Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?
Abstract
:1. Introduction
2. Methods
3. Solar Geoengineering Proposals
SG Proposal | Comments | References |
---|---|---|
Place giant mirrors in space | Most expensive of all proposals, would take decades to implement; difficult to dismantle if serious side effects found. | [13,28,31,39,40] |
Inject aerosols into lower stratosphere | Major volcanic eruptions show the feasibility of this method. Problems include possible particle coagulation, reductions in global precipitation, delays to ozone layer repair. | [12,13,28,30,39,40,41,42,43] |
Brighten maritime clouds. | No chemicals used, and impacts would quickly disappear if in-tervention stopped. | [28,34,42,43,44] |
Modify properties of cirrus clouds | Unlike other proposals, should not affect precipitation patterns. May not work as planned, and chemical additives needed. | [13,15,41,42,43] |
Pump water onto sea ice, icecaps. | Vast and expensive engineering construction in a fragile envi-ronment. | [45,46,47] |
Place floating reflec-tors in the ocean. | Could target specific areas. Potential adverse effects on ocean ecosystems if large-scale. | [13] |
Modify desert albedo. | Large areas with low populations available. Durability of materials, and effectiveness of approach questionable; adverse effect on desert ecosystems; possible land competition with solar en-ergy schemes; high costs. | [35,39] |
Paint urban roofs and pavements white. | Would produce local climate benefits, and politically and technically easy to implement. Global climate mitigation impacts would be minor; would compete with roof solar energy systems; high costs. | [28,37,41,42,43,48] |
4. Renewable Energy and Energy Reductions
4.1. Effects of Solar Geoengineering on Renewable Energy Potential
4.1.1. Solar Energy
4.1.2. Biomass Energy
4.1.3. Hydro Energy
4.1.4. Wind Energy
4.2. Effects of Geoengineering on Renewable Energy Uptake and Energy Reductions
5. Solar Geoengineering and RE Comparison
5.1. Solar Geoengineering Requires Ocean Alkalinity Enhancement
5.2. Solar Geoengineering May Be Needed for Centuries
5.3. Discussion: Comparative Costs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
CDR | carbon dioxide removal |
CO2 | carbon dioxide |
CO2-eq | carbon dioxide equivalent |
EJ | exajoule = 1018 joule |
EIA | Energy Information Agency |
EOH | ethanol |
EROEI | energy return on investment |
FAO | Food and Agriculture Organization |
FF | fossil fuel |
GHG | greenhouse gas |
GJ | gigajoule = 109 joule |
Gt | gigatonne = 109 tonne |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
MJ | megajoule = 106 joule |
OA | ocean acidification |
OAE | ocean alkalinity enhancement |
OECD | Organization for Economic Cooperation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
RE | renewable energy |
SG | solar geoengineering |
SRM | solar radiation management |
UHI | urban heat island |
USD | US dollars |
References
- Dirzo, R.; Ceballos, G.; Ehrlich, P.R. Circling the drain: The extinction crisis and the future of humanity. Philos. Trans. R. Soc. B 2022, 377, 20210378. [Google Scholar] [CrossRef] [PubMed]
- Limburg, K.E.; Breitburg, D.; Swaney, D.P.; Jacinto, G. Ocean deoxygenation: A primer. One Earth 2020, 2, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- Georgian, S.; Hameed, S.; Morgan, L.; Amon, D.J.; Sumaila, U.R.; Johns, D.; Ripple, W.J. Scientists’ warning of an imperiled ocean. Biol. Conserv. 2022, 272, 109595. [Google Scholar] [CrossRef]
- Dryden, H.; Duncan, D. How the Oceans Will Impact on Climate Change over the Next 25 Years? 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3848390 (accessed on 13 May 2022).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, M. Day of reckoning. New Sci. 2018, 239, 20–21. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Switching Off: Meeting Our Energy Needs in a Constrained Future; Springer briefs on Energy; Springer: Cham, Switzerland, 2022; 90p, ISSN 2191-5520. [Google Scholar]
- Witze, A. Extreme heatwaves: Surprising lessons from the record warmth. Nature 2022, 608, 464–465. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; AR6; WG1; CUP: Cambridge, UK, 2021. [Google Scholar]
- Caldeira, K.; Bala, G. Reflecting on 50 years of geoengineering research. Earth’s Future 2017, 5, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim. Chang. 2006, 77, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Robock, A. Benefits and risks of stratospheric solar radiation management for climate intervention (geoengineering). Bridge 2020, 50, 59–67. [Google Scholar]
- Cornwall, C.E.; Comeau, S.; Kornder, N.A.; Perry, C.T.T.; van Hooidonk, R.; DeCarlo, T.M.; Pratchett, M.S.; Anderson, K.D.; Browne, N.; Carpenter, R.; et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 2021, 118, e2015265118. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Science Engineering Medicine. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance; Consensus Study Report 2021; National Academy of Sciences: Washington, DC, USA, 2021; Available online: https://www.nap.edu/resource/25762/Reflecting%20Sunlight%204-Pager.pdf (accessed on 11 July 2022).
