Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry
Abstract
:1. Introduction
2. Literature Review
2.1. CEE of Transportation Industry
2.1.1. Measurement of Transportation Industry CEE
2.1.2. Factors Affecting Transportation CEE
2.2. Regional Differences of Transportation Industry CEE
3. Methods
3.1. Efficiency Measurement Model
3.1.1. Super-Efficient SBM
3.1.2. Indicator Selection
Input Variables
Output Indicators
3.2. Theil Index
4. Results
4.1. Results of Transportation Industry CEE
4.2. Regional Difference Measurement
4.2.1. Regional Differences in Transportation Industry CEE
4.2.2. Decomposition of Theil Index of Transportation CEE in Three Regions
4.3. Analysis of Factors Affecting the Carbon Emission Efficiency Gap of Regional Transportation Industry
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bose, B.K. Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Apergis, N.; Gozgor, G.; Lau, C.K.M. Globalization and environmental problems in developing countries. Environ. Sci. Pollut. Res. 2021, 28, 33719–33721. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.R.; Godil, D.I.; Yu, Z. Adoption of renewable energy sources, low-carbon initiatives, and advanced logistical infrastructure—An step toward integrated global progress. Sustain. Dev. 2022, 30, 275–288. [Google Scholar] [CrossRef]
- Wang, C.B.; Hu, Z.W.; Zhou, D.Q. Accounting of indirect CO 2 emissions from household consumption in China and its key emission reduction paths. J. Beijing Inst. Technol. 2022, 24, 15–27. [Google Scholar]
- Huang, L.C.; Cao, Q.S. Analysis of green development strategies in the transportation sector under the carbon neutrality target. Urban Transp. 2021, 19, 36–42. [Google Scholar]
- Du, Q.; Li, Z.Q. Legal policies and implementation actions of carbon neutrality abroad. China Environment News, 16 April 2021. [Google Scholar]
- Alataş, S. Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries. Res. Transp. Econ. 2022, 91, 101047. [Google Scholar] [CrossRef]
- Chen, L.; Wemhoff, A.P. Predicting embodied carbon emissions from purchased electricity for United States counties. Appl. Energy 2021, 292, 116898. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Chen, L. Carbon emission of energy consumption of the electric vehicle development scenario. Environ. Sci. Pollut. Res. 2021, 28, 42401–42413. [Google Scholar] [CrossRef]
- Rauf, A.; Ozturk, I.; Ahmad, F. Do tourism development, energy consumption and transportation demolish sustainable environments? evidence from Chinese Provinces. Sustainability 2021, 13, 12361. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.M.; Li, Y.T. Temporal and spatial variation characteristics and influencing factors of carbon emissions in the transportation industry. Environ. Sci. 2021, 47, 62–70. [Google Scholar]
- Chen, Y.C.; Xia, Y.Y. Research on the impact of FDI and industrial structure on carbon emissions: Taking the eastern, central and western my country as an example. Inn. Mong. Coal Econ. 2018, 7, 12–13. [Google Scholar]
- Yin, J.P.; Zhang, Y.X.; Fu, Y. Research on carbon emission and carbon absorption potential of forest vegetation in China. For. Resour. Manag. 2021, 3, 53–61. [Google Scholar]
- Magazzino, C.; Mele, M. On the relationship between transportation infrastructure and economic development in China. Res. Transp. Econ. 2021, 88, 100947. [Google Scholar] [CrossRef]
