Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables
Abstract
:1. Introduction
2. The State of the Art
3. A Decision-Making Model for Offshore Cable Routing Selection
3.1. Location
3.2. Development of a Decision-Making Framework
3.3. Identify Influencing Factors to Establish the Hierarchical Structure
3.4. SWM/WPM-Based Approach for Export Cable Routing Selection
3.4.1. Subjective Weighting Method (Ranking Method)
3.4.2. Weighted Product Method (Attributes Characterization)
- Determination of W weight value
- 2.
- Determination of the value of Vector S
- 3.
- Determination of the value of Vector V
- Multiply attributes by the alternatives. The weight is used as a positive rank for the attribute.
- The result of the previous step is summed, generating a value for each alternative.
- Divide the value of vector V for each alternative by the value of each alternative.
- The sequence of the best alternatives will represent a decision.
3.4.3. Sensitivity and Consensus Analysis
4. Offshore Wind Export Cable Route Selection
- The grid and influential criteria weight are determined.
- The thematic map, according to the weight of each cell of the grid, is generated to determine the best and worst cells that influence the cable alignments.
- The optimal cable path with the best cells of the grid is generated, as shown in Figure 4.
5. Discussion
6. Conclusions
- (i)
- Firstly, the criteria for input variables are derived from existing experience and studies of export cable route planning. More data sources could be used to define the criteria when applied to other cases.
- (ii)
- Secondly, the main factors used in the study are suitable for the European Atlantic coast. The criteria and attributes should be adjusted and applied in other regions according to the specific characteristics.
- (iii)
- Thirdly, this study focuses more on objective criteria (quantitative) and concerns socio/political issues (qualitative) little. Social and political aspects should be analyzed for application in the export cable route selection.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Expert | Position | Experience |
---|---|---|
Expert 1 | Senior naval architect | Seven years involved in offshore wind, developing real projects for floating offshore wind structures. |
Expert 2 | Senior naval architect | Seven years involved in offshore wind projects design and implementation. |
Expert 3 | Researcher | Eight years involved in floating wind turbines assessment. More than 6 years of collaborations on international projects related to offshore wind. |
Expert 4 | Head of offshore wind | Sixteen years of experience in renewable energies. Development of simulation tools for the floating wind sector. |
Expert 5 | Researcher | Three years of experience in hydrodynamic simulations of floating wind turbines and wind farm interactions. |
Expert 6 | Senior mechanical engineer | Thirteen years of experience in the design and validation of mooring systems for floating structures. Participation in more than 10 projects related to renewable energy. |
