Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engine and Experimental Setup
2.2. Test Fuels
2.3. Exerimental Tests
3. Results
3.1. HVO as a “Drop-In” Fuel
3.1.1. HVO vs. Conventional Diesel Oil: Effects on Combustion
3.1.2. HVO vs. Conventional Diesel Oil: Effects on Engine Performance and Emissions
3.2. Sweeps of Calibration Parameters
3.2.1. HVO vs. Conventional Diesel: Effect of EGR and EGR Split
3.2.2. HVO vs. Conventional Diesel: Effect of SOIMain
3.2.3. HVO vs. Conventional Diesel: Effect of prail
3.2.4. HVO vs. Conventional Diesel: Effect of Pilot 1 Strategy (qPil1 and DTPil1)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
°CAaTDC | Crank Angle degrees after TDC |
°CAbTDC | Crank Angle degrees before TDC |
ATS | After-Treatment System |
bmep | brake mean effective pressure |
bsfc | brake specific fuel consumption |
CI | Compression Ignition |
CN | Combustion Noise |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
DOC | Diesel Oxidation Catalyst |
DPF | Diesel Particulate Filter |
DTPil1 | injection timing of the first pilot |
DTPil2 | injection timing of the second pilot |
Δx | absolute change of the generic x variable |
Δ%x | relative change of the generic x variable |
ECU | Engine Control Unit |
EGR | Exhaust Gas Recirculation |
ηu | brake thermal efficiency |
EU | European Union |
FAME | Fatty Acid Methyl Esters |
FPT | Fiat Powertrain Technologies |
GHG | GreenHouse Gases |
HC | unburned hydrocarbons |
HP EGR | High Pressure EGR |
HRR | Heat Release Rate |
HVO | Hydrotreated Vegetable Oil |
ICE | Internal Combustion Engine |
ID | Ignition Delay |
IDMain | Ignition Delay of the main pulse |
λ | relative air-to-fuel ratio |
LP EGR | Low Pressure EGR |
n | engine rotational speed |
NOx | Nitrogen Oxides |
OEM | Original Equipment Manufacturer |
PID | Proportional-Integrative-Derivative |
PM | Particulate Matter |
prail | rail pressure |
qPil1 | injected fuel mass quantity of the first pilot |
qPil2 | injected fuel mass quantity of the second pilot |
SCR | Selective Catalytic Reduction |
SOC | Start Of Combustion |
SOIMain | electric Start Of Injection of the main pulse |
TDC | Top Dead Centre |
vfc | volumetric fuel consumption |
VGT | Variable Geometry Turbine |
WLTC | Worldwide harmonized Light-duty Test Cycle |
References
- Guo, Y.; Kelly, J.A.; Clinch, J.P. Road transport electrification—Is timing everything? Implications of emissions analysis’ outcomes for climate and air policy. Transp. Res. Interdiscip. Perspect. 2021, 12, 100478. [Google Scholar] [CrossRef]
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Aklilu, A.Z. Gasoline and diesel demand in the EU: Implications for the 2030 emission goal. Renew. Sustain. Energy Rev. 2020, 118, 109530. [Google Scholar] [CrossRef]
- O’Driscoll, R.; Stettler, M.E.J.; Molden, N.; Oxley, T.; ApSimon, H.M. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef]
- D’Ambrosio, S.; Mancarella, A.; Manelli, A.; Mittica, A.; Hardy, G. Experimental Analysis on the Effects of Multiple Injection Strategies on Pollutant Emissions, Combustion Noise, and Fuel Consumption in a Premixed Charge Compression Ignition Engine. SAE Int. J. Engines 2021, 14, 611–630. [Google Scholar] [CrossRef]
- Reşitoğlu, I.A.; Altinişik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef]
- Parravicini, M.; Barro, C.; Boulouchos, K. Experimental characterization of GTL, HVO, and OME based alternative fuels for diesel engines. Fuel 2021, 292, 120177. [Google Scholar] [CrossRef]