- Mashud, A.H.M.; Pervin, M.; Mishra, U. A sustainable inventory model with controllable carbon emissions in green-warehouse farms. J. Clean. Prod. 2021, 298, 126777. [Google Scholar] [CrossRef]
- Ağbulut, Ü. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141–157. [Google Scholar] [CrossRef]
- Los, B.; Ve RspagenP, B. Localized innovation, localized diffusion and the environment: An analysis of reductions of CO2, emissions by passenger cars. J. Evol. Econ. 2009, 19, 507–526. [Google Scholar] [CrossRef]
- Gonz, L.; Ventura, J.; Cárcaba, A. Product efficiency in the Spanish automobile market. Investig. Eur. Dir. Econ. Empresa 2013, 19, 1–7. [Google Scholar]
- Hampf, B.; Krger, J.J. Technical efficiency of automobiles-a nonparametric approach incorporating carbon dioxide emissions. Transp. Res. Part D Transp. Environ. 2014, 33, 47–62. [Google Scholar] [CrossRef]
- Sgouridis, S.; Bonnefoy, P.A.; Hansman, R.J. Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. Part A Policy Pract. 2011, 45, 1077–1091. [Google Scholar] [CrossRef]
- Yorucu, V. Growth impact of CO2 emissions caused by tourist arrivals in Turkey: An econometric approach. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 19–37. [Google Scholar] [CrossRef]
- Labib, S.M.; Neema, M.N.; Rahaman, Z. Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems. J. Environ. Manag. 2018, 223, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.D.; Lv, X.L. Grey Correlation and Prediction Analysis of Transportation Carbon Emissions in Shaanxi Province. In Proceedings of the 2019 World Transportation Conference, Beijing, China, 13–16 June 2019. [Google Scholar]
- Dai, W.T. Research on the Environmental Effects and Driving Mechanism of Carbon Emissions from Transportation in Sichuan Province; Southwest Jiaotong University: Chengdu, China, 2019. [Google Scholar]
- Song, M.; Hao, X.G. Analysis of Influencing Factors of Energy Consumption Carbon Emissions in Beijing’s Transportation Industry. China Energy 2018, 40, 42–47. [Google Scholar]
- Lv, Q.; Gao, J.L. The transportation carbon emission model and driving factor analysis in Beijing-Tianjin-Hebei region. Ecol. Econ. 2018, 34, 31–36. [Google Scholar]
- Wang, Y.Q.; Jiang, H.Y.; Fang, C.C. Measurement and Analysis of Total Factor Carbon Emission Efficiency of Transportation Industry in Six Central Provinces. Highw. Automob. Transp. 2020, 3, 15–20. [Google Scholar]
- Zhou, Y.X.; Hong, X.J. The measurement and dynamic driving mechanism of total factor carbon emission efficiency in China’s transportation industry. Bus. Econ. Manag. 2018, 5, 62–74. [Google Scholar]
- Yuan, C.W.; Zhang, S.; Jiao, P. Research on temporal and spatial changes and influencing factors of total factor carbon emission efficiency of transportation in China. Resour. Sci. 2017, 39, 687–697. [Google Scholar]
- Mishalani, R.G.; Goel, P.K.; Westra, A.M. Modeling the relationships among urban passenger travel carbon dioxide emissions, transportation demand and supply, population density, and proxy policy variables. Transp. Res. Part D Transp. Environ. 2014, 33, 146–154. [Google Scholar] [CrossRef]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Jia, J.W. Research on the influencing factors and countermeasures of transportation carbon emissions in Hebei Province based on GRA. Hebei Enterp. 2020, 9, 72–73. [Google Scholar]