Expert 7 | Floating wind developer | Ten years of experience in marine operations and logistics, hydrodynamic and structural analysis of offshore structures. |
Appendix B
Column 3 | Column 2 | Column 1 | Column −1 | Column −2 | Column −3 |
---|---|---|---|---|---|
Water Depth | |||||
157.8 | 156.6 | 155.6 | 156 | 155 | 152.6 |
151.4 | 151.4 | 151.6 | 151.4 | 149.8 | 150 |
146.2 | 147.8 | 148.2 | 148.8 | 147.4 | 147.6 |
142.6 | 144.2 | 144.4 | 145.8 | 144.8 | 145.2 |
140 | 141.2 | 141.6 | 141.6 | 142.6 | 141.4 |
138.2 | 138 | 139 | 139 | 137.8 | 138.4 |
135.4 | 135 | 135.4 | 134.8 | 132.6 | 133.6 |
131.4 | 131 | 132 | 131 | 125 | 129.2 |
125.6 | 126.6 | 127 | 126.4 | 121.4 | 125.2 |
119.4 | 120.8 | 123.2 | 123 | 115 | 122.2 |
112.2 | 114.2 | 118.4 | 118.6 | 101.4 | 119.4 |
103 | 104.6 | 110.6 | 112.8 | 91.6 | 116.3 |
98.6 | 95.4 | 99.2 | 107 | 76.8 | 106.2 |
68.2 | 79.2 | 83.6 | 91 | 60.4 | 104.4 |
58 | 59.8 | 72.6 | 72 | 39 | 85.4 |
43.6 | 49.8 | 48.8 | 39.8 | 37.6 | 57.6 |
25 | 25 | 38.4 | 36.8 | 25.6 | 39.8 |
18.8 | 11 | 29 | 31.6 | 18.8 | 41.2 |
+28.3 | +0.9 | 9.8 | 22.4 | 15 | 33.2 |
+39.4 | +54.9 | 5 | 14.6 | 10.2 | 18.4 |
- | - | +36.2 | 9 | 9.6 | 12.4 |
- | - | +80 | 7.8 | 4.8 | 9.8 |
- | - | - | +39.7 | +1.2 | 6.2 |
- | - | - | +39.7 | +19.8 | +2.6 |
- | - | - | - | - | +23.1 |
Slope/Seabed Profile | |||||
6.4 | 5.2 | 4 | 4.6 | 5.2 | 2.6 |
5.2 | 3.6 | 3.4 | 2.6 | 2.4 | 2.4 |
3.6 | 3.6 | 3.8 | 3 | 2.6 | 2.4 |
2.6 | 3 | 2.8 | 4.2 | 2.2 | 3.8 |
1.8 | 3.2 | 2.6 | 2.6 | 4.8 | 3 |
2.8 | 3 | 3.6 | 4.2 | 5.2 | 4.8 |
4 | 4 | 3.4 | 3.8 | 7.6 | 4.4 |
5.8 | 4.4 | 5 | 4.6 | 3.6 | 4 |
6.2 | 5.8 | 3.8 | 3.4 | 6.4 | 3 |
7.2 | 6.6 | 4.8 | 4.4 | 13.6 | 2.8 |
9.2 | 9.6 | 7.8 | 5.8 | 9.8 | 3.1 |
4.4 | 9.2 | 11.4 | 5.8 | 14.8 | 10.1 |
30.4 | 16.2 | 15.6 | 16 | 16.4 | 1.8 |
10.2 | 19.4 | 11 | 19 | 21.4 | 19 |
14.4 | 10 | 23.8 | 32.2 | 1.4 | 27.8 |
18.6 | 24.8 | 10.4 | 3 | 12 | 17.8 |
6.2 | 14 | 9.4 | 5.2 | 6.8 | 1.4 |
9.5 | 10.1 | 19.2 | 9.2 | 3.8 | 8 |
- | - | 4.8 | 7.8 | 4.8 | 14.8 |
- | - | 31.2 | 5.6 | 0.6 | 6 |
- | - | - | 1.2 | 4.8 | 2.6 |
- | - | - | 31.9 | 3.6 | 3.6 |
- | - | - | - | - | 3.6 |
- | - | - | - | - | - |
- | - | - | - | - | - |
Distance to environmentally protected areas | |||||
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
8.4 | 9.4 | 10.4 | 11.4 | 12.4 | 13.4 |
- | - | 10.4 | 11.4 | 12.4 | 13.4 |
- | - | 10.4 | 11.4 | 12.4 | 13.4 |
- | - | - | 11.4 | 12.4 | 13.4 |
- | - | - | 11.4 | 12.4 | 13.4 |
- | - | - | - | - | 12.4 |
- | - | - | - | - | - |
- | - | - | - | - | - |
Appendix C
Criteria | Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 | Expert 7 | Total Weight | Ranking |
---|---|---|---|---|---|---|---|---|---|
C1 | 0.1389 | 0.2222 | 0.0000 | 0.1944 | 0.1667 | 0.1944 | 0.1944 | 0.1587 | 1-C1 |
C2 | 0.2222 | 0.1944 | 0.0278 | 0.2222 | 0.0000 | 0.2222 | 0.2222 | 0.1587 | 2-C2 |
