ENECO2Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities
Abstract
:1. Introduction
- General purpose and approach of the novel tool;
- Methodology for the calculation of the final energy demands of municipalities;
- Methodology for the distribution of the final energy demands and energy capacities;
- Methodology for the monthly discretization of the final energy demand and supply;
- Ecologic and economic evaluation framework;
- Development framework regarding energy transition scenarios.
2. Concept and Methodology of ENECO2Calc
2.1. General Purpose and Approach of ENECO2Calc
2.2. Calculation of Final Energy Demand of Municipalities
2.3. Distribution of Final Energy Demand and Energy Capacities
2.4. Monthly Discretization of Final Energy Demand and Supply
Energy Supply Technology | Energy Source | Technology Specification | Unit Size | Annual Efficiency * [kWhOutput/kWhIntput] | Literature |
---|---|---|---|---|---|
Heat Production Technologies | |||||
Coal boiler | coal | boiler | <15 kWth (decentral) | 80%th | [59,60] |
Oil boiler | oil | boiler | 85%th | [59,60,61] | |
Gas-fired boiler | gas | boiler | 90%th | [59,60,61] | |
Electricity heater | electricity (AT mix) | heater | 100%th ** | [59] | |
Wood-fired boiler | firewood | boiler | 85%th | [53,59,60,61] | |
Wood pellet boiler | wood pellets | boiler | 90%th | [53,59,60,61] | |
Wood chip boiler | wood chips | boiler | 90%th | [53,59,60,61] | |
Solar thermal system | solar power | 50% flat plate 50% vacuum tube collector | 50%th | [62] | |
Ambient heat system | 70% air/25% ground/ 5% water heat | heat pump | 2.8 (COP) | [51,59,62,63] | |
Combined heat and power production technologies | |||||
Coal-fired power plant | coal | steam power plant | 50–500 MWel | 48%th/42%el | [35,63,64,65,66] |
Oil-fired power plant | heating oil | steam power plant | 0.05–1 GWel | 45%th/45%el | [35,63,64,65] |
Gas-fired power plant | gas | gas turbine plant | 0.05–1 GWel | 47%th/45%el | [35,63,64,65,66] |
Combined-cycle gas power plant | gas | gas turbine and steam power plant | 0.05–1 GWel | 35%th/60%el | [35,63,64,65,66] |
Waste incineration plant | waste | steam power plant | 5–30 MWel | 67%th/23%el | [67,68] |
Biomass power plant | 33% wood residue 33% industrial wood residue 33% wood pellets | steam power plant | 2–20 MWel | 65%th/25%el | [35,63,64,65] |
Biogas plant | 33% energy crops 33% manure 33% waste | anaerobic digestion plant | 0.1–8 MWel | 45%th/30%el | [35,63,64,65] |
Cogeneration power plant | 50% wood pellets 50% wood chips | air gasification and gas engine | 0.05–5 MWel | 55%th/25%el | [35,63,64,65] |
Electricity production technologies | |||||
Rooftop PV system | solar power | crystalline silicon solar cells (rooftop) | <15 kWpel (decentral) | 18%el | [35,62,63,64,66] |
Wind turbine | wind power | onshore | >500 kWel | 45%el | [35,62,63,64,66] |
Hydropower plant | water power | 75% run-off river 25% pump storage | 250 kWel– 250 MWel | 85%el | [35,62,63,64,66] |
Ground-mounted PV system | solar power | crystalline silicon solar cells (ground-mounted) | >500 kWpel (central) | 18%el | [35,62,63,64,66] |
Mobility options | |||||
ICE—Diesel | 5.9% FAME (EU mix) 94.1% fossil diesel | internal combustion engine | - | - | [53,69,70,71,72,73,74,75,76,77] |
ICE—Biodiesel | FAME (EU mix) | internal combustion engine | [60,69,70,71,72,73,74,75,76,77,78,79] | ||
ICE—FT Diesel (BtL) | wood-based diesel (DFB) | internal combustion engine | [60,70,73,76,78,80,81] | ||
ICE—PtL Diesel | hydrogen (EU mix) and CO2 (EU mix)-based diesel | internal combustion engine | [78,80,81,82] | ||
ICE—Gasoline | 3.1% bioethanol (EU mix) 96.9% fossil gasoline | internal combustion engine | [53,70,71,72,73,74,75,76,77] | ||
ICE—Bioethanol | bioethanol (EU mix) | internal combustion engine | [53,70,71,72,73,74,75,76,77,78,79,83] | ||
ICE—FT Gasoline (BtL) | wood-based gasoline (DFB) | internal combustion engine | [60,70,73,76,80,81] | ||
ICE—PtL Gasoline | hydrogen (EU mix) and CO2 (EU mix)-based gasoline | internal combustion engine | [80,81,82] | ||
CNG—Fossil | natural gas | compressed natural gas | [74,76,81,84] | ||
CNG—SNG from Biogas | SNG from biogas plant (AT mix) | compressed natural gas | [63,70,72,73,74,76,78,79,80,81,84] | ||
CNG—SNG from Biomass | SNG from wood (DFB) | compressed natural gas | [60,73,80] | ||
PHEV—Diesel | 63% electricity (AT mix) 2.2% FAME (EU mix) 34.8% fossil diesel | plug-in hybrid electric vehicle | [74,76,85] | ||
PHEV—Gasoline | 63% electricity (AT mix) 1.1% bioethanol (EU mix) 35.9% fossil gasoline | plug-in-hybrid electric vehicle | [74,76] | ||
BEV—AT mix | electricity (AT mix) | battery electric vehicle | [53,76,77,81,82,85] | ||
BEV—Mix RES technologies | electricity (mix RES) | battery electric vehicle | [53,76,82,85] | ||
FCEV—H2 electrolysis | hydrogen from electricity (mix RES) (electrolysis) | fuel-cell electric vehicle | [70,73,74,76,80,81,82,86,87] | ||
FCEV—H2 from Biomass | hydrogen from wood (DFB) | fuel-cell electric vehicle | [70,73,80,87] |
2.5. Ecologic and Economic Evaluation
2.6. Scenario Development Regarding Energy Transition
3. Results and Discussion
3.1. Present Annual Energy Demand and Ecologic and Economic Footprint
3.2. Scenario Development for St. Margareten im Rosental in 2050
3.3. Prediction Energy Demand and Ecologic and Economic Footprint in 2050
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2020 RF | reference case scenario for the present state based on the year 2020 |
AT mix | Austrian mix |
BAU | business-as-usual |
BEV | battery electric vehicle |
BtCHP | biomass to combined heat and power plants |
BtG | biomass-to-gas |
BtL | biomass-to-liquid |
BtM | biomass-to-mobility |
CEC | citizen energy community |
CHP | combined heat and power |
CNG | compressed natural gas |
CO2 | carbon dioxide |
CO2e | carbon dioxide equivalent |
CPI | consumer price index |
DFB | dual fluidized bed steam gasification |
e!Sankey | software for the development of energy flow diagrams |
EDisOn | energy-modeling tool from the EEG at TU Wien |
EEG | Energy and Economics Group at TU Wien |