- Wang, H.Y.; Wang, N. Research on the influencing factors of carbon emissions in China’s comprehensive transportation system. Logist. Technol. 2019, 2, 78–83. [Google Scholar]
- Xing, L.M. Analysis of Influencing Factors of China’s Transportation Energy Consumption and Energy Saving and Emission Reduction Potential; Shaanxi Normal University: Xi’an, China, 2017. [Google Scholar]
- Lesiv, M.; Bun, R. Geoinformation Technologies and Spatial Analysis of Carbon Dioxide. Transport through Border Line. Artif. Intell. 2010, 4, 322–329. [Google Scholar]
- Réquia, W.J.; Koutrakis, P.; Roig, H.L. Spatial distribution of vehicle emission inventories in the Federal District, Brazil. Atmos. Environ. 2015, 112, 32–39. [Google Scholar] [CrossRef]
- Keuken, M.P.; Jonkers, S.; Verhagen, H.L.M. Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi’an and Suzhou. Atmos. Environ. 2014, 98, 434–441. [Google Scholar] [CrossRef]
- Liu, Y.H. Silk Road Economic Belt Transportation Carbon Emission Spatial Transfer Analysis. Financ. Econ. Theory Pract. 2016, 37, 129–133. [Google Scholar]
- Zhang, C.; Nian, J. Panel estimation for transport sector CO2, emissions and its affecting factors: A regional analysis in China. Energy Policy 2013, 63, 918–926. [Google Scholar] [CrossRef]
- Yang, B.; Ning, X.L. China’s transportation carbon emissions measurement and spatial pattern analysis from the perspective of new urbanization. J. Inn. Mong. Norm. Univ. 2015, 5, 667–673. [Google Scholar]
- Xu, B.; Lin, B.Q. Differences in regional emissions in China’s transport sector: Determinants and reduction strategies. Energy 2016, 95, 459–470. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Wang, J.W.; Zheng, W.L. Spatial and temporal difference analysis of China’s transportation carbon emissions and influencing factors. J. Environ. Sci. 2017, 37, 4787–4797. [Google Scholar]
- Li, W.; Sun, W. Temporal and spatial distribution characteristics of carbon emissions in the provincial transportation industry. Syst. Eng. 2016, 34, 30–38. [Google Scholar]
- Färe, R.; Lovell, C.A.K. Measuring the Technical Efficiency of Production. J. Econ. Theory 1978, 19, 150–162. [Google Scholar] [CrossRef]
- Wang, B.X.; Guo, K. The Efficient of Carbon Emissions Efficiency of Beijing Public Transportation System: Based on Super-Efficiency SBM Model Using Malmquist-Luenberger Index. J. Syst. Sci. Math. Sci. 2018, 38, 456–467. [Google Scholar]
- Taleb, M.; Ramli, R.; Khalid, R. Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis. Expert Syst. Appl. 2018, 103, 14–24. [Google Scholar] [CrossRef]
- Ma, D.L.; Chen, Z.C.; Wang, L. Spatial measurement of inter-provincial carbon emission efficiency in China. China Popul.·Resour. Environ. 2015, 25, 67–77. [Google Scholar]
- Chen, Q.L. An Empirical Study on the Impact of Regional Economy on Comprehensive Transportation Efficiency. China Mark. 2020, 9, 34. [Google Scholar]
- Li, J.W.; Zhang, G.Q. Estimation of capital stock and return on capital of China’s transportation infrastructure. Contemp. Financ. 2016, 6, 3–14. [Google Scholar]
- Bai, C.E.; Qian, Y.Y. Infrastructure Development in China: The Cases of Electricity, Highways, and Railways. J. Comp. Econ. 2010, 38, 34–51. [Google Scholar] [CrossRef]