C3 | 0.0833 | 0.1389 | 0.2222 | 0.0000 | 0.0278 | 0.1389 | 0.1389 | 0.1071 | 3-C5 |
C4 | 0.0556 | 0.0278 | 0.1944 | 0.1667 | 0.2222 | 0.0278 | 0.1111 | 0.1151 | 4-C4 |
C5 | 0.1667 | 0.1111 | 0.1667 | 0.1111 | 0.1389 | 0.0556 | 0.0833 | 0.1190 | 5-C3 |
C6 | 0.1111 | 0.0833 | 0.0556 | 0.0833 | 0.0556 | 0.1111 | 0.1667 | 0.0952 | 6-C7 |
C7 | 0.1944 | 0.1667 | 0.1111 | 0.0278 | 0.1111 | 0.0833 | 0.0278 | 0.1032 | 7-C6 |
C8 | 0.0000 | 0.0556 | 0.0833 | 0.0556 | 0.0833 | 0.1667 | 0.0000 | 0.0635 | 8-C9 |
C9 | 0.0278 | 0.0000 | 0.1389 | 0.1389 | 0.1944 | 0.0000 | 0.0556 | 0.0794 | 9-C8 |
Appendix D
Grid Position | Weight | Ranking | Grid position | Weight | Ranking |
---|---|---|---|---|---|
1 | 0.00795 | 75 | 63 | 0.00839 | 56 |
2 | 0.00845 | 53 | 64 | 0.00888 | 31 |
3 | 0.00903 | 27 | 65 | 0.00825 | 68 |
4 | 0.00902 | 28 | 66 | 0.00779 | 81 |
5 | 0.00903 | 26 | 67 | 0.00898 | 30 |
6 | 0.01026 | 6 | 68 | 0.00808 | 70 |
7 | 0.00806 | 71 | 69 | 0.00790 | 77 |
8 | 0.00881 | 34 | 70 | 0.00888 | 31 |
9 | 0.00914 | 21 | 71 | 0.00772 | 84 |
10 | 0.00976 | 11 | 72 | 0.00827 | 66 |
11 | 0.01010 | 8 | 73 | 0.00516 | 122 |
12 | 0.01029 | 5 | 74 | 0.00577 | 120 |
13 | 0.00835 | 60 | 75 | 0.00752 | 90 |
14 | 0.00865 | 44 | 76 | 0.00756 | 87 |
15 | 0.00883 | 33 | 77 | 0.00760 | 85 |
16 | 0.00941 | 13 | 78 | 0.01088 | 4 |
17 | 0.00985 | 10 | 79 | 0.00659 | 108 |
18 | 0.01018 | 7 | 80 | 0.00602 | 118 |
19 | 0.00854 | 47 | 81 | 0.00620 | 116 |
20 | 0.00870 | 39 | 82 | 0.00736 | 96 |
21 | 0.00910 | 23 | 83 | 0.00728 | 99 |
22 | 0.00878 | 35 | 84 | 0.00748 | 91 |
23 | 0.00998 | 9 | 85 | 0.00651 | 111 |
24 | 0.00935 | 15 | 86 | 0.00698 | 104 |
25 | 0.00868 | 41 | 87 | 0.00589 | 119 |
26 | 0.00836 | 59 | 88 | 0.00528 | 121 |
27 | 0.00900 | 29 | 89 | 0.00830 | 63 |
28 | 0.00930 | 16 | 90 | 0.01123 | 2 |
29 | 0.00867 | 42 | 91 | 0.00705 | 101 |
30 | 0.00958 | 12 | 92 | 0.00644 | 112 |
31 | 0.00753 | 89 | 93 | 0.00622 | 115 |
32 | 0.00810 | 69 | 94 | 0.00701 | 103 |
33 | 0.00830 | 65 | 95 | 0.00827 | 67 |
34 | 0.00842 | 54 | 96 | 0.00623 | 114 |
35 | 0.00841 | 55 | 97 | 0.00756 | 86 |
36 | 0.00875 | 37 | 98 | 0.00784 | 79 |
37 | 0.00912 | 22 | 99 | 0.00697 | 105 |
38 | 0.00721 | 100 | 100 | 0.00734 | 97 |
39 | 0.00803 | 73 | 101 | 0.00790 | 76 |
40 | 0.00831 | 62 | 102 | 0.00733 | 98 |
41 | 0.00773 | 82 | 103 | 0.00000 | 123 |
42 | 0.00870 | 38 | 104 | 0.00747 | 93 |
43 | 0.00859 | 46 | 105 | 0.00748 | 92 |
44 | 0.00909 | 24 | 106 | 0.00670 | 107 |
45 | 0.00703 | 102 | 107 | 0.00744 | 94 |
46 | 0.00773 | 83 | 108 | 0.00838 | 58 |
47 | 0.00845 | 52 | 109 | 0.00670 | 106 |
48 | 0.00863 | 45 | 110 | 0.00851 | 49 |
49 | 0.00850 | 51 | 111 | 0.00781 | 80 |
50 | 0.00870 | 40 | 112 | 0.00832 | 61 |
51 | 0.00940 | 14 | 113 | 0.00653 | 110 |
52 | 0.00755 | 88 | 114 | 0.00643 | 113 |
53 | 0.00740 | 95 | 115 | 0.00839 | 57 |
54 | 0.00877 | 36 | 116 | 0.01184 | 1 |
55 | 0.00830 | 63 | 117 | 0.00786 | 78 |
56 | 0.00852 | 48 | 118 | 0.01088 | 3 |
57 | 0.00906 | 25 | 119 | 0.00867 | 43 |
