The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland
Abstract
:1. Introduction
2. Theoretical Background
3. Methodology of the Research
The impact of energy economy factors on the sustainable development of energy sector enterprises is diversified in terms of the strength and direction of impact in the studied countries; moreover, these factors should be used comprehensively, creating a coherent and effective system of supporting factors of the energy transformation.
- —
- 1 Sub-hypothesis (H1): The economic development of the energy sector shows higher dynamics compared to the social and environmental development in the analyzed countries. This conviction is due to the assumption that the energy sector development in the countries undergoing a relatively recent economic transformation is lagging behind and that the main goal is still to achieve good economic results [2,9,13,29,37,38];
- —
- 2 Sub-hypothesis (H2): The sustainable development of the energy sector is progressive, and what is more, the results obtained in previous periods are a prerequisite for sustainable development on an ongoing basis. This approach is based on the assumption that investments in the energy sector translate into a later reduction of the negative impact of economic activity on the natural environment [15,46];
- —
- 3 Sub-hypothesis (H3): The impact of individual energy economy factors on the development pillars (economic, social and environmental) differs in the analyzed countries. This approach is because these factors, by definition, should primarily affect the protection of the environment. Here, it may translate into a reduction in economic and, thus, social development [14,21].
- 1.
- The creation of indicators of SD and its pillars (E, S, Env):
- Collecting analytical indicators and dividing them into stimulants and destimulants (
- Economic indicator:
- Stimulants: enterprises (number), turnover or gross premiums written (EUR 1 million),→production value (mil euro),→value added at factor cost (EUR 1 million), gross operating surplus (EUR 1 million), total purchases of goods and services (EUR 1 million), gross investment in tangible goods (EUR 1 million),→investment rate (%);
- Destimulants: cost level index from total activity (%);
- Social indicator:
- Stimulants: wages and salaries (EUR 1 million), social security costs (EUR 1 million), employees: number, apparent labour productivity, gross value added per employee (EUR 1000), investment per person employed (EUR 1000), employer’s social charges as a percentage of personnel costs: percentage (%), expenditure on training and courses;
- Destimulants: personnel costs (EUR 1 million), share of personnel costs in production (%), accidents at work;
- Environmental indicator:
- Destimulants: carbon dioxide, methane nitrous oxide, hydrofluorocarbones (CO2 equivalent), sulphur oxides (SO2 equivalent), carbon monoxide, ammonia;
- Then, we transform the explanatory variables into integrated, using the following formulas [24]:
- For the stimulants:
- For the destimulants:
- We use the following formula to create the SD:
- 2.
- We check the level of dependence between the analyzed variables (SD and GE, TaxEN, RS, PCO2, RD, ETSEU) using the Pearson’s r, Spearman’s rho, gamma, and Kendall rank correlation coefficients. We adopt the ranges of correlation strength that were suggested by Evans: |rxy| = 0—no correlation; 0 < |rxy| ≤ 0.19—very weak; 0.20 ≤ |rxy| ≤ 0.39—weak; 0.40 ≤ |rxy| ≤ 0.59—moderate; 0.60 ≤ |rxy| ≤ 0.79—strong; 0.80 ≤ |rxy| ≤ 1.00—very strong;
- 3.
