Verification of Utilizing Nanowaste (Glass Waste and Fly Ash) as an Alternative to Nanosilica in Epoxy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. Tests
3. Results and Discussion
3.1. Results of Fourier Transform Infrared Analysis
3.2. Results of Glass Transition Temperatures
3.3. Results of Viscosity
3.4. Results of Hardness
4. Conclusions
- It could be observed clearly that the nanosized silica, glass, and fly ash have the same impact on the Tg of epoxy. The slight reduction in Tg after the improvement of the epoxy by nanoparticles can significantly change free volumes between the polymer chains. Another explanation is that nanosized particles affect the adhesive’s curing processes and prevent the polymer chains from cross-linking.
- The hardness magnitudes improve when the nanopowder filler rises, which correlates to the uniform distribution of nanosized fillers and the high adhesion between epoxy and nanopowder. The hardness magnitudes of the nanoglass/epoxy composites seemed to be likewise greater than those of the nanosilica/epoxy and fly ash/epoxy composites, which are attributable to the hardness of the nanosized glass powders as well as the strengths of the connection between the epoxy and powder.
- The viscosity continued to increase with the addition of nanosilica, fly ash, and glass. Because of the agglomeration of a colloidal suspension of the nanosized particles in the resins, the nanofilled epoxy resins seem to have a relatively high viscosity as the nano–fly ash and glass levels rise.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yadav, P.S.; Purohit, R.; Kothari, A. Study of Friction and Wear Behaviour of Epoxy/Nano SiO2 Based Polymer Matrix Composites-a Review. Mater. Today Proc. 2019, 18, 5530–5539. [Google Scholar] [CrossRef]
- Egbo, M.K. A Fundamental Review on Composite Materials and Some of Their Applications in Biomedical Engineering. J. King Saud Univ. Sci. 2021, 33, 557–568. [Google Scholar] [CrossRef]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the Mechanical Properties of Epoxy Silica Nanocomposites through FEA-Supported Evaluation of Ball Indentation Test Results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef]
- He, E.; Wang, S.; Li, Y.; Wang, Q. Enhanced Tribological Properties of Polymer Composites by Incorporation of Nano-SiO2 Particles: A Molecular Dynamics Simulation Study. Comput. Mater. Sci. 2017, 134, 93–99. [Google Scholar] [CrossRef]
- Uddin, M.F.; Sun, C.T. Strength of Unidirectional Glass/Epoxy Composite with Silica Nanoparticle-Enhanced Matrix. Compos. Sci. Technol. 2008, 68, 1637–1643. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A.; Penati, A. Linear Low-Density Polyethylene/Silica Micro-and Nanocomposites: Dynamic Rheological Measurements and Modelling. Express Polym. Lett. 2010, 4, 115–129. [Google Scholar] [CrossRef]
- Tomić, M.; Dunjić, B.; Nikolić, M.S.; Stanković, N.; Pavlović, V.B.; Bajat, J.; Djonlagić, J. Polyamidoamine as a Clay Modifier and Curing Agent in Preparation of Epoxy Nanocomposites. Prog. Org. Coat. 2019, 131, 311–321. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Yakovlev, A.V. Reinforcement of Epoxy Composites with Graphite-Graphene Structures. Sci. Rep. 2019, 9, 16246. [Google Scholar] [CrossRef] [PubMed]
- Cañavate, J.; Colom, X.; Pages, P.; Carrasco, F. Study of the Curing Process of an Epoxy Resin by FTIR Spectroscopy. Polym. Plast. Technol. Eng. 2000, 39, 937–943. [Google Scholar] [CrossRef]
- Njuguna, J.; Pielichowski, K.; Alcock, J.R. Epoxy-based Fibre Reinforced Nanocomposites. Adv. Eng. Mater. 2007, 9, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Ye, L.; Friedrich, K. Fracture Behaviours of Epoxy Nanocomposites with Nano-Silica at Low and Elevated Temperatures. J. Mater. Sci. 2007, 42, 2766–2774. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Pradhan, S.; Pandey, P.; Mohanty, S.; Nayak, S.K. Insight on the Chemistry of Epoxy and Its Curing for Coating Applications: A Detailed Investigation and Future Perspectives. Polym. Plast. Technol. Eng. 2016, 55, 862–877. [Google Scholar] [CrossRef]