58 | 0.00928 | 17 | 120 | 0.00925 | 18 |
59 | 0.00611 | 117 | 121 | 0.00656 | 109 |
60 | 0.00851 | 50 | 122 | 0.00923 | 19 |
61 | 0.00799 | 74 | 123 | 0.00916 | 20 |
62 | 0.00803 | 72 |
References
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Von Jouanne, A.; Husa, I.; Wallace, A.; Yokochi, A. Gone with the wind: Innovative hydrogen/fuel cell electric vehicle infrastructure based on wind energy sources. IEEE Ind. Appl. Mag. 2005, 11, 12–19. [Google Scholar] [CrossRef]
- Chen, Z.; Blaabjerg, F. Wind farm-A power source in future power systems. Renew. Sustain. Energy Rev. 2009, 13, 1288–1300. [Google Scholar] [CrossRef]
- Shafiee, M.; Brennan, F.; Espinosa, I.A. A parametric whole life cost model for offshore wind farms. Int. J. Life Cycle Assess. 2016, 21, 961–975. [Google Scholar] [CrossRef]
- Tahery, H.; Kucuksari, S. Offshore Wind Farm Collection Cable Layout Optimization through Cost Minimization. In Proceedings of the 51st North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019. [Google Scholar] [CrossRef]
- Shields, M.; Nunemaker, J. Process-based balance of system cost modeling for offshore wind power plants in the United States. J. Phys. Conf. Ser. 2020, 1452, 012039. [Google Scholar] [CrossRef]
- Ghigo, A.; Cottura, L.; Caradonna, R.; Bracco, G.; Mattiazzo, G. Platform optimization and cost analysis in a floating offshore wind farm. J. Mar. Sci. Eng. 2020, 8, 835. [Google Scholar] [CrossRef]
- Myhr, A.; Bjerkseter, C.; Ågotnes, A.; Nygaard, T.A. Levelised cost of energy for offshore floating wind turbines in a lifecycle perspective. Renew. Energy 2014, 66, 714–728. [Google Scholar] [CrossRef]
- Maienza, C.; Avossa, A.M.; Ricciardelli, F.; Coiro, D.; Troise, G.; Georgakis, C.T. A life cycle cost model for floating offshore wind farms. Appl. Energy 2020, 266, 114716. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, B.; Liu, T. Tech-Economic Assessment of Power Transmission Options for Large-Scale Offshore Wind Farms in China. Processes 2022, 10, 979. [Google Scholar] [CrossRef]
- Timmers, V.; Egea-àlvarez, A.; Gkountaras, A.; Li, R.; Xu, L. All-DC offshore wind farms: When are they more cost-effective than AC designs? IET Renew. Power Gener. 2022. [Google Scholar] [CrossRef]
- Maurer, R. Power Under the Sea. Electron. Power 1979, 25, 26–29. [Google Scholar] [CrossRef]
- Pérez-Rúa, J.A.; Das, K.; Cutululis, N.A. Optimum sizing of offshore wind farm export cables. Int. J. Electr. Power Energy Syst. 2019, 113, 982–990. [Google Scholar] [CrossRef]
- Klein, A.; Haugland, D. Optimization of reliable cyclic cable layouts in offshore wind farms. Eng. Optim. 2021, 53, 258–276. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Das, K.; Cutululis, N.A.; Molina-García, Á. Offshore wind power integration into future power systems: Overview and trends. J. Mar. Sci. Eng. 2019, 7, 399. [Google Scholar] [CrossRef]
