
Centralized |
|
Decentralized |
|
Overview |
|
RBAC Approach | Advantages | Disadvantages |
---|---|---|
Decentralized (Ethereum Blockchain) | Security
| Security
|
Centralized (OpenLDAP ) | Security
| Security
|
Functions | Gas | Total Cost (Gwei) | Ethers | US Dollars |
---|---|---|---|---|
Smart Contract Deployment | 4,948,242 | 84,120,114 | 0.084120114 | $213.62 |
Add User Query (Simple) | 138,825 | 2,360,025 | 0.002360025 | $6.05 |
Add User Query (DER Owner) | 202,888 | 3,449,096 | 0.003449096 | $8.83 |
Delete User Query | 88,745 | 1,508,665 | 0.001508665 | $3.86 |
Add DER Device Query | 60,084 | 1,021,428 | 0.001021428 | $2.62 |
Delete DER Device Query | 132,754 | 2,256,818 | 0.002256818 | $5.78 |
Revoke Role Query | 21,123 | 359,091 | 0.000359091 | $0.91 |
Update Entity Query | 42,419 | 721,123 | 0.000721123 | $1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkos, G.; Johnson, J.; Tsiropoulou, E.E. Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations. Energies 2022, 15, 6375. https://doi.org/10.3390/en15176375
Fragkos G, Johnson J, Tsiropoulou EE. Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations. Energies. 2022; 15(17):6375. https://doi.org/10.3390/en15176375
Chicago/Turabian StyleFragkos, Georgios, Jay Johnson, and Eirini Eleni Tsiropoulou. 2022. "Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations" Energies 15, no. 17: 6375. https://doi.org/10.3390/en15176375
APA StyleFragkos, G., Johnson, J., & Tsiropoulou, E. E. (2022). Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations. Energies, 15(17), 6375. https://doi.org/10.3390/en15176375