- Knothe, G. Biodiesel and renewable diesel: A comparison, Progress in Energy and Combustion. Science 2010, 36, 364–373. [Google Scholar]
- Bortel, I.; Vávra, J.; Takáts, M. Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine. Renew. Energy 2019, 140, 680–691. [Google Scholar] [CrossRef]
- Krivopolianskii, V.; Bjørgen, K.; Emberson, D.; Ushakov, S.; Æsøy, V.; Løvås, T. Experimental Study of Ignition Delay, Combustion, and NO Emission Characteristics of Hydrogenated Vegetable Oil. SAE Int. J. Fuels Lubr. 2019, 12, 29–42. [Google Scholar] [CrossRef]
- Ohshio, N.; Saito, K.; Kobayashi, S.; Tanaka, S. Storage Stability of FAME Blended Diesel Fuels. SAE Tech. Paper 2008, 2008-01-2505. [Google Scholar]
- Wei, X.; Meng, Q.; Kallio, K.J.; Olsson, R.T.; Hedenqvist, M.S. Ageing properties of a polyoxymethylene copolymer exposed to (bio) diesel and hydrogenated vegetable oil (HVO) in demanding high temperature conditions. Polym. Degrad. Stab. 2021, 185, 109491. [Google Scholar] [CrossRef]
- Athanasios, D.; Athanasios, D.; Stylianos, D.; Berzegianni, S.; Samaras, Z. Emissions Optimization Potential of a Diesel Engine Running on HVO: A Combined Experimental and Simulation Investigation. SAE Tech. Paper 2019, 2019-24-0039. [Google Scholar]
- Hartikka, T.; Kuronen, M.; Kiiski, U. Technical Performance of HVO (Hydrotreated Vegetable Oil) in Diesel Engines. SAE Tech. Paper 2012, 2012-01-1585. [Google Scholar]
- Mittelbach, M. Fuels from oils and fats: Recent developments and perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1832–1846. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Kousoulidou, M.; Clairotte, M.; Giechaskiel, B.; Nuottimäki, J.; Sarjovaara, T.; Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel 2019, 235, 1427–1435. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and effects on emissions of a passenger car diesel engine. Front. Mech. Eng. 2018, 4, 7. [Google Scholar] [CrossRef]
- Stumborg, M.; Wong, A.; Hogan, E. Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour. Technol. 1996, 56, 13–18. [Google Scholar] [CrossRef]
- No, S.Y. Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines—A review. Fuel 2014, 115, 88–96. [Google Scholar] [CrossRef]
- Bohl, T.; Smallbone, A.; Tian, G.; Roskilly, A.P. Particulate number and NOx trade-off comparisons between HVO and mineral diesel in HD applications. Fuel 2018, 215, 90–101. [Google Scholar] [CrossRef]
- Zeman, P.; Hönig, V.; Kotek, M.; Táborský, J.; Obergruber, M.; Mařík, J.; Hartová, V.; Pechout, M. Hydrotreated Vegetable Oil as a Fuel from Waste Materials. Catalysts 2019, 9, 337. [Google Scholar] [CrossRef]
- Dobrzyńska, E.; Szewczyńska, M.; Pośniak, M.; Szczotka, A.; Puchałka, B.; Woodburn, J. Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environ. Pollut. 2020, 259, 113772. [Google Scholar] [CrossRef]
- Pflaum, H.; Hofmann, P.; Geringer, B.; Weissel, W. Potential of Hydrogenated Vegetable Oil (HVO) in a Modern Diesel Engine. SAE Tech. Pap. 2010, 2010-32-0081. [Google Scholar]
- D’Ambrosio, S.; Ferrari, A.; Mancarella, A.; Mittica, A. Effects of Rate-Shaped and Multiple Injection Strategies on Pollutant Emissions, Combustion Noise and Fuel Consumption in a Low Compression Ratio Diesel Engine. Int. J. Automot. Technol. 2020, 21, 197–214. [Google Scholar] [CrossRef]
- Botero, M.L.; Mosbach, S.; Kraft, M. Sooting tendency of paraffin components of diesel and gasoline in diffusion flames. Fuel 2014, 126, 8–15. [Google Scholar] [CrossRef]