- Zhao, D.; Meliopoulos, A.P.S.; Sun, L. Cost analysis and optimal kV level selection of alternate wind farms. In Proceedings of the 45th North American Power Symposium (NAPS), Manhattan, KS, USA, 22–24 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline. Renew. Sustain. Energy Rev. 2020, 134, 110328. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. A novel multi-criteria decision-making model to evaluate floating wind farm locations. Renew. Energy 2022, 185, 431–454. [Google Scholar] [CrossRef]
- Diaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market Needs, Opportunities and Barriers for the Floating Wind Industry. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- Wu, B.; Yan, X.; Wang, Y.; Zhang, D.; Guedes Soares, C. Three-Stage Decision-Making Model under Restricted Conditions for Emergency Response to Ships not under Control. Risk Anal. 2017, 37, 2455–2474. [Google Scholar] [CrossRef]
- Wang, W.; Yan, X.; Li, S.; Zhang, L.; Ouyang, J.; Ni, X. Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects. IET Gener. Transm. Distrib. 2021, 15, 1387–1402. [Google Scholar] [CrossRef]
- Balogun, A.L.; Matori, A.N.; Yusof, K.; Lawal, D.U.; Chandio, I.A. Geographic Information System (GIS) in Offshore Pipeline Route Selection: Past, Present, and Future. Pensee J. 2013, 75, 374–396. [Google Scholar]
- Feldman, S.C.; Pelletier, R.E.; Waker, E.; Smoot, J.C.; Ahl, D. A Prototype for Pipeline Routing Using Remotely Sensed Data and Geographic Information System Analysis. Remote Sens. Environ. 1995, 53, 123–131. [Google Scholar] [CrossRef]
- Çevik, E.; Topal, T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Moghaddam, H.K.; Delavar, M.R. A GIS-based Pipelining Using Fuzzy Logic and Statistical Models. Int. J. Comput. Sci. Netw. Secur. 2007, 7, 117–123. [Google Scholar]
- King, T.; Phillips, R.; Johansen, C. Pipeline routing and burial depth analysis using GIS software. Soc. Pet. Eng.-Arct. Technol. Conf. 2011 2011, 1, 445–455. [Google Scholar] [CrossRef]
- Bruce, B.; Haneberg, W.C.; Drazba, M.C. Using Qualitative Slope Hazard Maps and Quantitative Probabilistic Slope Stability Models to Constrain Least-Cost Pipeline Route Optimization OTC 23980. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Devine, C.A.; Haneberg, W.C. Optimization methods for arctic pipeline route selection. In Proceedings of the Arctic Technology Conference, St. John’s, NL, USA, 24–26 October 2016; pp. 1–12. [Google Scholar] [CrossRef]
- Devine, C.A.; Haneberg, W.C.; Lee, H.; Liu, M.L.; Chang, G.A. A sensible approach to subsea pipeline route determination—Moving from hand-drawn routes to geologically-constrained, least-cost optimized paths. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2016; Volume 1, pp. 872–888. [Google Scholar] [CrossRef]
- American Bureau of Shipping Guidance Notes on Subsea Pipeline Route Determination. 2016. Available online: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/234_guidance_notes_on_subsea_pipeline_route_determination/Pipeline_Route_Determination_GN_e-Aug16-New%20Logo.pdf (accessed on 4 August 2022).