- We create three types of models allowing for the assessment of relationships between variables (dependent variables: SD):
- Model 1 (the OLS estimation: we used the most common method of fitting a linear model to data, for example, in correlation or regression analysis [56]. It consists of adjusting a straight line that will lie as close as possible to all the results, so that the sum of the distances of all points from the line is minimal), based on the structural equation:
- Model 2 (the Structural Vector Autoregression: VAR, we check the stationarity with the KPSS tests, and we check the optimal lag length using AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan–Quinn criterion) [56]:
- Model 3 (the OLS estimation), the simultaneous equation is as follows:
4. Research Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GE | Government expenditure |
TaxEN | Environmental taxes |
RS | Shares of primary energy from renewable sources |
PCO2 | Prices of futures contracts for CO2 emissions |
RD | Outlays on R&D |
ETSEU | The EU Emissions Trading System |
E | Economic development |
S | Social development |
Env | Environmental development |
SD | Sustainable development |
References
- Pieloch-Babiarz, A.; Misztal, A.; Kowalska, M. An impact of macroeconomic stabilization on the sustainable development of manufacturing enterprises: The case of Central and Eastern European Countries. Environ. Dev. Sustain. 2021, 23, 8669–8698. [Google Scholar] [CrossRef]
- Bąk, I.; Tarczyńska-Łuniewska, M.; Barwińska-Małajowicz, A.; Hydzik, P.; Kusz, D. Is Energy Use in the EU Countries Moving toward Sustainable Development? Energies 2022, 15, 6009. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, R.; Lv, S.; Gao, D. The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level. Energies 2022, 15, 5455. [Google Scholar] [CrossRef]
- Muñoz-Torres, M.J.; Fernández-Izquierdo, M.Á.; Rivera-Lirio, J.M.; Ferrero-Ferrero, I.; Escrig-Olmedo, E. Sustainable supply chain management in a global context: A consistency analysis in the textile industry between environmental management practices at company level and sectoral and global environmental challenges. Environ. Dev. Sustain. 2021, 23, 3883–3916. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Salman, A.; Ali, Q.; Hafeez, M.; Aslam, M.S. The role of financial development indicators in sustainable development-environmental degradation nexus. Environ. Sci. Pollut. Res. 2021, 28, 33707–33718. [Google Scholar] [CrossRef]
- Gleißner, W.; Günther, T.; Walkshäusl, C. Financial sustainability: Measurement and empirical evidence. J. Bus. Econ. 2022, 92, 467–516. [Google Scholar] [CrossRef]
- Gonçalves, A.; Silva, C. Looking for Sustainability Scoring in Apparel: A Review on Environmental Footprint, Social Impacts and Transparency. Energies 2021, 14, 3032. [Google Scholar] [CrossRef]
- Sáez-Martínez, F.J.; Díaz-García, C.; González-Moreno, Á. Factors Promoting Environmental Responsibility in European SMEs: The Effect on Performance. Sustainability 2016, 8, 898. [Google Scholar] [CrossRef]
- Xu, Z.; Yen, N.; Sugumaran, V. Editorial: Special Issue on Multi-modal Information mining and Analytics for Environmental Technology & Innovation. Environ. Technol. Innov. 2022, 28, 102560. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R.; Zhan, L. Is decoupling economic growth from fuel consumption possible in developing countries?—A comparison of China and India. J. Clean. Prod. 2019, 229, 806–817. [Google Scholar] [CrossRef]