- Lan, Z.R.; Zhang, H.W. Research on inter-provincial differences in carbon emission efficiency of China’s transportation industry. Logist. Technol. 2014, 33, 132–135. [Google Scholar]
- Yang, J.M.; Wan, W.J. Carbon emission accounting and emission reduction scenario analysis of provincial transportation industry. Highway 2017, 62, 155–159. [Google Scholar]
- Zhang, Y.; Yu, Z.; Zhang, J. Analysis of carbon emission performance and regional differences in China’s eight economic regions: Based on the super-efficiency SBM model and the Theil index. PLoS ONE 2021, 16, e0250994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Research on the Measurement of Transportation Carbon Emissions and Economic Efficiency Based on RAM Model; Chang’an University: Xi’an, China, 2018. [Google Scholar]
- Shao, H.Q.; Wang, Z.F. Spatial correlation network structure of China’s transportation carbon emission efficiency and its influencing factors. China Population. Resour. Environ. 2021, 31, 32–41. [Google Scholar]
- Zhang, Q. Research on Transportation Carbon Emission Efficiency Based on Super-SBM Model; Chang’an University: Xi’an, China, 2018. [Google Scholar]
- Xu, Y.; Wang, Z.P. Carbon emission measurement and factor decomposition of my country’s transportation industry. Logist. Technol. 2011, 30, 16–18. [Google Scholar]
- Lu, J.F.; Fu, H.; Wang, X.X. A Study on Influencing Factors of Carbon Emission Efficiency in Regional Transportation Industry. Transp. Syst. Eng. Inf. 2016, 16, 25–30. [Google Scholar]
- Xu, S.C.; Xi, R.; He, Z.X. Analysis of Influencing Factors and Policy Implications of Carbon Emissions from Energy Consumption in China. Resour. Sci. 2012, 34, 2–12. [Google Scholar]
- Xie, S.H.; Cai, H.Y.; Xia, G.X. Measurement and influencing factors of carbon emissions in China’s transportation industry. Resour. Environ. Arid. Reg. 2016, 5, 13–18. [Google Scholar]
- Mao, C.C.; Ma, Z.X. The analysis of the regional economic growth and the regional financial industry development difference in china based on the theil index. Int. J. Econ. Financ. Stud. 2021, 13, 128–154. [Google Scholar]
Energy Name | Converted to Standard Coal Coefficient | Energy Name | Converted to Standard Coal Coefficient |
---|---|---|---|
raw coal | 0.7143 | kerosene | 1.4714 |
coal | 0.9714 | diesel fuel | 1.4571 |
crude | 1.4286 | liquefied petroleum gas | 1.7143 |
fuel oil | 1.4286 | natural gas | 1.3300 |
gasoline | 1.4714 | electricity | 0.1229 |
Fuel Type | Carbon Emission Coefficient | Fuel Type | Carbon Emission Coefficient |
---|---|---|---|
raw coal | 1.9804 | diesel fuel | 3.1645 |
coke | 3.0463 | fuel oil | 3.2406 |
gasoline | 2.9885 | liquefied petroleum gas | 3.1702 |
crude | 3.0689 | natural gas | 2.1867 |
kerosene | 3.1006 | electricity | 2.2132 |
Region | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eastern | Beijing | 0.513 | 0.625 | 0.646 | 0.653 | 0.764 | 0.776 | 0.756 | 0.862 | 0.877 | 0.897 | 0.923 | 1.156 | 1.174 | 0.817 |
Tianjin | 0.713 | 0.794 | 0.857 | 0.934 | 0.956 | 0.972 | 1.116 | 1.137 | 1.216 | 1.348 | 1.398 | 1.445 | 1.476 | 1.105 | |
Hebei | 0.711 | 0.834 | 0.936 | 0.965 | 0.966 | 0.976 | 1.049 | 1.116 | 1.276 | 1.287 | 1.303 | 1.426 | 1.482 | 1.102 | |
Liaoning | 0.357 | 0.416 | 0.465 | 0.477 | 0.482 | 0.518 | 0.527 | 0.538 | 0.575 | 0.656 | 0.689 | 0.741 | 0.876 | 0.563 | |