- Balogun, A.L.; Matori, A.N.; Hamid-Mosaku, A.I.; Umar Lawal, D.; Ahmed Chandio, I. Fuzzy MCDM-based GIS model for subsea oil pipeline route optimization: An integrated approach. Mar. Georesources Geotechnol. 2017, 35, 961–969. [Google Scholar] [CrossRef]
- Monteiro, C.; Ramírez-Rosado, I.J.; Miranda, V.; Zorzano-Santamaría, P.J.; García-Garrido, E.; Fernández-Jiménez, L.A. GIS spatial analysis applied to electric line routing optimization. IEEE Trans. Power Deliv. 2005, 20, 934–942. [Google Scholar] [CrossRef]
- Bagli, S.; Geneletti, D.; Orsi, F. Routeing of power lines through least-cost path analysis and multicriteria evaluation to minimise environmental impacts. Environ. Impact Assess. Rev. 2011, 31, 234–239. [Google Scholar] [CrossRef]
- Uddin, S.; Sherpa, K.S.; Chakravorty, S.; Ray, A. Transmission line routing using open source software Q-GIS. Int. J. Open Source Softw. Process. 2017, 8, 71–82. [Google Scholar] [CrossRef]
- Randolph, M.; Gourvenec, S. Offshore Geotechnical Engineering; Taylor & Francis Group: Oxfordshire, UK, 2011; ISBN 9781315272474. [Google Scholar]
- Chatzidakis, D.; Tsompanakis, Y.; Psarropoulos, P.N. An improved analytical approach for simulating the lateral kinematic distress of deepwater offshore pipelines. Appl. Ocean Res. 2019, 90, 101852. [Google Scholar] [CrossRef]
- Sarvanis, G.C.; Karamanos, S.A. Analytical model for the strain analysis of continuous buried pipelines in geohazard areas. Eng. Struct. 2017, 152, 57–69. [Google Scholar] [CrossRef]
- Vazouras, P.; Dakoulas, P.; Karamanos, S.A. Pipe-soil interaction and pipeline performance under strike-slip fault movements. Soil Dyn. Earthq. Eng. 2015, 72, 48–65. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Yan, X.; Yang, X. A new finite element model of buried steel pipelines crossing strike-slip faults considering equivalent boundary springs. Eng. Struct. 2016, 123, 30–44. [Google Scholar] [CrossRef]
- Joshi, S.; Prashant, A.; Deb, A.; Jain, S.K. Analysis of buried pipelines subjected to reverse fault motion. Soil Dyn. Earthq. Eng. 2011, 31, 930–940. [Google Scholar] [CrossRef]
- Trimintziou, M.S.; Sakellariou, M.G.; Psarropoulos, P.N. Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults. Int. J. Civ. Environ. Eng. 2015, 9, 775–784. [Google Scholar]
- Markou, A.A.; Kaynia, A.M.; Sextos, A.G.; Manolis, G.D. Soil-Pipe-Interaction Phenomena on Slopes Under. In Proceedings of the 16th European Conference on Earthquake Engineering, 16ECEE, Thessaloniki, Greece, 18–21 June 2018; pp. 1–10. [Google Scholar]
- Zhou, X.L.; Wang, J.H.; Zhang, J.; Jeng, D.S. Wave and current induced seabed response around a submarine pipeline in an anisotropic seabed. Ocean Eng. 2014, 75, 112–127. [Google Scholar] [CrossRef]
- Yildirim, V.; Yomralioglu, T.; Nisanci, R.; Çolak, H.E.; Bediroglu, S.; Saralioglu, E. A spatial multicriteria decision-making method for natural gas transmission pipeline routing. Struct. Infrastruct. Eng. 2017, 13, 567–580. [Google Scholar] [CrossRef]
- Fischetti, M.; Pisinger, D. Optimizing wind farm cable routing considering power losses. Eur. J. Oper. Res. 2018, 270, 917–930. [Google Scholar] [CrossRef]
- Schell, K.R.; Claro, J.; Guikema, S.D. Probabilistic cost prediction for submarine power cable projects. Int. J. Electr. Power Energy Syst. 2017, 90, 1–9. [Google Scholar] [CrossRef]
- Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sustain. Energy Rev. 2018, 96, 380–391. [Google Scholar] [CrossRef]
- Díaz, H.; Fonseca, R.B.; Guedes Soares, C. Site selection process for floating offshore wind farms in Madeira islands. In Advances in Renewable Energies Offshore; Guedes Soares, C., Ed.; Taylor & Francis: Oxfordshire, UK, 2019; pp. 729–737. [Google Scholar]
- Díaz, H.; Guedes Soares, C. A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain). Energies 2021, 14, 865. [Google Scholar] [CrossRef]
- Díaz, H.; Loughney, S.; Wang, J.; Guedes Soares, C. Comparison of multicriteria analysis techniques for decision making on floating offshore wind farms site selection. Ocean Eng. 2022, 248, 110751. [Google Scholar] [CrossRef]