- Wójcik-Jurkiewicz, M.; Czarnecka, M.; Kinelski, G.; Sadowska, B.; Bilińska-Reformat, K. Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland. Energies 2021, 14, 1217. [Google Scholar] [CrossRef]
- Ciesielska-Maciągowska, D.; Klimczak, D.; Skrzek-Lubasińska, M. Central and Eastern European CO2 Market—Challenges of Emissions Trading for Energy Companies. Energies 2021, 14, 1051. [Google Scholar] [CrossRef]
- Fan, Y.V.; Pintarič, Z.N.; Klemeš, J.J. Emerging Factors for Energy System Design Increasing Economic and Environmental Sustainability. Energies 2020, 13, 4062. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef]
- Nakano, M.; Managi, S. Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry. Energy Policy 2008, 36, 201–209. [Google Scholar] [CrossRef]
- Nakano, M.; Managi, S. Productivity analysis with CO2 emissions in Japan. Pac. Econ. Rev. 2010, 15, 708–718. [Google Scholar] [CrossRef]
- Bigerna, S.; D’Errico, M.C.; Polinori, P. Environmental and energy efficiency of EU electricity industry: An almost spatial two stages. DEA approach. Energy J. 2019, 40. Available online: https://ideas.repec.org/a/aen/journl/ej40-si1-d’errico.html (accessed on 20 July 2022). [CrossRef]
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the Sustainable Development Goals Relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Sovacool, B.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Tavoni, M.; Tomei, J.; Zerriffi, H.; Milligan, B. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2019, 2, 674–680. [Google Scholar] [CrossRef]
- Comporek, M.; Kowalska, M.; Misztal, A. Macroeconomic stability and transport companies’ sustainable development in the Eastern European Union. J. Bus. Econ. Manag. 2022, 23, 131–144. [Google Scholar] [CrossRef]
- Hahn, R.; Kühnen, M. Determinants of sustainability reporting: A review of results, trends, theory, and opportunities in an expanding field of research. J. Clean. Prod. 2013, 59, 5–21. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks–Triple Bottom Line of 21st Century Business; New Society Publishers: Gabriola Island, BC, Canada; Stony Creek, CT, USA, 1997. [Google Scholar]
- Dyllick, T.; Hockerts, K. Beyond the Business Case for Corporate Sustainability. Bus. Strategy Environ. 2002, 11, 130–141. [Google Scholar] [CrossRef]
- Lozano, R. Developing collaborative and sustainable organizations. J. Clean. Prod. 2008, 16, 499–509. [Google Scholar] [CrossRef]
- Bansal, S.; Garg, I.; Sharma, G.D. Social entrepreneurship as a path for social change and driver of sustainable development: A systematic review and research agenda. Sustainability 2019, 11, 1091. [Google Scholar] [CrossRef]
- Tolstykh, T.; Gamidullaeva, L.; Shmeleva, N. Elaboration of a Mechanism for Sustainable Enterprise Development in Innovation Ecosystems. J. Open Innov. Technol. Mark. Complex. 2020, 6, 95. [Google Scholar] [CrossRef]
- Zorina, T.G. Ustoychivoye razvitiye energetiki: Sushchnost i metodicheskiye podkhody k otsenke. Sovrem. Tekhnologii Upr. 2015, 1, 4905. [Google Scholar]
- Hassan, A.; Ibrahim, M.; Bala, A.J. On the pursuit of energy security: Evidence from the nexus between clean energy stock price and energy security elements. Int. J. Sustain. Energy 2022, 41, 846–867. [Google Scholar] [CrossRef]
- Standar, A.; Kozera, A.; Jabkowski, D. The Role of Large Cities in the Development of Low-Carbon Economy—The Example of Poland. Energies 2022, 15, 595. [Google Scholar] [CrossRef]