ELAS | energy-modeling tool for municipality level |
ELMOD | energy-modeling tool for electricity market simulations |
EMA | energy mosaic Austria |
ENECO2Calc | energy-modeling tool investigated in this paper |
EnergyPLAN | energy-modeling tool from Aalborg University |
EPI | energy price index |
EU | European Union |
EU-27 | member states of the European Union (since February 2020) |
EU mix | European Union mix |
FAME | fatty acid methyl ester |
FCEV | fuel-cell electric vehicle |
FT | Fischer–Tropsch |
Green-X | energy-modeling tool for electricity market simulations |
H2 | hydrogen |
HCV | heavy commercial vehicle |
HOMER | energy-modeling tool from LCC Homer |
ICE | internal combustion engine |
ICE-D | internal combustion engine powered with diesel |
IEA-ETSAP | energy technology systems analysis program from the International Energy Agency |
IFA | Institute for Powertrains and Automotive Technology at TU Wien |
LCV | light commercial vehicle |
MARKAL/TIMES | energy-modeling tool from IEA-ETSAP |
MCV | medium commercial vehicle |
MS Excel | spreadsheet software from Microsoft |
O&M | operation and maintenance |
ÖNACE | classification of economic activities |
PHEV | plug-in hybrid electric vehicle |
PROVEM | emission forecast tool from the IFA at TU Wien |
PtL | power-to-liquid |
PV | photovoltaic |
REC | renewable energy community |
RED II | Renewable Energy Directive |
REGIO Energy | potential analysis of renewable energy sources on the district level |
RES | renewable energy sources |
RF | reference case |
SME | small- and medium-sized enterprise |
SNG | synthetic natural gas |
TRNSYS18 | energy-modeling tool from the University of Wisconsin-Madison |
Symbols | |
percent of energy per year | |
percent of energy based on thermal energy | |
percent of energy based on electrical energy | |
coefficient of performance | |
gigawatt of electrical power | |
gigawatt hours of energy | |
square kilometer | |
kilowatt of electrical power | |
kilowatt peak of electrical power | |
kilowatt hours of energy on the educt side | |
kilowatt hours of energy on the product side | |
millions of euros | |
millions of kilograms | |
megawatt of electrical power | |
tons of carbon dioxide equivalent |
References
- Umweltbundesamt Deutschland. Treibhausgas-Emissionen in der Europäischen Union. 2021. Available online: https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#gase (accessed on 22 October 2021).
- Anderl, M.; Geiger, K.; Gugele, B.; Gössl, M.; Haider, S.; Heller, C.; Köther, T.; Krutzler, T.; Kuschel, V.; Lampert, C.; et al. Klimaschutzbericht 2020; Umweltbundesamt GmbH: Vienna, Austria, 2020; ISBN 978-3-99004-558-9. Available online: https://www.umweltbundesamt.at/studien-reports/publikationsdetail?pub_id=2340&cHash=04535f1c207c6ac8814ee0edb3809750 (accessed on 22 October 2021).
- United Nations. The Paris Agreement—UNFCCC. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 22 October 2021).
- European Union. 2030 Climate and Energy Policy Framework. 2020. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 22 October 2021).
- European Union. DIRECTIVE (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources, RED II. Official Journal of the European Union, 2018. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1575559881403&uri=CELEX:32018L2001 (accessed on 12 May 2021).
- Bundesrepublik Österreich. Erneuerbaren-Ausbau-Gesetz, EAG. 2021. Available online: https://www.parlament.gv.at/PAKT/VHG/XXVII/I/I_00733/index.shtml (accessed on 12 August 2021).
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, X.; Li, R. The impact of the COVID-19 pandemic on the energy market—A comparative relationship between oil and coal. Energy Strat. Rev. 2022, 39, 100761. [Google Scholar] [CrossRef]
- Frieden, D.; Türk, A.; Neumann, C. Energiegemeinschaften: Neue Geschäftschancen für Die Grüne Energiezukunft; Green Tech Cluster Styria GmbH, Joanneum Research Forschungsgesellschaft mbH: Graz, Ausria, 2020. [Google Scholar]
- Neubarth, J. Energiegemeinschaften im Zukünftigen Österreichischen Strommarkt: Erforderliche Rahmenbedingungen für Eine Erfolgreiche Umsetzung; E3 Consult: Innsbruck, Ausria, 2020. [Google Scholar]
- European Union. DIRECTIVE (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Official Journal of the European Union, 2019; volume 2019. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32019L0944 (accessed on 12 May 2021).
- E-Control. Energiegemeinschaften. 2021. Available online: https://www.e-control.at/energiegemeinschaften (accessed on 17 May 2021).
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef]
- Dóci, G.; Vasileiadou, E.; Petersen, A.C. Exploring the transition potential of renewable energy communities. Futures 2015, 66, 85–95. [Google Scholar] [CrossRef]
- Fina, B.; Auer, H. Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law. Energies 2020, 13, 5743. [Google Scholar] [CrossRef]
- Fina, B.; Auer, H.; Friedl, W. Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria. Renew. Energy 2020, 152, 217–228. [Google Scholar] [CrossRef]
- Inês, C.; Guilherme, P.L.; Esther, M.-G.; Swantje, G.; Stephen, H.; Lars, H. Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Karunathilake, H.; Hewage, K.; Mérida, W.; Sadiq, R. Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty. Renew. Energy 2019, 130, 558–573. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package—Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Stefan, M.; Zehetbauer, P.; Cejka, S.; Zeilinger, F.; Taljan, G. Blockchain-Based Self-Consumption Optimization and Energy Trading in Renewable Energy Communities: CIRED 2020 Berlin Workshop; Austrian Institute of Technology GmbH, Siemens AG, Energienetze Steiermark GmbH: Berlin, Germany, 2020. [Google Scholar]
- Soeiro, S.; Dias, M.F. Renewable energy community and the European energy market: Main motivations. Heliyon 2020, 6, e04511. [Google Scholar] [CrossRef]
- European Union. The European Green Deal. 2019. Available online: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf (accessed on 22 October 2021).