- Sugiyama, K.; Goto, I.; Kitano, K.; Mogi, K.; Honkanen, M. Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine. SAE Int. J. Fuels Lubr. 2012, 5, 205–217. [Google Scholar] [CrossRef]
- Azetsu, A.; Sato, Y.; Wakisaka, Y. Effects of Aromatic Components in Fuel on Flame Temperature and Soot Formation in Intermittent Spray Combustion. SAE Tech. Pap. 2003. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Tradeoff between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Int. J. Engines 2009, 1, 1251–1262. [Google Scholar] [CrossRef]
- Singh, D.; Subramanian, K.A.; Garg, M.O. Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel. Renew. Sustain. Energy Rev. 2018, 81, 2947–2954. [Google Scholar] [CrossRef]
- Jaroonjitsathian, S.; Saisirirat, P.; Sivara, K.; Tongroon, M.; Chollacoop, N. Effects of GTL and HVO Blended Fuels on Combustion and Exhaust Emissions of a Common-Rail DI Diesel Technology. SAE Tech. Pap. 2014. [Google Scholar] [CrossRef]
- Rimkus, A.; Žaglinskis, J.; Stravinskas, S.; Rapalis, P.; Matijošius, J.; Bereczky, Á. Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine. Energies 2019, 12, 2978. [Google Scholar] [CrossRef]
- Musculus, M. On the Correlation between NOx Emissions and the Diesel Premixed Burn. SAE Tech. Pap. 2004. [Google Scholar] [CrossRef]
Number of Cylinders | 4 |
Displacement | 2.3 l |
Bore/stroke | 88 mm/94 mm |
Rod length | 146 mm |
Compression ratio | 16.3:1 |
Valves per cylinder | 4 |
Max power | 102 kW |
Max torque | 400 Nm |
Turbocharger | Single-stage VGT |
Fuel injection system | Common rail injection system |
EGR circuit type | Dual loop, water-cooled |
Exhaust after-treatment system | DOC, DPF |
Emission standard | Euro 6 d final |
Parameter | Unit | EN590 Diesel | HVO |
---|---|---|---|
Density at 15 °C | kg/m3 | 830.6 | 777.8 |
Kinematic viscosity | mm2/s | 2.969 | 2.646 |
Dynamic viscosity | Pa·s | 2.47·10−3 | 2.06·10−3 |
Cetane number | - | 54.6 | 79.6 |
Monoaromatic | %v/v | 20.1 | 0.50 |
Polyaromatic | %v/v | 3.00 | 0 |
Total aromatic | %v/v | 23.1 | 0 |
Flammability | °C | 74.0 | 60.5 |
Lower Heating Value | MJ/kg | 42.65 | 44.35 |
Hydrogen | %m/m | 13.72 | 15.00 |
Carbon | %m/m | 85.67 | 85.00 |
Oxygen | %m/m | 0.61 | 0 |
Sulphur | mg/kg | 6.50 | 0.53 |
FAME | %v/v | 5.00 | 0.05 |
Approx. formula | - | C13 H24O0.06 | C13H28 |
Speed × bmep (rpm × bar) | Δ%Soot [%] | Δ%CO [%] | Δ%HC [%] | Δ%NOx [%] | Δ%bsfc [%] | Δ%CO2 [%] | Δ%vfc [%] | Δηu [%] | ΔCN [dBA] |
---|---|---|---|---|---|---|---|---|---|
1250 × 2 | −48 | −36 | −34 | +9.6 | −2.9 | −3.5 | +3.7 | −1.0 | −0.7 |
1500 × 9 | −67 | −33 | −44 | −4.8 | −3.3 | −4.7 | +2.9 | −0.2 | −1.2 |
1750 × 5 | −56 | −18 | −30 | −6.8 | −3.4 | −3.1 | +3.1 | −0.4 | −0.9 |
2000 × 9 | −46 | −15 | −25 | −15 | −3.2 | −4.5 | +3.4 | −0.7 | −0.8 |
2250 × 15 | −15 | +13 | +8.5 | −3.3 | −2.8 | −3.5 | +3.8 | −1.0 | −0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Ambrosio, S.; Mancarella, A.; Manelli, A. Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies 2022, 15, 7202. https://doi.org/10.3390/en15197202
d’Ambrosio S, Mancarella A, Manelli A. Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies. 2022; 15(19):7202. https://doi.org/10.3390/en15197202
Chicago/Turabian Styled’Ambrosio, Stefano, Alessandro Mancarella, and Andrea Manelli. 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps" Energies 15, no. 19: 7202. https://doi.org/10.3390/en15197202
APA Styled’Ambrosio, S., Mancarella, A., & Manelli, A. (2022). Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies, 15(19), 7202. https://doi.org/10.3390/en15197202