Shanghai | 0.521 | 0.656 | 0.675 | 0.665 | 0.716 | 0.754 | 0.817 | 0.858 | 0.889 | 0.897 | 0.943 | 1.187 | 1.214 | 0.830 | |
Jiangsu | 0.743 | 0.877 | 0.858 | 0.917 | 0.948 | 0.968 | 0.982 | 0.993 | 1.134 | 1.183 | 1.272 | 1.395 | 1.498 | 1.059 | |
Zhejiang | 0.516 | 0.604 | 0.737 | 0.817 | 0.910 | 0.967 | 0.979 | 0.996 | 1.016 | 1.076 | 1.127 | 1.218 | 1.319 | 0.945 | |
Fujian | 0.317 | 0.327 | 0.317 | 0.332 | 0.341 | 0.386 | 0.421 | 0.465 | 0.517 | 0.582 | 0.617 | 0.654 | 0.733 | 0.462 | |
Shandong | 0.316 | 0.326 | 0.329 | 0.337 | 0.358 | 0.404 | 0.538 | 0.598 | 0.632 | 0.718 | 0.853 | 0.895 | 0.958 | 0.559 | |
Guangdong | 0.315 | 0.346 | 0.382 | 0.411 | 0.533 | 0.616 | 0.764 | 0.736 | 0.787 | 0.798 | 0.817 | 0.828 | 0.929 | 0.636 | |
Hainan | 0.433 | 0.467 | 0.488 | 0.526 | 0.557 | 0.637 | 0.668 | 0.758 | 0.787 | 0.782 | 0.816 | 0.855 | 0.889 | 0.666 | |
Eastern Mean | 0.496 | 0.570 | 0.608 | 0.639 | 0.685 | 0.725 | 0.783 | 0.823 | 0.882 | 0.929 | 0.978 | 1.073 | 1.141 | 0.795 | |
Central | Shanxi | 0.321 | 0.423 | 0.466 | 0.523 | 0.568 | 0.645 | 0.687 | 0.744 | 0.776 | 0.798 | 0.812 | 0.841 | 0.856 | 0.651 |
Jilin | 0.311 | 0.424 | 0.435 | 0.426 | 0.4671 | 0.556 | 0.588 | 0.643 | 0.765 | 0.788 | 0.834 | 0.854 | 0.897 | 0.614 | |
Heilongjiang | 0.323 | 0.336 | 0.356 | 0.431 | 0.459 | 0.547 | 0.578 | 0.598 | 0.616 | 0.645 | 0.666 | 0.676 | 0.678 | 0.531 | |
Anhui | 0.321 | 0.321 | 0.334 | 0.415 | 0.511 | 0.532 | 0.546 | 0.556 | 0.564 | 0.571 | 0.578 | 0.609 | 0.637 | 0.500 | |
Jiangxi | 0.715 | 0.756 | 0.768 | 0.789 | 0.845 | 0.918 | 0.989 | 0.997 | 1.156 | 1.245 | 1.282 | 1.377 | 1.412 | 1.019 | |
Henan | 0.417 | 0.423 | 0.426 | 0.425 | 0.428 | 0.438 | 0.437 | 0.448 | 0.469 | 0.475 | 0.489 | 0.496 | 0.545 | 0.455 | |
Hubei | 0.412 | 0.425 | 0.429 | 0.432 | 0.435 | 0.454 | 0.453 | 0.459 | 0.466 | 0.474 | 0.486 | 0.524 | 0.698 | 0.473 | |
Hunan | 0.156 | 0.163 | 0.179 | 0.256 | 0.288 | 0.345 | 0.356 | 0.367 | 0.436 | 0.465 | 0.471 | 0.479 | 0.568 | 0.348 | |
Central mean | 0.372 | 0.409 | 0.424 | 0.462 | 0.500 | 0.554 | 0.579 | 0.602 | 0.656 | 0.683 | 0.702 | 0.732 | 0.786 | 0.574 | |
Western | Neimenggu | 0.121 | 0.227 | 0.231 | 0.247 | 0.252 | 0.267 | 0.314 | 0.422 | 0.534 | 0.544 | 0.654 | 0.663 | 0.761 | 0.403 |
Guangxi | 0.117 | 0.125 | 0.143 | 0.251 | 0.356 | 0.389 | 0.392 | 0.444 | 0.465 | 0.473 | 0.545 | 0.767 | 0.817 | 0.406 | |
Chongqing | 0.112 | 0.134 | 0.137 | 0.152 | 0.234 | 0.276 | 0.289 | 0.298 | 0.312 | 0.314 | 0.325 | 0.329 | 0.356 | 0.251 | |
Sichuan | 0.124 | 0.146 | 0.169 | 0.178 | 0.215 | 0.242 | 0.282 | 0.297 | 0.307 | 0.316 | 0.412 | 0.445 | 0.527 | 0.282 | |
Guizhou | 0.118 | 0.119 | 0.131 | 0.141 | 0.145 | 0.227 | 0.237 | 0.248 | 0.327 | 0.365 | 0.425 | 0.431 | 0.518 | 0.264 | |
Yunnan | 0.129 | 0.227 | 0.226 | 0.246 | 0.253 | 0.315 | 0.327 | 0.358 | 0.376 | 0.395 | 0.443 | 0.454 | 0.528 | 0.329 | |
Shaanxi | 0.115 | 0.116 | 0.126 | 0.138 | 0.227 | 0.258 | 0.279 | 0.291 | 0.324 | 0.345 | 0.334 | 0.356 | 0.413 | 0.256 | |
Gansu | 0.212 | 0.214 | 0.225 | 0.234 | 0.252 | 0.364 | 0.371 | 0.388 | 0.427 | 0.533 | 0.648 | 0.676 | 0.733 | 0.406 | |
Qinghai | 0.621 | 0.636 | 0.681 | 0.726 | 0.856 | 0.973 | 1.113 | 1.224 | 1.265 | 1.278 | 1.324 | 1.3356 | 1.346 | 1.029 | |