- Liang, Y.L.; Pearson, R.A. Toughening Mechanisms in Epoxy–Silica Nanocomposites (ESNs). Polymer 2009, 50, 4895–4905. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, X.; Song, S.; Yu, L.; Zhang, P. Friction and Wear Behavior of Nanosilica-Filled Epoxy Resin Composite Coatings. Appl. Surf. Sci. 2012, 258, 6384–6390. [Google Scholar] [CrossRef]
- Tsai, J.-L.; Hsiao, H.; Cheng, Y.-L. Investigating Mechanical Behaviors of Silica Nanoparticle Reinforced Composites. J. Compos. Mater. 2010, 44, 505–524. [Google Scholar] [CrossRef]
- Ilangovan, S.; Kumaran, S.S.; Vasudevan, A.; Naresh, K. Effect of Silica Nanoparticles on Mechanical and Thermal Properties of Neat Epoxy and Filament Wounded E-Glass/Epoxy and Basalt/Epoxy Composite Tubes. Mater. Res. Express 2019, 6, 0850e2. [Google Scholar] [CrossRef]
- Johnsen, B.B.; Kinloch, A.J.; Mohammed, R.D.; Taylor, A.C.; Sprenger, S. Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers. Polymer 2007, 48, 530–541. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Kinloch, A.J.; Masania, K.; Sohn Lee, J.; Taylor, A.C.; Sprenger, S. The Toughness of Epoxy Polymers and Fibre Composites Modified with Rubber Microparticles and Silica Nanoparticles. J. Mater. Sci. 2010, 45, 1193–1210. [Google Scholar] [CrossRef]
- Conradi, M.; Zorko, M.; Kocijan, A.; Verpoest, I. Mechanical Properties of Epoxy Composites Reinforced with a Low Volume Fraction of Nanosilica Fillers. Mater. Chem. Phys. 2013, 137, 910–915. [Google Scholar] [CrossRef]
- Christy, A.; Purohit, R.; Rana, R.S.; Singh, S.K.; Rana, S. Development and Analysis of Epoxy/Nano SiO2 Polymer Matrix Composite Fabricated by Ultrasonic Vibration Assisted Processing. Mater. Today Proc. 2017, 4, 2748–2754. [Google Scholar] [CrossRef]
- Dittanet, P.; Pearson, R.A. Effect of Silica Nanoparticle Size on Toughening Mechanisms of Filled Epoxy. Polymer 2012, 53, 1890–1905. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Friedrich, K.; Eger, C. Property Improvements of in Situ Epoxy Nanocomposites with Reduced Interparticle Distance at High Nanosilica Content. Acta Mater. 2006, 54, 1833–1842. [Google Scholar] [CrossRef]
- Permatasari, N.; Sucahya, T.N.; Nandiyanto, A.B.D. Agricultural Wastes as a Source of Silica Material. Indones J. Sci. Technol. 2016, 1, 82–106. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, P.; Li, G.; Wen, J.; Wang, T.; Lu, D.D.; Sun, R.; Wong, C. Study on the Effects of Interfacial Interaction on the Rheological and Thermal Performance of Silica Nanoparticles Reinforced Epoxy Nanocomposites. Compos. Part B Eng. 2017, 116, 388–397. [Google Scholar] [CrossRef]
- Jawad, Z.F.; Ghayyib, R.J.; Salman, A.J. Microstructural and Compressive Strength Analysis for Cement Mortar with Industrial Waste Materials. Civ. Eng. J. 2020, 6, 1007–1016. [Google Scholar] [CrossRef]
- Ghayyib, R.J.; Salman, A.J.; Jawad, Z.F.; Al-Khafaji, Z.S. Effect of Silica-Based Wastes on Wear Rate and Hardness Properties of Epoxy Composites as a Construction Material. In Key Engineering Materials; Trans Tech Publications: Zurich, Switzerland, 2021; Volume 895, pp. 31–40. [Google Scholar]
- Ali, F.; Ali, N.; Altaf, M.; Said, A.; Shah, S.S.; Bilal, M. Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3869–3877. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Anis, A.; Alam, M.; Ubaidullah, M.; Al-Zahrani, S.M. Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers 2021, 13, 1490. [Google Scholar] [CrossRef]