- European Union. Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999—European Climate Law: Proposal. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020PC0080&from=EN (accessed on 22 October 2021).
- Hayley, T.; Bardos, P.; Smith, J.; Evans, F.; Haslam, A.; Howard, T.; Boyle, R.; Thomas, A.; Lewis, R.; Dent, V.; et al. Supplementary Report 2 of the SuRF-UK Framework: Selection of Indicators/Criteria for Use in Sustainability Assessment for Achieving Sustainable Remediation; CL: AIRE Publications: Haddenham, UK, 2020; ISBN 978-1-905046-34-8. [Google Scholar]
- Stoeglehner, G.; Neugebauer, G.; Erker, S.; Narodoslawsky, M. Integrated Spatial and Energy Planning: Supporting Climate Protection; SpringerBriefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 3319318683. [Google Scholar]
- van Beeck, N.M.J.P. Classification of Energy Models. FEW Research Memorandum. Oper. Res. 1999, 777, 1–26. [Google Scholar]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Abart-Heriszt, L.; Erker, S.; Stoeglehner, G. The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning. Energies 2019, 12, 3065. [Google Scholar] [CrossRef]
- The World Energy Council. World Energy Trilemma Index 2018. London, UK, 2018. Available online: https://www.worldenergy.org/assets/downloads/World-Energy-Trilemma-Index-2018.pdf (accessed on 22 October 2021).
- Hall, L.M.; Buckley, A.R. A review of energy systems models in the UK: Prevalent usage and categorisation. Appl. Energy 2016, 169, 607–628. [Google Scholar] [CrossRef]
- Aalborg University. EnergyPLAN: Advanced Energy System Analysis Computer Model. 2021. Available online: https://www.energyplan.eu/ (accessed on 11 May 2021).
- International Energy Agency. MARKAL/TIMES: Energy Technology Systems Analysis Programme. 2021. Available online: https://iea-etsap.org/ (accessed on 11 May 2021).
- National Technical University of Athens. PRIMES: Energy-Economics-Environment Modelling Laboratory Research and Policy Analysis. 2021. Available online: http://www.e3mlab.eu/e3mlab/ (accessed on 11 May 2021).
- International Institute for Applied Systems Analysis. MESSAGE: Energy Modelling Framework: Model for Energy Supply Strategy Alternatives and Their General Environmental Impact. 2021. Available online: https://webarchive.iiasa.ac.at/Research/ENE/model/message.html (accessed on 11 May 2021).
- Resch, G.; Burgholzer, B.; Totschnig, G.; Lettner, G.; Auer, H.; Geipel, J.; Haas, R. Stromzukunft Österreich 2030: Analyse der Erfordernisse und Konsequenzen Eines Ambitionierten Ausbaus von Erneuerbaren Energien; Energy Economics Group (EEG), Technische Universität Wien: Vienna, Austria, 2017. [Google Scholar]
- Hasani, J.M.F. Hotmaps Dispatch Model: District-Heating Supply Dispatch. Energy Economics Group, Technische Universität Wien. 2021. Available online: https://wiki.hotmaps.eu/en/CM-District-heating-supply-dispatch (accessed on 11 May 2021).
- Leuthold, F.U.; Weigt, H.; Von Hirschhausen, C. A Large-Scale Spatial Optimization Model of the European Electricity Market. Networks Spat. Econ. 2012, 12, 75–107. [Google Scholar] [CrossRef]
- Homer Energy LCC. HOMER. 2021. Available online: https://www.homerenergy.com/ (accessed on 11 May 2021).
- University of Wisconsin-Madison. A TRaNsient SYstems Simulation Program. Version 18. 2021. Available online: https://sel.me.wisc.edu/trnsys/ (accessed on 11 May 2021).
- Keirstead, J.; Jennings, M.; Sivakumar, A. A review of urban energy system models: Approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef]
- Stöglehner, G.; Narodoslawsky, M.; Baaske, W.; Mitter, H.; Weiss, M.; Neugebauer, G.C.; Niemetz, N.; Kettl, K.-H.; Eder, M.; Sandor, N.; et al. ELAS—Energetische Langzeitanalysen von Siedlungsstrukturen: Projektendbericht; Gefördert aus Mitteln des Klima- und Energiefonds, des Landes Oberösterreich, des Landes Niederösterreich und der Stadtgemeinde Freistadt: Vienna, Austria, 2011. [Google Scholar]
- Lyden, A.; Pepper, R.; Tuohy, P.G. A modelling tool selection process for planning of community scale energy systems including storage and demand side management. Sustain. Cities Soc. 2018, 39, 674–688. [Google Scholar] [CrossRef]
- Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hirth, L.; Schlecht, I.; Schmid, E.; Wiese, F.; Brown, T.; Davis, C.; Gidden, M.; Heinrichs, H.; Heuberger, C.; et al. Opening the black box of energy modelling: Strategies and lessons learned. Energy Strat. Rev. 2018, 19, 63–71. [Google Scholar] [CrossRef]
- Statistik Austria. Ein Blick auf die Gemeinde. Vienna, 2020. Available online: https://www.statistik.at/web_de/services/ein_blick_auf_die_gemeinde/index.html (accessed on 17 May 2020).
- Klima und Energiefonds. Klima- und Energiemodellregionen: Wir Gestalten Die Energiewende. Kommunalkredit Public Consulting. 2021. Available online: https://www.klimaundenergiemodellregionen.at/ (accessed on 17 May 2021).
- TU Wien, Institut für Fahrzeugantriebe. PROVEM: Emissionsprognose-Tool. Vienna, 2019. Available online: http://www.ifa.tuwien.ac.at/en/research-development/research-projects/miscellaneous/emission-forecasts/ (accessed on 11 May 2021).
- Stanzer, G.; Novak, S.; Dumke, H.; Plha, S.; Schaffer, H.; Breinesberger, J.; Kirtz, M.; Biermayer, P.; Spanring, C. Regio Energy: Regionale Szenarien erneuerbarer Energiepotentiale in den Jahren 2012/2020, ÖIR, Mecca Environmental Consulting, AGRAR PLUS, TU Wien/Energy Economics Group, Vienna, St. Pölten. 2010. Available online: http://regioenergy.oir.at/ (accessed on 17 May 2021).
- Statistik Austria. Nutzenergieanalyse Österreich 2019. 2020. Available online: http://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/nutzenergieanalyse/index.html (accessed on 17 May 2020).