- Stamatakis, E.; Perwög, E.; Garyfallos, E.; Millán, M.S.; Zoulias, E.; Chalkiadakis, N. Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers. Energies 2022, 15, 637. [Google Scholar] [CrossRef]
- Misztal, A.; Kowalska, M.; Fajczak-Kowalska, A.; Strunecky, O. Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization. Energies 2021, 14, 5197. [Google Scholar] [CrossRef]
- Greene, D.L. Measuring Energy Sustainability; MIT Press: Cambridge, MA, USA, 2009; pp. 354–373. [Google Scholar]
- Resniova, E.; Ponomarenko, T. Sustainable Development of the Energy Sector in a Country Deficient in Mineral Resources: The Case of the Republic of Moldova. Sustainability 2021, 13, 3261. [Google Scholar] [CrossRef]
- Wit, B.; Dresler, P.; Surma-Syta, A. Innovation in Start-Up Business Model in Energy-Saving Solutions for Sustainable Development. Energies 2021, 14, 3583. [Google Scholar] [CrossRef]
- Kolosok, S.; Bilan, Y.; Vasylieva, T.; Wojciechowski, A.; Morawski, M. A Scoping Review of Renewable Energy, Sustainability and the Environment. Energies 2021, 14, 4490. [Google Scholar] [CrossRef]
- Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies 2021, 14, 3302. [Google Scholar] [CrossRef]
- Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. [Google Scholar] [CrossRef]
- Khaled, R.; Ali, H.; Mohamed, E.K.A. The Sustainable Development Goals and corporate sustainability performance: Mapping, extent and determinants. J. Clean. Prod. 2021, 311, 127599. [Google Scholar] [CrossRef]
- Ragazou, K.; Passas, I.; Garefalakis, A.; Zafeiriou, E.; Kyriakopoulos, G. The Determinants of the Environmental Performance of EU Financial Institutions: An Empirical Study with a GLM Model. Energies 2022, 15, 5325. [Google Scholar] [CrossRef]
- Ali, S.; Akter, S.; Ymeri, P.; Fogarassy, C. How the Use of Biomass for Green Energy and Waste Incineration Practice Will Affect GDP Growth in the Less Developed Countries of the EU (A Case Study with Visegrad and Balkan Countries). Energies 2022, 15, 2308. [Google Scholar] [CrossRef]
- Greyson, J. An economic instrument for zero waste, economic growth and sustainability. J. Clean. Prod. 2007, 15, 1382–1390. [Google Scholar] [CrossRef]
- Płonka, A.; Dacko, M.; Satoła, Ł.; Dacko, A. The Idea of Sustainable Development and the Possibilities of Its Interpretation and Implementation. Energies 2022, 15, 5394. [Google Scholar] [CrossRef]
- Kuo, F.I.; Fang, W.T.; LePage, B.A. Proactive environmental strategies in the hotel industry: Eco-innovation, green competitive advantage, and green core competence. J. Sustain. Tour. 2022, 30, 1240–1261. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Marin, G.; Paglialunga, E. Eco-innovation, sustainable supply chains and environmental performance in European industries. J. Clean. Prod. 2017, 155, 141–154. [Google Scholar] [CrossRef]
- Ferreira, L.J.; Dias, L.P.; Liu, J. Adopting Carbon Pricing Factors at the Local Level: A City Case Study in Portugal. Sustainability 2022, 14, 1812. [Google Scholar] [CrossRef]
- Kadria, M.; Farhani, S.; Guirat, Y. Investigating the Relationships between Renewable Energy Consumption, Socio-Economic Factors and Health: A PVAR Analysis from MENA Net Oil Importing Countries. Sustainability 2022, 14, 151. [Google Scholar] [CrossRef]
- Bailey, I.; Ditty, C. Energy markets, capital inertia and economic instrument impacts. Clim. Policy 2009, 9, 22–39. [Google Scholar] [CrossRef]
- Wu, S.; Pan, Q. Economic Growth in Emerging Market Countries. Glob. J. Emerg. Mark. Econ. 2021, 13, 192–215. [Google Scholar] [CrossRef]