- Irvine, P.J.; Keith, D.W. Halving warming with stratospheric aerosol geoengineering moderates policy-relevant climate hazards. Environ. Res. Lett. 2020, 15, 044011. [Google Scholar] [CrossRef]
- Moriarty, P. Global nuclear energy: An uncertain future. AIMS Energy 2021, 9, 1027–1042. [Google Scholar] [CrossRef]
- BP Statistical Review of World Energy 2022; BP: London, UK. 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 20 August 2022).
- Moriarty, P.; Honnery, D. New approaches for ecological and social sustainability in a post-pandemic world. World 2020, 1, 191–204. [Google Scholar] [CrossRef]
- Energy Information Administration (EIA) International Energy Outlook 2021. 2021. Available online: https://www.eia.gov/outlooks/ieo/ (accessed on 20 April 2022).
- International Energy Agency (IEA). World Energy Outlook 2021; IEA/OECD: Paris, France, 2021; Available online: https://www.iea.org/topics/world-energy-outlook. (accessed on 7 July 2022).
- Moriarty, P.; Honnery, D. The limits of renewable energy. AIMS Energy 2021, 9, 812–829. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Feasibility of a 100% global renewable energy system. Energies 2020, 13, 5543. [Google Scholar] [CrossRef]
- Morris, J.; Hone, D.; Haigh, M.; Sokolov, A.; Paltsev, S. Future energy: In search of a scenario reflecting current and future pressures and trends. Environ. Econ. Policy Stud. 2022, 1–31. [Google Scholar] [CrossRef]
- Matthews, H.D.; Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 2022, 376, 1404–1409. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The risk of catastrophic climate change: Future energy implications. Futures 2021, 128, 102728. [Google Scholar] [CrossRef]
- Kallis, G. Limits, ecomodernism and degrowth. Political Geog. 2021, 87, 102367. [Google Scholar] [CrossRef]
- Sovacool, B.K. Reckless or righteous? Reviewing the sociotechnical benefits and risks of climate change geoengineering. Energy Strategy Rev. 2021, 35, 100656. [Google Scholar] [CrossRef]
- Bhowmick, M.; Mishra, S.K.; Kravitz, B.; Sahany, S.; Salunke, P. Response of the Indian summer monsoon to global warming, solar geoengineering and its termination. Sci. Rep. 2021, 11, 9791. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Haywood, J.M.; Scaife, A.A.; Boucher, O.; Henry, M.; Kravitz, B.; Lurton, T.; Nabat, P.; Niemeier, U.; Séférian, R.R.; et al. The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmos. Chem. Phys. 2022, 22, 2999–3016. [Google Scholar] [CrossRef]
- Baum, C.M.; Low, S.; Sovacool, B.K. Between the sun and us: Expert perceptions on the innovation, policy, and deep uncertainties of space-based solar geoengineering. Renew. Sustain. Energy Rev. 2022, 158, 112179. [Google Scholar] [CrossRef]
- Moriyama, R.; Sugiyama, M.; Kurosawa, A.; Masuda, K.; Tsuzuki, K.; Ishimoto, Y. The cost of strato-603 spheric climate engineering revisited. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 1207–1228. [Google Scholar] [CrossRef]
- Aksamit, N.O.; Kravitz, B.; MacMartin, D.G.; Haller, G. Harnessing stratospheric diffusion barriers for enhanced climate geoengineering. Atmos. Chem. Phys. 2021, 21, 8845–8861. [Google Scholar] [CrossRef]
- Diamond, M.S.; Gettelman, A.; Lebsock, M.D.; McComiskey, A.; Russell, L.M.; Wood, R.; Feingold, G.G. To assess marine cloud brightening’s technical feasibility, we need to know what to study—And when to stop. Proc. Natl. Acad. Sci. USA 2022, 119, e2118379119. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.A.; Jackson, L.S.; Osprey, S.M.; Forster, P.M. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos. 2015, 120, 9352–9373. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2009, 94, 275–286. [Google Scholar] [CrossRef]
- Pearce, F. Urban Heat: Can White Roofs Help Cool World’s Warming Cities? 2018. Available online: https://e360.yale.edu/features/urban-heat-can-white-roofs-help-cool-the-worlds-warming-cities (accessed on 2 July 2022).