- Biermayr, P.; Kristöfel, C.; Enigl, M.; Strasser, C.; Schmidl, C.; Wopienka, E.; Leonhartsberger, K.; Fechner, H.; Weiß, W.; Eberl, M.; et al. Innovative Energietechnologie in Österreich Marktentwicklung 2015: Berichte aus Energie- und Umweltforschung 6/2016; Bundesministerium für Verkehr, Innovation und Technologie: Vienna, Austria, 2016. [Google Scholar]
- Losch, M.; Streitner, J.; Gary, W.; Berger, P. Energie in Österreich 2020: Zahlen, Daten, Fakten. Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität; Innovation und Technologie (BMK): Vienna, Austria, 2020. [Google Scholar]
- Umweltbundesamt Österreich. Berechnung von Treibhausgas (THG)-Emissionen Verschiedener Energieträger, Vienna. 2020. Available online: https://secure.umweltbundesamt.at/co2mon/co2mon.html (accessed on 7 June 2021).
- Bründlinger, T.; König, J.E.; Frank, O.; Gründig, D.; Jugel, C.; Kraft, P.; Krieger, O.; Mischinger, S.; Prein, P.; Seidl, H.; et al. Dena-Leitstudie Integrierte Energiewende: Impulse für die Gestaltung des Energiesystems bis 2050; Deutsche Energie-Agentur (DENA): Berlin, Germany, 2018. [Google Scholar]
- Aydemir, A.; Schilling, D. CM Wärmelastprofile. Hotmaps-Wiki. 2020. Available online: https://wiki.hotmaps.eu/de/CM-Heat-load-profiles#license (accessed on 28 June 2021).
- Austrian Power Grid. Monatlicher Stromverbrauch in Österreich von Januar 2017 bis Mai 2021. Statista GmbH. Hamburg. 2021. Available online: https://de.statista.com/statistik/daten/studie/1108164/umfrage/woechentlicher-stromverbrauch-in-oesterreich/ (accessed on 2 June 2021).
- Huneke, F.; Perez, C.L.; Heidinger, P. Österreichs Weg Richtung 100% Erneuerbare: Eine Analyse von 2030 mit Ausblick 2050; Austrian Power Grid AG: Berlin, Germany, 2019. [Google Scholar]
- Institut für Umweltinformatik Hamburg GmbH. e!Sankey. Version 4 Pro. 2017. Available online: https://www.ifu.com/de/e-sankey/ (accessed on 22 October 2021).
- Kranzl, L.; Müller, A.; Maia, I.; Büchele, R.; Hartner, M. Wärmezukunft 2050: Erfordernisse und Konsequenzen der Dekarbonisierung von Raumwärme und Warmwasserbereitstellung in Österreich; Endbericht, Technische Universität Wien, Energy Economics Group: Vienna, Austria, 2018. [Google Scholar]
- Kranzl, L.; Haas, R.; Kalt, G.; Diesenreiter, F.; Eltrop, L.; König, A.; Makkonen, P. Strategien zur optimalen Erschließung der Biomassepotenziale in Österreich bis zum Jahr 2050 mit dem Ziel einer maximalen Reduktion an Treibhausgasemissionen: Berichte aus Energie- und Umweltforschung, Bundesministerium für Verkehr; Innovation und Technologie, Technische Universität Wien, Institut für elektrische Anlagen und Energiewirtschaft: Vienna, Austria, 2008. [Google Scholar]
- Thermondo GmbH. Wirkungsgrad der Heizung—Wichtige Kennzahl für die Effizienz des Heizgeräts. Berlin, 2019. Available online: https://www.thermondo.de/info/rat/vergleich/wirkungsgrad-der-heizung/ (accessed on 2 June 2021).
- Kranzl, L.; Hasani, J. Renewable Heating and Cooling. Economic Perspectives of Renewable Energy Systems; Technische Universität Wien, Energy Economics Group: Vienna, Austria, 2020. [Google Scholar]
- Lauf, T.; Memmler, M.; Schneider, S. Emissionsbilanz erneuerbarer Energieträger: Bestimmung der vermiedenen Emissionen im Jahr 2018; Umweltbundesamt Deutschland: Dessau-Roßlau, Germany, 2019.
- Hofbauer, H. Bewertung von Energiebereitstellungssystemen. Lecture Script; Brennstoff- und Energietechnologie, Technische Universität Wien, Institut für Verfahrenstechnik: Vienna, Austria, 2019. [Google Scholar]
- Alberici, S.; Boeve, S.; van Breevoort, P.; Deng, Y.; Förster, S.; Gardiner, A.; van Gastel, V.; Grave, K.; Groenenberg, H.; de Jager, D.; et al. Subsidies and Costs of EU Energy: Final Report; Ecofys: Utrecht, The Netherland, 2014. [Google Scholar]
- Kost, C.; Shammugam, S.; Jülch, V.; Nguyen, H.-T.; Schlegl, T. Stromgestehungskosten Erneuerbarer Energien; Fraunhofer-Institut: Freiburg, Germany, 2018. [Google Scholar]
- Böhmer, S.; Kügler, I.; Stoiber, H.; Walter, B. Abfallverbrennung in Österreich: Statusbericht 2006; Umweltbundesamt Österreich: Vienna, Austria, 2007. [Google Scholar]
- Schwarzböck, T. Bestimmung der fossilen Kohlendioxidemissionen aus Österreichischen Müllverbrennungsanlagen (BEFKÖM): Endbericht, Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft; Technische Universität Wien, Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft: Vienna, Austria, 2015. [Google Scholar]
- Dufour, J.; Iribarren, D. Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renew. Energy 2012, 38, 155–162. [Google Scholar] [CrossRef]
- Fachagentur Nachwachsende Rohstoffe e.V. Biokraftstoffe—Eine Vergleichende Analyse; Fachagentur Nachwachsende Rohstoffe e.V.: Berlin, Germany, 2006. [Google Scholar]
- Rauch, A.; Thöne, M. Biofuels—At What Cost? Mandating Ethanol and Biodiesel Consumption in Germany; Universität Köln, International Institute for Sustainable Development, FiFo Institut: Köln, Germay, 2012. [Google Scholar]
- Lichtblau, G.; Pölz, W.; Stix, S.; Winter, R. Ökobilanzen ausgewählter Biotreibstoffe: Projekt proVISION; Umweltbundesamt Österreich: Vienna, Austria, 2012. [Google Scholar]
- Hofbauer, H.; Mauerhofer, A.; Benedikt, F.; Hammerschmid, M.; Bartik, A.; Veress, M.; Haas, R.; Siebenhofer, M.; Resch, G. Reallabor zur Herstellung von Holzdiesel und Holzgas aus Biomasse und biogenen Reststoffen für die Land- und Forstwirtschaft, Bundesministerium für Nachhaltigkeit und Tourismus; Institut für Verfahrenstechnik, Umwelttechnik & Technische Biowissenschaften, Institut für Energiesysteme und Elektrische Antriebe, TU Wien: Vienna, Austria, 2020. [Google Scholar]
- Bell, M.; Kollamthodi, S.; Hill, N.; Greaney, A. The Net Zero Challenge—Life Cycle Impacts on Propulsion System Technologies, Supply Chains & the Regulatory Landscape, 41; Internationales Wiener Motorensymposium: Vienna, Austria, 2020. [Google Scholar]
- OMV Refining & Marketing GmbH. Raffinerie Schwechat: Geschichte und Standort, Schwechat. 2016. Available online: https://ahgroup.at/user_files/SE-&-VO/UNT.044_Industrieexkursion/OMV_Raffinerie-Schwechat.pdf (accessed on 25 October 2021).