Ningxia | 0.622 | 0.635 | 0.687 | 0.715 | 0.834 | 0.925 | 1.108 | 1.231 | 1.244 | 1.252 | 1.314 | 1.327 | 1.346 | 1.018 | |
Xinjiang | 0.215 | 0.222 | 0.275 | 0.305 | 0.321 | 0.337 | 0.355 | 0.367 | 0.427 | 0.432 | 0.512 | 0.622 | 0.738 | 0.394 | |
Western mean | 0.228 | 0.255 | 0.276 | 0.303 | 0.359 | 0.416 | 0.461 | 0.506 | 0.546 | 0.568 | 0.631 | 0.673 | 0.735 | 0.458 | |
National mean | 0.365 | 0.411 | 0.437 | 0.469 | 0.516 | 0.566 | 0.611 | 0.648 | 0.699 | 0.731 | 0.777 | 0.835 | 0.897 | 0.612 |
Year | T | ||
---|---|---|---|
2008 | 0.177 | 0.038 | 0.139 |
2009 | 0.178 | 0.037 | 0.141 |
2010 | 0.18 | 0.035 | 0.145 |
2011 | 0.18 | 0.034 | 0.146 |
2012 | 0.177 | 0.034 | 0.143 |
2013 | 0.167 | 0.028 | 0.139 |
2014 | 0.163 | 0.026 | 0.137 |
2015 | 0.161 | 0.028 | 0.133 |
2016 | 0.163 | 0.029 | 0.134 |
2017 | 0.159 | 0.024 | 0.135 |
2018 | 0.160 | 0.022 | 0.138 |
2019 | 0.164 | 0.019 | 0.145 |
2020 | 0.173 | 0.016 | 0.157 |
Year | Twi | TB | TW | ||
---|---|---|---|---|---|
East | Central | West | |||
2008 | 0.0666 | 0.0487 | 0.0295 | 0.0144 | 0.0926 |
2009 | 0.0822 | 0.0345 | 0.0387 | 0.0142 | 0.0956 |
2010 | 0.0956 | 0.0322 | 0.0667 | 0.0145 | 0.1012 |
2011 | 0.1016 | 0.0334 | 0.0526 | 0.0147 | 0.1014 |
2012 | 0.1056 | 0.0467 | 0.0687 | 0.0131 | 0.0987 |
2013 | 0.1076 | 0.0398 | 0.0767 | 0.0127 | 0.0967 |
2014 | 0.0998 | 0.0279 | 0.0956 | 0.0125 | 0.0983 |
2015 | 0.1134 | 0.0376 | 0.0957 | 0.0114 | 0.0975 |
2016 | 0.0956 | 0.0457 | 0.0878 | 0.0102 | 0.0969 |
2017 | 0.0987 | 0.0387 | 0.0956 | 0.0085 | 0.0965 |
2018 | 0.1023 | 0.0378 | 0.0995 | 0.0062 | 0.0953 |
2019 | 0.1045 | 0.0382 | 0.0989 | 0.0043 | 0.0945 |
2020 | 0.1122 | 0.0324 | 0.0862 | 0.0056 | 0.0921 |
Year | TW/T | TB/T | Eastern Contribution Rate | Central Contribution Rate | Western Contribution Rate |
---|---|---|---|---|---|
2008 | 0.865 | 0.135 | 0.6035 | 0.1411 | 0.0834 |
2009 | 0.871 | 0.129 | 0.6048 | 0.1213 | 0.1111 |
2010 | 0.875 | 0.125 | 0.6102 | 0.1001 | 0.1556 |
2011 | 0.873 | 0.127 | 0.6094 | 0.0934 | 0.1845 |
2012 | 0.883 | 0.117 | 0.6078 | 0.1014 | 0.1856 |
2013 | 0.884 | 0.116 | 0.6045 | 0.1002 | 0.1878 |
2014 | 0.887 | 0.113 | 0.6011 | 0.0987 | 0.1976 |
2015 | 0.895 | 0.105 | 0.5967 | 0.0868 | 0.2023 |
2016 | 0.905 | 0.095 | 0.5956 | 0.0894 | 0.2132 |
2017 | 0.919 | 0.081 | 0.5934 | 0.1245 | 0.1876 |
2018 | 0.939 | 0.061 | 0.5887 | 0.1256 | 0.1887 |
2019 | 0.956 | 0.044 | 0.5867 | 0.114 | 0.2067 |
2020 | 0.943 | 0.057 | 0.5912 | 0.1021 | 0.2034 |
Mean | 0.9000 | 0.1000 | 0.599 | 0.105 | 0.185 |
Energy Structure | Transport Infrastructure | Urbanization | GDP per Capita | |
---|---|---|---|---|
Correlation | −0.2423 | −0.1722 | −0.0813 | −0.0022 |
Sequence | 1 | 2 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Zhao, T.; Wang, R. Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry. Energies 2022, 15, 6502. https://doi.org/10.3390/en15186502
Xu G, Zhao T, Wang R. Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry. Energies. 2022; 15(18):6502. https://doi.org/10.3390/en15186502
Chicago/Turabian StyleXu, Guoyin, Tong Zhao, and Rong Wang. 2022. "Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry" Energies 15, no. 18: 6502. https://doi.org/10.3390/en15186502
APA StyleXu, G., Zhao, T., & Wang, R. (2022). Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry. Energies, 15(18), 6502. https://doi.org/10.3390/en15186502