- Seneviratne, S.I.; Phipps, S.J.; Pitman, A.J.; Hirsch, A.L.; Davin, E.L.; Donat, M.G.; Hirschi, M.; Lenton, A.; Wilhelm, M.; Kravitz, B. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 2018, 11, 88–96. [Google Scholar] [CrossRef]
- Lenton, T.M.; Vaughan, N.E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. Discuss. 2009, 9, 2559–2608. [Google Scholar] [CrossRef]
- Visioni, D.; Pitari, G.; Aquila, V. Sulfate geoengineering: A review of the factors controlling the needed injection of sulfur dioxide. Atmos. Chem. Phys. Discuss. 2017, 17, 3879–3889. [Google Scholar] [CrossRef] [Green Version]
- Royal Society. Geoengineering the Climate: Science, Governance and Uncertainty; Royal Society: London, UK, 2009. [Google Scholar]
- Honegger, M.; Derwent, H.; Harrison, N.; Michaelowa, A.; Schäfer, S. Carbon Removal and Solar Geoengineering: Potential Implications for Delivery of the Sustainable Development Goals; Carnegie Climate Geoengineering Governance Initiative: New York, NY, USA, 2018. [Google Scholar]
- Genesio, L.; Bassi, R.; Miglietta, F. Plants with less chlorophyll: A global change perspective. Glob. Chang. Biol. 2021, 27, 959–967. [Google Scholar] [CrossRef] [PubMed]
- MacCracken, M.C. On the possible use of geoengineering to moderate specific climate change impacts. Environ. Res. Lett. 2009, 4, 045107. [Google Scholar] [CrossRef]
- Vaughan, A. Drastic geoengineering could help stem rising seas. New Sci. 2019, 243, 16. [Google Scholar] [CrossRef]
- Hooper, R. Arctic rescue squad. New Sci. 2019, 243, 38–41. [Google Scholar] [CrossRef]
- Moon, T.A. Geoengineering is not a quick glacier fix. Nature 2018, 556, 436. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Solar Geoengineering. 2022. Available online: https://en.wikipedia.org/wiki/Solar_geoengineering (accessed on 15 July 2022).
- Zampieri, L.; Goessling, H.F. Sea ice targeted geoengineering can delay Arctic sea ice decline but not global warming. Earth’s Future 2019, 7, 1296–1306. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Policy 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Soonmin, H.; Taghavi, M. Solar energy development: Study cases in Iran and Malaysia. Int. J. Eng. Trends Technol. 2022, 70, 408–422. [Google Scholar] [CrossRef]
- Alhousni, F.K.; Ismail, F.B.; Okonkwo, P.C.; Mohamed, H.; Okonkwo, B.O.; Al-Shahri, O.A. A review of PV solar energy system operations and applications in Dhofar Oman. AIMS Energy 2022, 10, 858–884. [Google Scholar] [CrossRef]
- Lunt, D.J. Sunshades for Solar Radiation Management. In Geoengineering Responses to Climate Change: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Lenton, T., Vaughan, N., Eds.; Springer Science+Business Media: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Murphy, D.M. Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environ. Sci. Technol. 2009, 43, 2784–2786. [Google Scholar] [CrossRef] [PubMed]
- Abdelal, Q. Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions. Int. J. Low-Carbon Technol. 2021, 16, 732–739. [Google Scholar] [CrossRef]
- Elshafei, M.; Ibrahim, A.; Helmy, A.; Abdallah, M.; Eldeib, A.; Badawy, M.; Razek, S.A. Study of massive floating solar panels over Lake Nasser. J. Energy 2021, 2021, 6674091. [Google Scholar] [CrossRef]
- McGuire, B. Hacking the Earth: What could go wrong with geoengineering? Responsib. Sci. 2021, 3, 18–19. [Google Scholar]
- United Nations (UN). World Population Prospects 2019. 2019. Available online: https://population.un.org/wpp/ (accessed on 22 May 2022).