- Alt, R.; Antrekowitsch, H.; Baumann, M.; Borrmann, J.; Brandauer, W.; Eggler, L.; Eichlseder, H.; Eichlseder, W.; Fichtinger, M.; Geringer, B.; et al. Expertenbericht Mobilität & Klimaschutz 2030, ÖAMTC, ARBÖ; Economica Institut für Wirtschaftsforschung: Vienna, Austria; Montanuniversität Leoben: Leoben, Austria; Österreichische Energieagentur: Vienna, Austria; TU Graz: Graz, Austria; TU Wien: Vienna, Austria; PIERER Industrie AG: Wels, Austria; Joanneum Research Forschungsgesellschaft mbH: Graz, Austria; Eurotax Österreich GmbH: Vienna, Austria, 2018. [Google Scholar]
- Bruckmüller, T.; Graf, J.; Konrad, J.; Scharinger-Urschitz, G.; Werner, A.; Hammerschmid, M.; Hofbauer, H.; Lehr, M.; Müller, S.; Geringer, B. Ökologische und ökonomische Analyse der Energieversorgung und Mobilität einer Referenzregion und deren Entwicklungspotentiale bis 2030; Institut für Fahrzeugantriebe und Automobiltechnik; Institut für Energietechnik und Thermodynamik; Institut für Verfahrenstechnik, Umwelttechnik und & Technische Biowissenschaften, Technische Universität Wien: Vienna, Austria, 2019. [Google Scholar]
- Neuling, U.; Kaltschmitt, M. Techno-economic and environmental analysis of aviation biofuels. Fuel Process. Technol. 2018, 171, 54–69. [Google Scholar] [CrossRef]
- Mitterhuemer, R.; Winter, R. Biokraftstoffe im Verkehrssektor 2020; Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK): Vienna, Austria, 2020. [Google Scholar]
- Kalligeros, S.; van Heuvel, E.; Waldheim, L.; Landälv, I.; Maniatis, K. Building Up the Future: Sub Group on Advanced Biofuels: Final Report; Publications Office: Luxembourg, 2017; ISBN 978-92-79-69010-5. [Google Scholar]
- Mottschall, M.; Kasten, P.; Kühnel, S.; Minnich, L. Sensitivitäten zur Bewertung der Kosten Verschiedener Energieversorgungsoptionen des Verkehrs bis zum Jahr 2050: Abschlussbericht; Umweltbundesamt Deutschland, Öko-Institut: Berlin, Germany, 2019. [Google Scholar]
- Jungmeier, G. Umweltbilanz von E-Fuels—Vergleich mit anderen Treibstoffen im Lebenszyklus; Innovative Energieversorgung; ÖGEW/DGMK Onlinekonferenz, Joanneum Research Forschungsgesellschaft mbH: Graz, Austria, 2020. [Google Scholar]
- Nielsen, P.H.; Wenzel, H. Environmental Assessment of Ethanol Produced from Corn Starch and Used as an Alternative to Conventional Gasoline for Car Driving; The Institute for Product Development, Technical University of Denmark: Lyngby, Denmark, 2005. [Google Scholar]
- Geiger, J. Erdgas als alternativer Kraftstoff: Ein Potenzial zur Reduktion von Treibhausgasemissionen; Technologie-Highlights aus dem FEV-Arbeitsspektrum; Sonderausgabe: Aachen, Germany, 2013. [Google Scholar]
- Bruckmüller, T. Entwicklung einer Methodik zur Bewertung des Ladeinfrastrukturbedarfs für Elektrofahrzeuge hinsichtlich Anzahl, Kosten und Auswirkungen auf die Energieversorgung am Beispiel Österreichs bis 2030. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2020. [Google Scholar]
- Bundestag, D. Kosten der Produktion von Grünem Wasserstoff; Dokumentation: Berlin, Germany, 2020. [Google Scholar]
- Wulf, C.; Kaltschmitt, M. Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment. Sustainability 2018, 10, 1699. [Google Scholar] [CrossRef]
- Statistik Austria. Consumer Price Index. 2021. Available online: http://statistik.at/web_en/statistics/Economy/Prices/consumer_price_index_cpi_hcpi/index.html (accessed on 29 June 2021).
- Jungmeier, G.; Canella, L.; Pucker-Singer, J.; Beermann, M. Geschätzte Treibhausgasemissionen und Primärenergieverbrauch in der Lebenszyklusanalyse von Pkw-basierten Verkehrssystemen; ÖAMTC, ADAC, FIA, Joanneum Research Forschungsgesellschaft mbH: Graz, Ausria, 2019. [Google Scholar]
- Wirtschaftskammer Österreich. Energiebesteuerung—Die Kohleabgabe: Lieferant oder Verbraucher hat die Abgabe zu entrichten. 2021. Available online: https://www.wko.at/service/steuern/Energiebesteuerung_-_Die_Kohleabgabe.html (accessed on 29 June 2021).
- ÖAMTC. Mineralölsteuer. Vienna, 2018. Available online: https://www.oeamtc.at/thema/verkehr/mineraloelsteuer-17914742. (accessed on 29 June 2021).