- Joni, I.M.; Nulhakim, L.; Vanitha, M.; Panatarani, C. Characteristics of Crystalline Silica (SiO2) Particles Prepared by Simple Solution Method Using Sodium Silicate (Na2SiO3) Precursor. J. Phys. Conf. Ser. 2018, 1080, 12006. [Google Scholar] [CrossRef]
- Soontaranon, S.; Limphirat, W.; Pratapa, S. XRD, WAXS, FTIR, and XANES Studies of Silica-Zirconia Systems. Ceram. Int. 2019, 45, 15660–15670. [Google Scholar]
- Kinloch, A.J.; Masania, K.; Taylor, A.C.; Sprenger, S.; Egan, D. The Fracture of Glass-Fibre-Reinforced Epoxy Composites Using Nanoparticle-Modified Matrices. J. Mater. Sci. 2008, 43, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-M.; Hwangbo, S.; Lee, T.G.; Ham, Y.-B. Effect of Particle Size on the Mechanical Properties of TiO2–Epoxy Nanocomposites. Materials 2021, 14, 2866. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.; Nguyen, T.V.; Thai, H.; Shi, X. Effect of Nanoparticles on the Thermal and Mechanical Properties of Epoxy Coatings. J. Nanosci. Nanotechnol. 2016, 16, 9874–9881. [Google Scholar] [CrossRef]
- Mach, P.; Geczy, A.; Polanský, R.; Bušek, D. Glass Transition Temperature of Nanoparticle-Enhanced and Environmentally Stressed Conductive Adhesive Materials for Electronics Assembly. J. Mater. Sci. Mater. Electron. 2019, 30, 4895–4907. [Google Scholar] [CrossRef]
- Luo, H.; Ding, J.; Huang, Z.; Yang, T. Investigation of Properties of Nano-Silica Modified Epoxy Resin Films and Composites Using RFI Technology. Compos. Part B Eng. 2018, 155, 288–298. [Google Scholar] [CrossRef]
- Liu, S.; Fan, X.; He, C. Improving the Fracture Toughness of Epoxy with Nanosilica-Rubber Core-Shell Nanoparticles. Compos. Sci. Technol. 2016, 125, 132–140. [Google Scholar] [CrossRef]
- Afzal, A.; Siddiqi, H.M.; Saeed, S.; Ahmad, Z. Exploring Resin Viscosity Effects in Solventless Processing of Nano-SiO2/Epoxy Polymer Hybrids. RSC Adv. 2013, 3, 3885–3892. [Google Scholar] [CrossRef]
- Majdi, H.S.; Shubbar, A.A.; Nasr, M.S.; Al-Khafaji, Z.S.; Jafer, H.; Abdulredha, M.; Al Masoodi, Z.; Sadique, M.; Hashim, K. Experimental Data on Compressive Strength and Ultrasonic Pulse Velocity Properties of Sustainable Mortar Made with High Content of GGBFS and CKD Combinations. Data Br. 2020, 31, 105961. [Google Scholar] [CrossRef]
SiO2 | MgO | K2O | Cao | Al2O3 | Cl | Fe2O3 | Na2O | SO3 | CuO | P2O5 | ZnO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fly ash | 86.90 | 3.16 | 3.20 | 1.96 | 0.74 | 0.14 | 1.69 | 0.51 | 1.01 | - | 0.17 | 0.25 |
Glass | 73.98 | 3.72 | 0.25 | 10.16 | 0.73 | 0.04 | 0.30 | 9.97 | 0.24 | 0.23 | 0.03 | 0.13 |
Powders | Particle Size (nm) | Specific Gravity | Specific Density (kg/m3) | Specific Surface Area (m2/kg) |
---|---|---|---|---|
Fly ash | 126–138 | 2.22 | 2000 | 2.413 |
Glass | 121–140 | 2.58 | 2500 | 2.514 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, A.J.; Jawad, Z.F.; Ghayyib, R.J.; Kareem, F.A.; Al-khafaji, Z. Verification of Utilizing Nanowaste (Glass Waste and Fly Ash) as an Alternative to Nanosilica in Epoxy. Energies 2022, 15, 6808. https://doi.org/10.3390/en15186808
Salman AJ, Jawad ZF, Ghayyib RJ, Kareem FA, Al-khafaji Z. Verification of Utilizing Nanowaste (Glass Waste and Fly Ash) as an Alternative to Nanosilica in Epoxy. Energies. 2022; 15(18):6808. https://doi.org/10.3390/en15186808
Chicago/Turabian StyleSalman, Awham Jumah, Zahraa Fakhri Jawad, Rusul Jaber Ghayyib, Fadhaa Atheer Kareem, and Zainab Al-khafaji. 2022. "Verification of Utilizing Nanowaste (Glass Waste and Fly Ash) as an Alternative to Nanosilica in Epoxy" Energies 15, no. 18: 6808. https://doi.org/10.3390/en15186808
APA StyleSalman, A. J., Jawad, Z. F., Ghayyib, R. J., Kareem, F. A., & Al-khafaji, Z. (2022). Verification of Utilizing Nanowaste (Glass Waste and Fly Ash) as an Alternative to Nanosilica in Epoxy. Energies, 15(18), 6808. https://doi.org/10.3390/en15186808