- Gunningham, N. Regulation, Economic Instruments and Sustainable Energy; RegNet Research Paper No. 2014/29; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, D.J.; Kim, K.T.; Park, S.J. Measuring the Efficiency of Investment in the Deployment and Technology Development of Renewable Energy in Korea Using the DEA. J. Korean Inst. Ind. Eng. 2014, 40, 358–365. [Google Scholar] [CrossRef]
- Stankowska, A. Sustainability Development: Assessment of Selected Indicators of Sustainable Energy Development in Poland and in Selected EU Member States Prior to COVID-19 and Following the Third Wave of COVID-19. Energies 2022, 15, 2135. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K. Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach. Renew. Energy 2021, 171, 58–74. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Adebayo, T.S. Asymmetric nexus among financial globalization, non-renewable energy, renewable energy use, economic growth, and carbon emissions: Impact on environmental sustainability targets in India. Environ. Sci. Pollut. Res. 2022, 29, 16311–16323. [Google Scholar] [CrossRef]
- Li, Q.; Cherian, J.; Shabbir, M.S.; Sial, M.S.; Li, J.; Mester, I.; Badulescu, A. Exploring the Relationship between Renewable Energy Sources and Economic Growth. The Case of SAARC Countries. Energies 2021, 14, 520. [Google Scholar] [CrossRef]
- Nieto, J.; Carpintero, Ó.; Lobejón, L.F.; Miguel, L.J. An ecological macroeconomics model: The energy transition in the EU. Energy Policy 2020, 145, 111726. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
Country | Descriptive Statistics | |||||
---|---|---|---|---|---|---|
Indicator | Mean | Median | Standard Deviation | Max | Min | |
Bulgaria | E | 0.71 | 0.72 | 0.05 | 0.88 | 0.66 |
S | 0.77 | 0.76 | 0.03 | 0.84 | 0.71 | |
Env | 0.67 | 0.66 | 0.04 | 0.75 | 0.61 | |
SD | 0.72 | 0.72 | 0.03 | 0.78 | 0.67 | |
GE | 351.30 | 356.10 | 61.00 | 420.62 | 252.10 | |
TaxEN | 175.18 | 109.46 | 162.64 | 431.00 | 11.91 | |
RS | 8.16 | 9.00 | 2.40 | 11.52 | 3.40 | |
PCO2 | 12.98 | 13.04 | 6.70 | 24.81 | 4.39 | |
RD | 0.41 | 0.38 | 0.26 | 1.12 | 0.14 | |
ETSEU | 33,432,604.34 | 33,410,834.00 | 3,021,138.14 | 39,997,538.00 | 29,194,151.00 | |
Czechia | E | 0.75 | 0.78 | 0.07 | 0.84 | 0.58 |
S | 0.81 | 0.79 | 0.04 | 0.88 | 0.76 | |
Env | 0.74 | 0.74 | 0.03 | 0.79 | 0.69 | |
SD | 0.76 | 0.76 | 0.03 | 0.80 | 0.71 | |
GE | 1712.39 | 1796.40 | 287.00 | 2143.70 | 1024.90 | |
TaxEN | 301.16 | 229.26 | 185.77 | 652.00 | 124.07 | |
RS | 4.55 | 4.95 | 1.20 | 6.33 | 1.93 | |
PCO2 | 13.00 | 13.04 | 6.72 | 24.98 | 4.39 | |
RD | 8.82 | 5.99 | 4.71 | 20.25 | 5.19 | |
ETSEU | 68,167,220.35 | 66,975,758.00 | 5,525,183.71 | 80,399,099.00 | 59,761,003.04 | |
Estonia | E | 0.75 | 0.78 | 0.09 | 0.88 | 0.57 |
S | 0.81 | 0.83 | 0.06 | 0.88 | 0.68 | |
Env | 0.51 | 0.53 | 0.09 | 0.67 | 0.36 | |
SD | 0.69 | 0.69 | 0.05 | 0.75 | 0.58 | |
GE | 139.28 | 158.30 | 74.10 | 215.36 | −38.10 | |
TaxEN | 65.55 | 52.17 | 37.76 | 139.18 | 29.36 | |
RS | 5.47 | 5.44 | 2.21 | 8.85 | 0.79 | |
PCO2 | 13.00 | 13.04 | 6.72 | 24.98 | 4.39 | |
RD | 11.35 | 8.67 | 6.94 | 23.00 | 2.51 | |
ETSEU | 12,715,082.07 | 13,540,891.00 | 2,259,813.50 | 15,921,498.00 | 8,486,473.00 | |
Poland | E | 0.81 | 0.81 | 0.09 | 0.95 | 0.64 |
S | 0.81 | 0.81 | 0.03 | 0.85 | 0.75 | |
Env | 0.79 | 0.76 | 0.09 | 0.93 | 0.69 | |
SD | 0.80 | 0.80 | 0.07 | 0.91 | 0.71 | |
GE | 2429.38 | 2475.59 | 295.51 | 2859.10 | 1783.30 | |