- Graus, W.; Blomen, E.; Worrell, E. Global energy efficiency improvement in the long term: A demand- and sup-ply-side perspective. Energy Effic. 2011, 4, 435–463. [Google Scholar] [CrossRef] [Green Version]
- IINAS GmbH. Globales Emissions-Modell Integrierter Systeme (GEMIS). Internationales Institut für Nachhaltigkeits- Analysen und -Strategien; Version 4.94; IINAS GmbH: Darmstadt, Germany, 2018. [Google Scholar]
- Müller, A.; Biermayer, P.; Kranzl, L.; Haas, R.; Friedl, G.; Haslinger, W.; Ohnmacht, R.; Weiss, W.; Bergmann, I.; Heimrath, R.; et al. Heizen 2050: Systeme zur Wärmebereitstellung und Raumklimatisierung im österreichischen Gebäudestand: Technologische Anforderungen bis zum Jahr 2050; Energy Economics Group (EEG), Technische Universität Wien: Vienna, Austria, 2010. [Google Scholar]
- Resch, G.; Kranzl, L.; Faninger, G.; Geipel, J. Block 1: Introduction: Energy & Climate Challenge and Basics of Economic Assessment; VO Economic Perspectives of Renewable Energy Systems, Energy Economics Group (EEG), Technische Universität Wien: Vienna, Austria, 2020. [Google Scholar]
- Resch, G.; Liebmann, L.; Ortner, A.; Busch, S.; Panzer, C.; Del Rio, P.; Ragwitz, M.; Steinhilber, S.; Klobasa, M.; Winkler, J.; et al. Design and Impact of a Harmonised Policy for Renewable Electricity in Europe: Final Reportof the beyond 2020 Project—Approaches for a Harmonisation of RES(-E) Support in Europe; Energy Economics Group (EEG), Technische Universität Wien: Vienna, Austria, 2014. [Google Scholar]
- Austrian Energy Agency. Zahlen & Fakten: Energiepreisindex (EPI) der Österreichischen Energieagentur. 2021. Available online: https://www.energyagency.at/fakten-service/energiepreise/httpswwwenergyagencyatepi.html (accessed on 29 June 2021).
- Pehnt, M.; Mellwig, P.; Claus, L.; Blömer, S.; Brischke, L.-A.; von Oehsen, A.; Künz, C.; Voss, K.; Heinze, M.; Spars, G.; et al. 100% Wärme aus Erneuerbaren Energien? Auf dem Weg zum Niedrigstenergiehaus im Gebäudestand. Endbericht Band 2: Szenarien und Perspektiven des Gebäudebestandes; Institut für Energie- und Umweltforschung Heidelberg: Heidelberg, Germany, 2013. [Google Scholar]
- Siegemund, S.; Trommler, M.; Kolb, O.; Zinnecker, V.; Schmidt, P.; Weindorf, W.; Zittel, W.; Raksha, T.; Zerhusen, J. “E-Fuels“ Study: The Potential of Electricity-Based Fuels for Low-Emission Transport in the EU, Deutsche Energie-Agentur (DENA); Ludwig-Bölkow-Systemtechnik GmbH: Berlin, Germany, 2017. [Google Scholar]
- E-Control. Preisentwicklungen—Strom: Berichtsjahr 2020. 2021. Available online: https://www.e-control.at/statistik/strom/marktstatistik/preisentwicklung (accessed on 28 June 2021).
- E-Control. Preisentwicklungen—Gas: Berichtsjahr 2020. 2021. Available online: https://www.e-control.at/statistik/gas/marktstatistik/preisentwicklung (accessed on 28 June 2021).
- Eltrop, L.; Härdtlein, M.; Jenssen, T.; Henßler, M.; Kruck, C.; Özdemir, E.D.; Poboss, N.; Scheffknecht, G.; Hartmann, H. Leitfaden Feste Biobrennstoffe, Fachagentur Nachwachsende Rohstoffe E.V.; Universität Stuttgart: Stuttgart, Germany, 2014. [Google Scholar]
- Kalab, O. Systemnutzungsentgelte für Strom werden angehoben. WKO Oberösterreich. 2020. Available online: https://www.wko.at/service/ooe/umwelt-energie/Die-Strom-Netztarife-2021-im-Detail.pdf (accessed on 25 October 2021).
- Kasten, P.; Mottschall, M.; Köppel, W.; Degünther, C.; Schmied, M.; Wüthrich, P. Erarbeitung einer Fachlichen Strategie zur Erarbeitung einer Fachlichen Strategie zur Energieversorgung des Verkehrs bis zum Jahr 2050; Umweltbundesamt Deutschland: Berlin, Germany; Öko-Institut Berlin: Berlin, Germany; DVGW-Forschungsstelle am Engler-Bunte-Institut am KIT: Karlsruhe, Germany; INFRAS AG Bern: Bern, Switzerland, 2016.
- EXAA. Die EXAA Strombörse: Historische Marktdaten. Energy Exchange Austria, Vienna. 2021. Available online: https://www.exaa.at/marktdaten/historische-marktdaten/ (accessed on 10 March 2021).
- European Energy Exchange AG. Spotmarkt: EEX EUA SPOT. Leipzig, 2021. Available online: https://www.eex.com/de/marktdaten/umweltprodukte/spotmarkt (accessed on 4 December 2021).
- Republik Österreich. Mineralölsteuergesetz 1995: Bundesgesetz, mit dem die Mineralölsteuer an das Gemeinschaftsrecht angepaßt wird. Rechtsinformationssystem des Bundes. 2021. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10004908 (accessed on 29 June 2021).
- Schmidl, C. Bioenergielösungen im Neubau. Broschüre Erneuerbare Wärme des Österreichischen Biomasseverband, Ed.: 05/2013, Graz. 2014. Available online: https://www.waermeausholz.at/fileadmin/content/downloads/Schmidl_Bioenergie_im_Neubau_erweitert.pdf (accessed on 25 October 2021).
- Terlouw, W.; Peters, D.; van Tilburg, J.; Schimmel, M.; Berg, T.; Cihlar, J.; Mir, G.U.R.; Spöttle, M.; Staats, M.; Lejaretta, A.V.; et al. Gas for Climate: The Optimal Role for Gas in a Net-Zero Emissions Energy System; Navigant Netherlands B.V.: Utrecht, The Netherland, 2019. [Google Scholar]
- NREL. H2A: Hydrogen Analysis Production Models: Case Studies 2018. National Renewable Energy Laboratory, Denver. 2018. Available online: https://www.nrel.gov/hydrogen/h2a-production-models.html (accessed on 28 June 2021).
- European Union. ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality, Communication from the Comission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550&from=EN (accessed on 25 October 2021).
- Bundeskanzleramt Österreich. Aus Verantwortung für Österreich: Regierungsprogramm Die neue Volkspartei und Die Grünen 2020–2024, Vienna. 2020. Available online: https://www.dieneuevolkspartei.at/Download/Regierungsprogramm_2020.pdf (accessed on 25 October 2021).