- Diaz, H.; Teixeira, A.P.; Guedes Soares, C. Application of Fuzzy and Monte Carlo Analytic Hierarchy Processes for ranking floating wind farm locations. Ocean Eng. 2022, 245, 110453. [Google Scholar] [CrossRef]
- Gavériaux, L.; Laverrière, G.; Wang, T.; Maslov, N.; Claramunt, C. GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Ann. GIS 2019, 25, 207–218. [Google Scholar] [CrossRef]
- Chaouachi, A.; Covrig, C.F.; Ardelean, M. Multi-criteria selection of offshore wind farms: Case study for the Baltic States. Energy Policy 2017, 103, 179–192. [Google Scholar] [CrossRef]
- Salabun, W.; Watrobski, J.; Piegat, A. Identification of a Multi-criteria Model of Location Assessment for Renewable Energy Sources. Artif. Intell. Soft Comput. 2016, 321–332. [Google Scholar] [CrossRef]
- Vagiona, D.G.; Karanikolas, N.M. A multicriteria approach to evaluate offshore wind farms siting in Greece. Glob. Nest J. 2012, 14, 235–243. [Google Scholar]
- Vagiona, D.G.; Kamilakis, M. Sustainable site selection for offshore wind farms in the South Aegean-Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef]
- Lee, T.-L. Assessment of the Potential of Offshore Wind Energy in Taiwan using Fuzzy Analytic Hierarchy Process. Open Civ. Eng. J. 2014, 4, 96–104. [Google Scholar] [CrossRef]
- Ziemba, P.; Wa̧tróbski, J.; Zioło, M.; Karczmarczyk, A. Using the PROSA method in offshore wind farm location problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, J.; Yuan, J.; Geng, S.; Zhang, H. Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China. Energy Convers. Manag. 2016, 113, 66–81. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Wolski, W. Methodological aspects of decision support system for the location of renewable energy sources. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; Volume 5, pp. 1451–1459. [Google Scholar] [CrossRef]
- Fetanat, A.; Khorasaninejad, E. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean Coast. Manag. 2015, 109, 17–28. [Google Scholar] [CrossRef]
- Mekonnen, A.D.; Gorsevski, P.V. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renew. Sustain. Energy Rev. 2015, 41, 162–177. [Google Scholar] [CrossRef]
- Bagočius, V.; Zavadskas, E.K.; Turskis, Z. Sequence determining of construction of the offshore wind farm construction applying permutation method. Ekon. Manag. 2014, 17, 50–61. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Stefanakou, A.A.; Nikitakos, N.; Lilas, T.; Pavlogeorgatos, G. A GIS-based decision support model for offshore floating wind turbine installation. Int. J. Sustain. Energy 2019, 38, 673–691. [Google Scholar] [CrossRef]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
- Aalianvari, A.; Katibeh, H.; Sharifzadeh, M. Application of fuzzy Delphi AHP method for the estimation and classification of ghomrud tunnel from groundwater flow hazard. Arab. J. Geosci. 2012, 5, 275–284. [Google Scholar] [CrossRef]
- Toloie-Eshlaghy, A.; Homayonfar, M.; Aghaziarati, M.; Arbabiun, P. A subjective weighting method based on group decision making for ranking and measuring criteria values. Aust. J. Basic Appl. Sci. 2011, 5, 2034–2040. [Google Scholar]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach. Sci. Rep. 2022, 12, 4260. [Google Scholar] [CrossRef]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef]
- Miç, P.; Antmen, Z.F. A Decision-Making Model Based on Topsis, Waspas, and Multimoora Methods for University Location Selection Problem. SAGE Open 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Micro-siting of floating turbines through multiple-criteria decision-making. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, Virtual, 21–30 June 2021; Volume 5, pp. 1–9. [Google Scholar] [CrossRef]
- Salvacao, N. and Guedes Soares, C. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 2018, 145, 276–287. [Google Scholar] [CrossRef]
- Silva, D.; Bento, A.R.; Martinho, P.; Guedes Soares, C. High resolution local wave energy modelling for the Iberian Peninsula. Energy 2015, 91, 1099–1112, Continued at Energy 2016, 94, 857–858. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Bento, A.R.; Silva, D.; Salvacao, N.; Guedes Soares, C. Economic feasibility of floating offshore wind farms in the north of Spain. J. Mar. Sci. Eng. 2020, 8, 58. [Google Scholar] [CrossRef]
