Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eutectic Salt Preparation
2.2. Characterization Method and Analysis Device
3. Results
3.1. Melting Point and Fusion Enthalpy
3.2. Thermal Stability
3.3. Specific Heat Capacity
3.4. Density
3.5. Thermal Conductivity
3.6. Viscosity
3.7. Economic Performance
4. Discussion
4.1. Challenges and Significance of Thermophysical Properties Measurement of Molten Salts
4.2. Advantages and Material Selection
4.3. Applications and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Kawanami, T.; Togashi, K.; Fumoto, K.; Hirano, S.; Zhang, P.; Shirai, K.; Hirasawa, S. Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media. Energy 2017, 117, 562–568. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Cao, L.; Tang, Y.; Fang, G. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy 2015, 80, 98–103. [Google Scholar] [CrossRef]
- Du, L.C.; Ding, J.; Tian, H.Q.; Wang, W.L.; Wei, X.L.; Song, M. Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Appl. Energy 2017, 204, 227–238. [Google Scholar] [CrossRef]
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced thermal systems driven by paraffin-based phase change materials—A review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Wang, T.; Mantha, D.; Reddy, R.G. Novel low melting point quaternary eutectic system for solar thermal energy storage. Appl. Energy 2013, 102, 1422–1429. [Google Scholar] [CrossRef]
- Bonk, A.; Sau, S.; Uranga, N.; Hernaiz, M.; Bauer, T. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog. Energy Combust. Sci. 2018, 67, 69–87. [Google Scholar] [CrossRef]
- Prasher, H.R. The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power. Energy Environ. Sci. 2014, 7, 1819–1828. [Google Scholar]
- Li, X.; Wang, Y.; Wu, S.; Xie, L. Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage. Energy 2018, 160, 1021–1029. [Google Scholar] [CrossRef]
- Wu, S.; Peng, H.; Ao, J.; Xie, L. Design and development of novel LiCl–NaCl–KCl–ZnCl2 eutectic chlorides for thermal storage fluids in concentrating solar power (CSP) applications. Sol. Energy Mater. Sol. Cells 2022, 240, 111678. [Google Scholar] [CrossRef]
- Janz, G.J.; Truong, G.N. Melting and premelting properties of the potassium nitrate-sodium nitrite-sodium nitrate eutectic system. J. Chem. Eng. Data 1983, 28, 201–202. [Google Scholar] [CrossRef]
- Villada, F.; Jaramillo, J.G.; Castano, F.; Echeverria, F.; Bolivar, F. Design and development of nitrate-nitrite based molten salts for concentrating solar power applications. Sol. Energy 2019, 188, 291–299. [Google Scholar] [CrossRef]
- Medrano, M.; Gil, A.; Martorell, I.; Potau, X.; Cabeza, L.F. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew. Sustain. Energy Rev. 2010, 14, 56–72. [Google Scholar] [CrossRef]
- Roget, F.; Favotto, C.; Rogez, J. Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant. Sol. Energy 2013, 95, 155–169. [Google Scholar] [CrossRef]
- Henríquez, M.; Guerreiro, L.; Fernández, G.; Fuentealba, E. Lithium nitrate purity influence assessment in ternary molten salts as thermal energy storage material for CSP plants. Renew. Energy 2020, 149, 940–950. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Han, Y.; Yuting, W.U.; Chongfang, M.A. Comparative analysis of thermophysical properties of mixed nitrates. Energy Storage Sci. Technol. 2019, 8, 1224–1229. [Google Scholar]
- Myers, P.D.; Goswami, D.Y. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 2016, 109, 889–900. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A. Heat transfer fluids for concentrating solar power systems—A review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.B.; Coventry, J. Sensible energy storage options for concentrating solar power plants operating above 600 °C. Renew. Sustain. Energy Rev. 2019, 107, 319–337. [Google Scholar] [CrossRef]
- Ding, W.; Gomez-Vidal, J.; Bonk, A.; Bauer, T. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level. Sol. Energy Mater. Sol. Cells 2019, 199, 8–15. [Google Scholar] [CrossRef]
- Zhou, S.K.; Wu, S. Medium and high-temperature latent heat thermal energy storage: Material database, system review, and corrosivity assessment. Int. J. Energ. Res. 2019, 43, 621–661. [Google Scholar] [CrossRef]
- Guo, L.L.; Liu, Q.; Yin, H.Q.; Pan, T.J.; Tang, Z.F. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature. Corros. Sci. 2020, 166, 108473. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.; Gomez-Vidal, J.; Coventry, J. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides. Sol. Energy 2018, 176, 350–357. [Google Scholar] [CrossRef]
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen 3 Demonstration Roadmap; Technical Report NREL/TP; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2017; pp. 5500–67464. [Google Scholar]
- Fernández, A.G.; Gomez-Vidal, J.; Oró, E.; Kruizenga, A.; Solé, A.; Cabeza, L.F. Mainstreaming commercial CSP systems: A technology review. Renew. Energy 2019, 140, 152–176. [Google Scholar] [CrossRef]
- Margolis, R.; Coggeshall, C.; Zuboy, J. Sunshot Vision Study; US Department of Energy: Washington, DC, USA, 2012. [Google Scholar]
- Vignarooban, K.; Pugazhendhi, P.; Tucker, C.; Gervasio, D.; Kannan, A. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Sol. Energy 2014, 103, 62–69. [Google Scholar] [CrossRef]
- Ding, W.; Bonk, A.; Bauer, T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Front. Chem. Sci. Eng. 2018, 12, 564–576. [Google Scholar] [CrossRef]
- Gaune-Escard, M.; Haarberg, G.M. Mohen Salts Chemistry and Technology; John Wiley & Sons, Ltd: Chichester, UK, 2014; pp. 543–553. [Google Scholar]
- Gomez, J.C.; Calvet, N.; Starace, A.K.; Glatzmaier, G.C. Ca(NO3)2-NaNO3-KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants. J. Sol. Energy Eng. 2013, 135, 0210161–0210168. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, J.; Jin, Y.; An, X. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature. Sol. Energy Mater. Sol. Cells 2018, 176, 36–41. [Google Scholar] [CrossRef]
- ASTM 1269-11; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2018.