- Bundesministerium für Nachhaltigkeit und Tourismus. Integrierter Nationaler Energie- und Klimaplan für Österreich: Periode 2021–2030. gemäß Verordnung (EU) 2018/1999 des Europäischen Parlaments und des Rates über das Governance -System für die Energieunion und den Klimaschutz, Bundesministerium für Nachhaltigkeit und Tourismus; Bundesministerium für Nachhaltigkeit und Tourismus: Vienna, Austria, 2019. [Google Scholar]
- Kranzl, L. Bioenergy—A Key Option within all Energy Sectors; VO Economic Perspectives of Renewable Energy Systems, Energy Economics Group (EEG), Technische Universität Wien: Vienna, Austria, 2020. [Google Scholar]
- Stanzer, G. Regio Energy: Potentiale. Österreichisches Institut für Raumplanung, Vienna. 2010. Available online: https://regioenergy.oir.at/methodik/potenziale2008 (accessed on 25 October 2021).
- Dißauer, C.; Rehling, B.; Strasser, C. Machbarkeitsuntersuchung Methan aus Biomasse, Bioenergy 2020+, Fachverband der Gas- und Wärmeversorgungsunternehmen; Österreichischer Biomasseverband: Wieselburg, Austria, 2019. [Google Scholar]
- Lindorfer, J.; Tichler, R.; Steinmüller, H. Erhöhung des Einsatzes von erneuerbarem Methan im Wärmebereich: Modul 1 und Modul 2; Johannes Kepler Universität Linz: Linz, Austria, 2017. [Google Scholar]
- Höher, M.; Holzmann, A.; Strimitzer, L. Netzeinspeisung von erneuerbarem Gas: Volkswirtschaftliche Effekte des Ausbaus von Erzeugungskapazitäten für erneuerbare Gase und deren Einspeisung in das Gasnetz; Fachverband der Gas- und Wärmeversorgungsunternehmen: Vienna, Austria, 2019. [Google Scholar]
- Kienberger, T. Technisches Potenzial an Synthetischem Methan aus Biogenen Ressourcen. Montanuniversität Leoben; Lehrstuhl für Energieverbundtechnik: Leoben, Austria, 2018. [Google Scholar]
- Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, 2018. Österreichische Waldinventur (ÖWI). Vienna. 2018. Available online: http://bfw.ac.at/rz/wi.home (accessed on 25 October 2021).
- Münch, J. Nachhaltig Nutzbares Getreidestroh in Deutschland; Institut für Energie- und Umweltforschung Heidelberg (ifeu): Heidelberg, Germany, 2008. [Google Scholar]
- Gollner, M.; Sterzl, J.G. Gesamtenergiebilanz Österreich 1970 bis 2019, Vienna. 2020. Available online: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energiebilanzen/index.html (accessed on 25 October 2021).
- Statistik Austria. Feldfrüchte: Feldfruchternte 2020. Vienna, 2020. Available online: http://www.statistik.at/web_de/statistiken/wirtschaft/land_und_forstwirtschaft/agrarstruktur_flaechen_ertraege/feldfruechte/index.html (accessed on 25 October 2021).
- Statistik Austria. Feldfruchtproduktion ab 1970: STATcube. Statistik Austria—Direktion Raumwirtschaft—Pflanzliche Produktion. Vienna, 2020. Available online: https://statcube.at/statistik.at/ext/statcube/jsf/dataCatalogueExplorer.xhtml (accessed on 25 October 2021).
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3. Aktualisierte und Erweiterte Auflage; Springer Vieweg: Berlin/Heidelberg, Germany, 2016; ISBN 3662474379. [Google Scholar]
- Büchele, R.; Haas, R.; Hartner, M.; Hirner, R.; Hummel, M.; Kranzl, L.; Müller, A.; Ponweiser, K.; Bons, M.; Grave, K.; et al. Endbericht—Bewertung des Potenzials für den Einsatz der hocheffizienten KWK und effizienter Fernwärme-und Fernkälteversorgung: Austrian Heat Map, Energy Economics Group (EEG), Institut für Energietechnik und Thermodynamik, Technische Universität Wien; Ecofys, Vienna. 2015. Available online: http://www.austrian-heatmap.gv.at/ergebnisse/ (accessed on 25 October 2021).
- Bostjančič-Feinig, A. Umsetzungskonzept der Klima- und Energie-Modellregion Carnica Rosental: Die Energiediversitätsregion—B569605, Klima- und Energie-Modellregion 2015; Carnica Rosental: Ferlach, Austria, 2016. [Google Scholar]
- ENTSO-E; ENTSOG. TYNDP 2022—Scenario report, Brussels. 2022. Available online: https://entsos-tyndp-scenarios.eu/wp-content/uploads/2022/04/TYNDP2022_Joint_Scenario_Full-Report-April-2022.pdf (accessed on 22 August 2022).