TaxEN | 165.94 | 138.94 | 67.28 | 286.00 | 81.81 | |
RS | 5.01 | 5.37 | 1.51 | 7.33 | 2.00 | |
PCO2 | 13.11 | 13.04 | 6.86 | 25.96 | 4.39 | |
RD | 15.44 | 10.70 | 12.60 | 34.45 | 0.94 | |
ETSEU | 197,405,309.71 | 198,051,726.00 | 5,493,389.68 | 205,735,395.00 | 183,690,533.00 |
Country | Correlation | Pearson’s r | Spearman’s Rho | Gamma | Kendall Rank |
---|---|---|---|---|---|
Bulgaria | SD/GE | 0.1320 | 0.2607 | 0.1810 | 0.1810 |
SD/TaxEN | 0.1846 | 0.4143 | 0.2952 | 0.2952 | |
SD/RS | −0.0340 | 0.2107 | 0.1429 | 0.1429 | |
SD/PCO2 | 0.1168 | 0.2071 | 0.1619 | 0.1619 | |
SD/RD | 0.2149 | 0.3679 | 0.3143 | 0.3143 | |
SD/ETSEU | −0.1836 | −0.3679 | −0.2190 | −0.2190 | |
Czechia | SD/GE | 0.5927 | 0.6571 | 0.5429 | 0.5429 |
SD/TaxEN | 0.3084 | 0.2643 | 0.1810 | 0.1810 | |
SD/RS | 0.1336 | 0.0714 | 0.0667 | 0.0667 | |
SD/PCO2 | 0.1491 | 0.0786 | 0.0857 | 0.0857 | |
SD/RD | 0.3270 | 0.3679 | 0.3333 | 0.3333 | |
SD/ETSEU | −0.1673 | −0.0286 | −0.1238 | −0.1238 | |
Estonia | SD/GE | 0.2078 | 0.2643 | 0.1619 | 0.1619 |
SD/TaxEN | 0.4529 | 0.3357 | 0.2952 | 0.2952 | |
SD/RS | 0.5148 | 0.3429 | 0.2571 | 0.2571 | |
SD/PCO2 | 0.0039 | 0.1036 | 0.1238 | 0.1238 | |
SD/RD | 0.6860 | 0.5964 | 0.4857 | 0.4857 | |
SD/ETSEU | −0.3152 | −0.1214 | −0.1048 | −0.1048 | |
Poland | SD/GE | 0.1892 | 0.2536 | 0.1619 | 0.1619 |
SD/TaxEN | 0.8739 | 0.8464 | 0.6381 | 0.6381 | |
SD/RS | 0.9554 | 0.9536 | 0.8667 | 0.8667 | |
SD/PCO2 | 0.2780 | 0.3250 | 0.1619 | 0.1619 | |
SD/RD | 0.9141 | 0.9071 | 0.8095 | 0.8095 | |
SD/ETSEU | −0.5019 | −0.4500 | −0.3143 | −0.3143 |
Country | Dependent Variable | Independent Variable | Coefficient | Std. Error | p-Value | R2 |
---|---|---|---|---|---|---|
Bulgaria | SD | Const | 1.9750 | 0.2650 | <0.0001 | 0.751 |
GE | −0.0010 | 0.0002 | 0.0020 | |||
GE(t−1) | −0.0011 | 0.0002 | 0.0007 | |||
TaxEN(t−1) | 0.0003 | 0.0001 | 0.0018 | |||
ETSEU | 0.0001 | 0.0001 | 0.0019 | |||
Czechia | SD | Const | 0.6634 | 0.0419 | <0.0001 | 0.377 |
GE | 0.0001 | 0.0001 | 0.0219 | |||
RS | −0.0045 | 0.0064 | 0.493 | |||
Estonia | SD | Const | 0.4221 | 0.0891 | 0.0008 | 0.604 |
PCO2(t−1) | 0.0037 | 0.0015 | 0.0362 | |||
RD(t−1) | 0.0044 | 0.0014 | 0.0094 | |||
ETSEU(t−1) | 0.0001 | 0.0001 | 0.0228 | |||
Poland | SD | Const | 0.5630 | 0.0112 | <0.0001 | 0.977 |
RS | 0.0416 | 0.0019 | <0.0001 | |||
PCO2 | 0.0026 | 0.0004 | <0.0001 |
Country | Dependent Variable | Independent Variable | Coefficient | Std. Error | p-Value | R2 |
---|---|---|---|---|---|---|
Bulgaria | SD | const | 1.0386 | 0.2601 | 0.0025 | 0.304 |
SD(t−2) | −0.5497 | 0.2648 | 0.0646 | |||
VAR system, lag order 2 | ||||||
OLS estimates, observations 2010–2022 (T = 13) | ||||||
Log-likelihood = 30.685217 | ||||||
Determinant of covariance matrix = 0.00052156345 | ||||||
AIC = −4.2593 | ||||||
BIC = −4.1289 | ||||||
HQC = −4.2861 | ||||||
Portmanteau test: LB(3) = 1.4794, df = 1 [0.2239] | ||||||
Czechia | SD | const | 0.4189 | 0.1722 | 0.0316 | 0.254 |
SD(t−1) | 0.4560 | 0.2254 | 0.0659 | |||
VAR system, lag order 1 | ||||||
OLS estimates, observations 2009–2022 (T = 14) | ||||||
Log-likelihood = 32.275822 | ||||||
Determinant of covariance matrix = 0.00058219287 | ||||||
AIC = −4.3251 | ||||||
BIC = −4.2338 | ||||||
HQC = −4.3336 | ||||||
Portmanteau test: LB(3) = 3.20801, df = 2 [0.2011] | ||||||
Estonia | SD | const | 0.3846 | 0.1275 | 0.0107 | 0.338 |
SD(t−1) | 0.4570 | 0.1847 | 0.0293 | |||
VAR system, lag order 1 | ||||||
OLS estimates, observations 2009–2022 (T = 14) | ||||||
Log-likelihood = 28.629623 | ||||||