- Cheng, J.-H.; Zhang, P.; An, X.-H.; Wang, K.; Zuo, Y.; Yan, H.-W.; Li, Z.; Jin-Hui, C.; Peng, Z.; Xue-Hui, A.; et al. A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage. Chin. Phys. Lett. 2013, 30, 126501. [Google Scholar] [CrossRef]
- An, X.-H.; Cheng, J.-H.; Yin, H.-Q.; Xie, L.-D.; Zhang, P. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Transf. 2015, 90, 872–877. [Google Scholar] [CrossRef]
- Janz, G.J.; Krebs, U.; Siegenthaler, H.F.; Tomkins, R.P.T. Molten salts: Volume 3, nitrates, nitrites and mixtures-electrical conductance, density, viscosity and surface tension data. J. Phys. Chem. Ref. Data 1973, 1, 582–746. [Google Scholar] [CrossRef]
- Jin, Y.; Cheng, J.; An, X.; Su, T.; Zhang, P.; Li, Z. Accurate viscosity measurement of nitrates/nitrites salts for concentrated solar power. Sol. Energy 2016, 137, 385–392. [Google Scholar] [CrossRef]
- Elfeky, K.E.; Ahmed, N.; Naqvi, S.M.A.; Wang, Q. Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants. Appl. Therm. Eng. 2018, 139, 609–622. [Google Scholar] [CrossRef]
- Elfeky, K.; Li, X.; Ahmed, N.; Lu, L.; Wang, Q. Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants. Appl. Energy 2019, 243, 175–190. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C. Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage. Sol. Energy 2017, 146, 172–179. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, S.H.; Kim, Y.; Lee, K.H.; Choi, J.S. Experimental studies on the charging performance of single-tank single-mediumthermal energy storage. Appl. Therm. Eng. 2019, 149, 1098–1104. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Li, N.; Ling, C.; Tang, Z.; Li, Z. Thermal transport and storage performances of NaCl–KCl–NaF eutectic salt for high temperatures latent heat. Sol. Energy Mater. Sol. Cells 2020, 218, 110756. [Google Scholar] [CrossRef]
- Sinopharm Chemical Reagent. Available online: https://www.sinoreagent.com/ (accessed on 1 January 2019).
Individual Salt | NaNO3 | KNO3 | LiNO3 | NaNO2 | Ca(NO3)2 |
---|---|---|---|---|---|
Price (¥/kg) | 42 | 46 | 120 | 40 | 38 |
Molten Salt | Composition | Tm (K) | Td (K) | Price (¥/kg) | Ref. |
---|---|---|---|---|---|
Solar Salt | NaNO3-KNO3 (60-40 wt%) | 513 | 838 | 43.6 | [34] |
Hitec | NaNO2-NaNO3-KNO3 (40-7-53wt%) | 415 | 807 | 43.32 | [19] |
Hitec XL | NaNO3-KNO3-Ca(NO3)2 (7-45-48 wt%) | 400 | 787 | 41.88 | [19] |
LiNaKNO3 | LiNO3-NaNO3-KNO3 (30-18-52 wt%) | 397 | 816 | 67.68 | [34] |
NaKCaNO3 | NaNO3-KNO3-Ca(NO3)2 (16-48-36 wt%) | 382 | 771 | 42.48 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Wang, Y.; Liu, Q.; Peng, H. Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage. Energies 2022, 15, 6591. https://doi.org/10.3390/en15186591
Li N, Wang Y, Liu Q, Peng H. Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage. Energies. 2022; 15(18):6591. https://doi.org/10.3390/en15186591
Chicago/Turabian StyleLi, Na, Yang Wang, Qi Liu, and Hao Peng. 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage" Energies 15, no. 18: 6591. https://doi.org/10.3390/en15186591
APA StyleLi, N., Wang, Y., Liu, Q., & Peng, H. (2022). Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage. Energies, 15(18), 6591. https://doi.org/10.3390/en15186591