Energy Supply Technologies | Indirect CO2e Emissions * [kg CO2e/kWhoutput] | Direct CO2e Emissions * [kg CO2e/kWhoutput] | Levelized Production Costs * [€/kWhoutput] | Literature | |||
---|---|---|---|---|---|---|---|
Heat Production Technologies | |||||||
Coal boiler | 0.060 | 0.415 | 0.161 *** | [59,60,63,90] | |||
Oil boiler | 0.061 | 0.279 | 0.157 | [53,59,60,63,91,92] | |||
Gas-fired boiler | 0.077 | 0.215 | 0.153 | [53,59,60,63,93,94] | |||
Electricity heater | 0.258 | 0.226 | [53,93] | ||||
Wood-fired boiler | 0.016 | 0.007 | 0.129 | [53,59,60,63,95,96] | |||
Wood pellet boiler | 0.030 | 0.007 | 0.147 | [53,59,60,63,95,97] | |||
Wood chip boiler | 0.016 | 0.007 | 0.123 | [53,59,60,63,95,96] | |||
Solar thermal system | 0.020 | 0.000 | 0.134 | [53,59,63,94] | |||
Ambient heat system | 0.112 | 0.000 | 0.217 | [63,65,94,97] | |||
Combined heat and power production technologies | |||||||
Output type | Heat | Elec. | Heat | Elec. | Heat | Elec. | |
Coal-fired power plant | 0.045 | 0.089 | 0.307 | 0.613 | 0.060 | 0.073 | [63,65,66,90,94] |
Oil-fired power plant | 0.066 | 0.132 | 0.268 | 0.536 | - | 0.237 | [53,63,91,94] |
Gas-fired power plant | 0.053 | 0.107 | 0.150 | 0.301 | 0.042 | 0.110 | [35,53,63,65,66,94] |
Combined-cycle gas power plant | 0.046 | 0.091 | 0.129 | 0.258 | 0.042 | 0.076 | [35,53,60,63,66] |
Waste incineration plant | 0.153 (heat)/0.306 (elec.) ** | 0.041 | 0.082 | [65,68,94] | |||
Biomass power plant | 0.018 | 0.036 | 0.005 | 0.011 | 0.053 | 0.107 | [35,53,59,63,94] |
Biogas plant | 0.069 | 0.139 | 0.049 | 0.098 | 0.058 | 0.138 | [35,53,62,63,66,98] |
Cogeneration power plant | 0.019 | 0.038 | 0.005 | 0.010 | 0.084 | 0.159 | [77] |
Electricity production technologies | |||||||
Rooftop PV system | 0.062 | 0.000 | 0.106 | [35,53,63,66,92,93] | |||
Wind turbine | 0.010 | 0.000 | 0.063 | [35,53,63,66,93] | |||
Hydropower plant | 0.007 | 0.000 | 0.056 | [35,53,63] | |||
Ground-mounted PV system | 0.062 | 0.000 | 0.077 | [35,53,63,66] | |||
Fuel production technologies/Mobility options | |||||||
ICE—Diesel | 0.054 | 0.289 | 0.058 | [60,73,81,89] | |||
ICE—Biodiesel | 0.054 | 0.159 | 0.072 | [60,70,73,80,89] | |||
ICE—FT Diesel (BtL) | 0.054 | 0.052 | 0.117 | [60,73,80,89] | |||
ICE—PtL Diesel | 0.054 | 0.123 | 0.410 | [81,82] | |||
ICE—Gasoline | 0.047 | 0.337 | 0.059 | [60,81,89] | |||
ICE—Bioethanol | 0.047 | 0.256 | 0.074 | [60,70,73,80,89] | |||
ICE—FT Gasoline (BtL) | 0.047 | 0.052 | 0.117 | [60,73,80,89] | |||
ICE—PtL Gasoline | 0.047 | 0.106 | 0.410 | [81,82] | |||
CNG—Fossil | 0.044 | 0.254 | 0.032 | [81,89,93] | |||
CNG—SNG from Biogas | 0.044 | 0.062 | 0.080 | [60,70,73,89,93] | |||
CNG—SNG from Biomass | 0.044 | 0.045 | 0.072 | [60,73,89,93] | |||
PHEV—Diesel | 0.110 | 0.279 | 0.066 | [54,60,73,77,81,89,93] | |||
PHEV—Gasoline | 0.101 | 0.313 | 0.066 | [54,60,77,81,89,93] | |||
BEV—AT mix | 0.274 | 0.327 | 0.070 | [53,77,89,93] | |||
BEV—Mix RES technologies | 0.274 | 0.020 | 0.100 | [35,53,66,89,93] | |||
FCEV—H2 electrolysis | 0.144 | 0.050 | 0.125 | [73,87,89,99] | |||
FCEV—H2 from Biomass | 0.144 | 0.046 | 0.082 | [73,87,89,99] |
Validation of Results | ENECO2Calc | Austrian Heat Map [126] | EMA Austria [28] | Carnica Rosental Study *** [127] |
---|---|---|---|---|
Final heat demand [GWhth/a] | 11.69 | 10.75 (−8%) * | 11.21 (−4%) * | 11.70 (+0.1%) * |
Final electricity demand [GWhel/a] | 3.63 | - | 4.23 (+17%) * | 3.92 (+8%) * |
Final fuel demand [GWh/a] | 7.34 | - | 9.46 (+29%) * | 5.45 ** (−26%) * |
Total CO2e emissions [M kg CO2e/a] | 5.12 | - | 5.71 (+11%) * | 4.62 (−10%) * |
Development of Energy Transition Scenarios | Scenario 0 (Business-as-Usual—BAU) | Scenario 1 (Biomass-to-Mobility—BtM) | Scenario 2 (Biomass to Combined Heat and Power Plants—BtCHP) | Scenario 3 (Biomass-to-Gas—BtG) | |
---|---|---|---|---|---|
Heating sector | no changes in energy distribution compared to the reference case (2020 RF) | coal and oil boilers were substituted by solar thermal collectors and heat pumps | thermal decentral fossil- and renewable-based boilers and electrical heaters were substituted by the expansion of the existing district heating system driven by several cogeneration units | thermal decentral fossil- and renewable-based boilers were substituted by solar thermal collectors and heat pumps | |
Electricity sector | AT mix was substituted mainly through solar PV and small amounts of hydropower due to the revitalization | AT mix was substituted uniformly by cogeneration units and solar PV | AT mix was defossilized by the use of synthetic natural gas instead of fossil natural gas in central gas power plants | ||
Fuel sector * | focus scenario: | strong focus on synthetic fuels | strong focus on BEV | strong focus on FCEV | |
cars and LCV: | ICE (54%) + BEV (36%) + PHEV (6%) + FCEV (4%) | ICE (23%) + BEV (61%) + PHEV (2%) + FCEV (14%) | ICE (33.5%) + BEV (36%) + PHEV (2.5%) + FCEV (28%) | ||
MCV: | ICE-D (100%) | BEV (100%) | FCEV (100%) | ||
HCV: | ICE-D (100%) | ICE-D (40%) + FCEV (60%) | FCEV (100%) | ||
tractors: | ICE-D (95%) + BEV (5%) | ICE-D (52%) + BEV (14%) + FCEV (34%) | ICE-D (18%) + BEV (21%) + FCEV (61%) | ||
ICE fuel: | BtL (33.5%) + PtL (66.5%) | PtL (100%) | PtL (100%) | ||
hydrogen: | H2 electrolysis (100%) | H2 electrolysis (100%) | H2 from Biomass (33.5%) + H2 electrolysis (66.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammerschmid, M.; Konrad, J.; Werner, A.; Popov, T.; Müller, S. ENECO2Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities. Energies 2022, 15, 7162. https://doi.org/10.3390/en15197162
Hammerschmid M, Konrad J, Werner A, Popov T, Müller S. ENECO2Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities. Energies. 2022; 15(19):7162. https://doi.org/10.3390/en15197162
Chicago/Turabian StyleHammerschmid, Martin, Johannes Konrad, Andreas Werner, Tom Popov, and Stefan Müller. 2022. "ENECO2Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities" Energies 15, no. 19: 7162. https://doi.org/10.3390/en15197162
APA StyleHammerschmid, M., Konrad, J., Werner, A., Popov, T., & Müller, S. (2022). ENECO2Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities. Energies, 15(19), 7162. https://doi.org/10.3390/en15197162