Determinant of covariance matrix = 0.00098013206 | ||||||
AIC = −3.8042 | ||||||
BIC = −3.7129 | ||||||
HQC = −3.8127 | ||||||
Portmanteau test: LB(3) = 5.71858, df = 2 [0.0573] | ||||||
Poland | SD | const | 0.0323 | 0.0598 | 0.6015 | 0.946 |
SD(t−2) | 0.6801 | 0.2183 | 0.0110 | |||
VAR system, lag order 2 | ||||||
OLS estimates, observations 2010–2022 (T = 13) | ||||||
Log-likelihood = 37.36312 | ||||||
Determinant of covariance matrix = 0.0001866922 | ||||||
AIC = −5.2866 | ||||||
BIC = −5.1563 | ||||||
HQC = −5.3134 | ||||||
Portmanteau test: LB(3) = 7.07385, df = 1 [0.0078] |
Country | Dependent Variable | Independent Variable | Coefficient | Std. Error | p-Value | R2 |
---|---|---|---|---|---|---|
Bulgaria | E | Const | −0.3612 | 0.2301 | 0.1447 | 0.984 |
RS | 0.0376 | 0.0064 | 0.0001 | |||
PCO2 | 0.0019 | 0.0005 | 0.0039 | |||
S | 1.1835 | 0.3211 | 0.0036 | |||
S | Const | 0.5367 | 0.0146 | <0.0001 | 0.942 | |
GE | 0.0001 | 0.0001 | 0.0531 | |||
PCO2 | −0.0009 | 0.0004 | 0.0374 | |||
E | 0.3131 | 0.0205 | <0.0001 | |||
Env | Const | 0.5296 | 0.2577 | 0.0623 | 0.947 | |
RD | 0.0069 | 0.0006 | <0.0001 | |||
ETSEU | 0.0001 | 0.0001 | 0.0408 | |||
Czechia | E | Const | 0.5061 | 0.1228 | 0.0021 | 0.958 |
GE | 0.0001 | 0.0001 | 0.0002 | |||
ETSEU | −0.0001 | 0.0001 | <0.0001 | |||
S | 0.0001 | 0.0001 | <0.0001 | |||
Env | −0.4851 | 0.1539 | 0.0103 | |||
S | Const | 0.6548 | 0.0385 | <0.0001 | 0.936 | |
RS | −0.0488 | 0.0050 | <0.0001 | |||
PCO2 | −0.0043 | 0.0009 | 0.0009 | |||
RD | 0.0001 | 0.0016 | 0.0067 | |||
E | 0.0001 | 0.0570 | <0.0001 | |||
Env | Const | 0.0001 | 0.1826 | 0.0189 | 0.342 | |
GE | 0.0001 | 0.0000 | 0.0940 | |||
E | −0.2904 | 0.1671 | 0.0101 | |||
S | 0.4125 | 0.2254 | 0.0945 | |||
Estonia | E | Const | −0.9770 | 0.2266 | 0.0012 | 0.917 |
TaxEN | −0.0016 | 0.0005 | 0.0094 | |||
PCO2 | 0.0071 | 0.0025 | 0.0151 | |||
S | 2.1479 | 0.2830 | <0.0001 | |||
S | Const | 0.5100 | 0.0387 | <0.0001 | 0.967 | |
TaxEN | 0.0009 | 0.0001 | <0.0001 | |||
PCO2 | −0.0039 | 0.0007 | 0.0002 | |||
E | 0.3909 | 0.0515 | <0.0001 | |||
Env | Const | 1.5725 | 0.2606 | 0.0001 | 0.759 | |
GE | −0.0007 | 0.0002 | 0.0150 | |||
ETSEU | −0.0001 | 0.0000 | 0.0011 | |||
E | 1.0436 | 0.3920 | 0.0238 | |||
S | −1.6810 | 0.5987 | 0.0185 | |||
Poland | E | Const | −0.3612 | 0.2301 | 0.0447 | 0.984 |
RS | 0.0376 | 0.0064 | 0.0001 | |||
PCO2 | 0.0019 | 0.0005 | 0.0039 | |||
S | 1.1835 | 0.3211 | 0.0036 | |||
S | Const | 0.5592 | 0.0200 | <0.0001 | 0.932 | |
PCO2 | −0.0005 | 0.0003 | 0.0362 | |||
E | 0.0001 | 0.0247 | <0.0001 | |||
Env | Const | 0.0001 | 0.2577 | 0.0623 | 0.947 | |
RD | 0.0001 | 0.0006 | <0.0001 | |||
ETSEU | 0.0001 | 0.0001 | 0.0408 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misztal, A.; Kowalska, M.; Fajczak-Kowalska, A. The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland. Energies 2022, 15, 6842. https://doi.org/10.3390/en15186842
Misztal A, Kowalska M, Fajczak-Kowalska A. The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland. Energies. 2022; 15(18):6842. https://doi.org/10.3390/en15186842
Chicago/Turabian StyleMisztal, Anna, Magdalena Kowalska, and Anita Fajczak-Kowalska. 2022. "The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland" Energies 15, no. 18: 6842. https://doi.org/10.3390/en15186842
APA StyleMisztal, A., Kowalska, M., & Fajczak-Kowalska, A. (2022). The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland. Energies, 15(18), 6842. https://doi.org/10.3390/en15186842