- Woo, J.; Kim, D.; Na, W.B. Safety analysis of rock berms that protect submarine power cables in the event of an anchor collision. Ocean Eng. 2015, 107, 204–211. [Google Scholar] [CrossRef]
- Möller Bernd, B. Continuous spatial modelling to analyse planning and economic consequences of offshore wind energy. Energy Policy 2011, 39, 511–517. [Google Scholar] [CrossRef]
- Murdani; Sianturi, F.A.; Hutahaean, H.D.; Sinaga, S.B.; Rajagukguk, D.M. Implementation of the Weighted Product Method in the Best Student Selection Decision Making System Application. In Proceedings of the 1st Unimed International Conference on Economics Education and Social Science (UNICEES); Medan, Indonesia, 31 October 2018, SCITEPRESS–Science and Technology Publications, Lda.: Setúbal, Portugal, 2020; pp. 99–104. Available online: https://www.scitepress.org/ProceedingsDetails.aspx?ID=r2oTwNxQHVk=&t=1 (accessed on 4 August 2022). [CrossRef]
- Ensslin, L.; Montibeller Neto, G.; Noronha, S.M. Apoio à decisão: Metodologia para a Estruturação de Problemas e Avaliação Multicritério de Alternativas; Insular: Florianópolis, Brasil, 2001. [Google Scholar]
- Amaro, N.; Egorov, A.; Gloria, G. Fostering Offshore Wind Integration through Grid Connection Impact Assessment. J. Mar. Sci. Eng. 2022, 10, 463. [Google Scholar] [CrossRef]
No. | Criteria | Unsuitable Areas |
---|---|---|
Ex1 | Military areas | All * |
Ex2 | Hydrocarbons and minerals | All |
Ex3 | Sand and gravel | All |
Ex4 | Aquaculture and fishing | All |
Ex5 | Marine renewable energies pilot zones | All |
Ex6 | Environmentally protected areas | All |
Ex7 | Underwater lines and pipelines | All |
Ex8 | Heritage areas | All |
Ex9 | Other maritime activities | All |
Ex10 | Hazardous areas (submarine volcanoes) | All |
Ex11 | Subsea structures (wellheads) | All |
Ex12 | Rock outcrops (coral reefs) | All |
No. | Criteria | Objective | Brief Description |
---|---|---|---|
C1 | Slope/seabed profile | Minimize | The variations in the slope can create problems for the tender. |
C2 | Seabed conditions (wrecks, underwater volcanoes, others) | Minimize | The influence of underwater conditions can affect the cable integrity and cable tending process. |
C3 | Distance to environmental protected areas | Maximize | The cable can influence the underwater flora and fauna. |
C4 | Influence in marinespecies migration paths | Minimize | The magnetic fields created by the underwater cables candisturb the migration of species. |
C5 | Distance to aquaculture and fishing areas | Maximize | The marine activities related to fisheries and aquaculture can produce damage to the cables. |
C6 | Distance to offshoreplatforms | Maximize | The offshore platforms and activities related to the maintenance of structures can affect the cable. |
C7 | Distance to the area ofshipping, anchorages, etc. | Maximize | The anchorage of ships in the area can create cable breaks. |
C8 | Distance to existingpipelines andunderwater cables | Maximize | The interactions between cables can create problems during the installation and inspections. |
C9 | Distance to recreational sites (tourist beaches, recreational activities) | Maximize | The proximity of cable to tourist areas can affect the process of tending and social acceptance negatively. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, H.; Guedes Soares, C. Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables. Energies 2022, 15, 6593. https://doi.org/10.3390/en15186593
Díaz H, Guedes Soares C. Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables. Energies. 2022; 15(18):6593. https://doi.org/10.3390/en15186593
Chicago/Turabian StyleDíaz, Hugo, and C. Guedes Soares. 2022. "Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables" Energies 15, no. 18: 6593. https://doi.org/10.3390/en15186593
APA StyleDíaz, H., & Guedes Soares, C. (2022). Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables. Energies, 15(18), 6593. https://doi.org/10.3390/en15186593