- Vaughan, A. Engineering the oceans. New Sci. 2022, 255, 46–49. [Google Scholar] [CrossRef]
- Li, T.; Yang, Q. Advantages of diffuse light for horticultural production and perspectives for further research. Front. Plant Sci. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Alamou, A.E.; Obada, E.; Biao, E.I.; Zandagba, E.B.J.; Da-Allada, C.Y.; Bonou, F.K.; Baloïtcha, E.; Tilmes, S.; Irvine, P.J. Impact of stratospheric aerosol geoengineering on meteorological droughts in West Africa. Atmosphere 2022, 13, 234. [Google Scholar] [CrossRef]
- Schneider, L. Geoengineering and Environmental Capitalism. Science for the People, 21 August 2018. Available online: https://magazine.scienceforthepeople.org/geoengineering-special-issue/ (accessed on 23 May 2022).
- Harris, M. Billionaire geoengineering. New Sci. 2020, 247, 18–19. [Google Scholar] [CrossRef]
- Open Letter: We Call for an International Non-Use Agreement on Solar Geoengineering. 2022. Available online: https://www.solargeoeng.org/non-use-agreement/open-letter/ (accessed on 15 September 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 15 July 2022).
- Semieniuk, G.; Holden, P.B.; Mercure, J.-F.; Salas, P.; Pollitt, H.; Jobson, K.; Vercoulen, P.; Chewpreecha, U.; Edwards, N.R.; Viñuales, J.E. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Chang. 2022, 12, 532–538. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Gregg, J.W.; Lenton, T.M.; Palomo, I.; Eikelboom, J.A.J.; Law, B.E.; Huq, S.; Duffy, P.B.; et al. World scientists’ warning of a climate emergency. BioScience 2021, 71, 894–898. [Google Scholar] [CrossRef]
- Rousseaux, C.S.; Gregg, W.W. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 2015, 29, 1674–1688. [Google Scholar] [CrossRef] [Green Version]
- Mongin, M.; Baird, M.E.; Lenton, A.; Neill, C.; Akl, J. Reversing Ocean acidification along the Great Barrier Reef using alkalinity injection. Environ. Res. Lett. 2021, 16, 064068. [Google Scholar] [CrossRef]
- Caserini, S.; Pagano, D.; Campo, F.; Abbà, A.; De Marco, S.; Righi, D.; Renforth, P.; Grosso, M. Potential of maritime transport for ocean liming and atmospheric CO2 removal. Front. Clim. 2021, 3, 575900. [Google Scholar] [CrossRef]
- Gentile, E.; Tarantola, F.; Lockley, A.; Vivian, C.; Caserini, S. Use of aircraft in ocean alkalinity enhancement. Sci. Total Environ. 2022, 822, 153484. [Google Scholar] [CrossRef]
- Fakhraee, M.; Li, Z.; Planavsky, N.J.; Reinhard, C.T. Environmental impacts and carbon capture potential of ocean alkalinity enhancement. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Schwartz, S.E. Observation based budget and lifetime of excess atmospheric carbon dioxide. Atmos. Chem. Phys. 2021, 1–133. [Google Scholar] [CrossRef]
- Archer, D.; Eby, M.; Brovkin, V.; Ridgwell, A.; Cao, L.; Mikolajewicz, U.; Caldeira, K.; Matsumoto, K.; Munhoven, G.; Montenegro, A.; et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 2009, 37, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Baur, S.; Nauels, A.; Carl-Friedrich Schleussner, C.-F. Deploying Solar Radiation Modification to limit warming under a current climate policy scenario results in a multi-century commitment. Earth Syst. Dyn. Discuss. 2022, 1–17. [Google Scholar] [CrossRef]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Gillingham, K. Carbon calculus: For deep greenhouse gas emission reductions, a long-term perspective on costs is essential. Financ. Dev. 2019, 56, 7–11. [Google Scholar]
- Trisos, C.H.; Amatulli, G.; Gurevitch, J.; Robock, A.; Xia, L.; Zambri, B. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2018, 2, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Oomen, J.; Meiske, M. Proactive and reactive geoengineering: Engineering the climate and the lithosphere. WIREs Clim. Chang. 2021, 12, e732. [Google Scholar] [CrossRef]
- Surprise, K. Geopolitical ecology of solar geoengineering: From a ‘logic of multilateralism’ to logics of militarization. J. Political Ecol. 2020, 27, 213–235. [Google Scholar] [CrossRef] [Green Version]
- Biermann, F. It is dangerous to normalize solar geoengineering research. Nature 2021, 595, 30. [Google Scholar] [CrossRef]
- Biermann, F.; Oomen, J.; Gupta, A.; Ali, S.H.; Conca, K.; Hajer, M.A.; Kashwan, P.; Kotzé, L.J.; Leach, M.; Messner, D.; et al. Solar geoengineering: The case for an international non-use agreement. WIREs Clim. Chang. 2022, 13, e754. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriarty, P.; Honnery, D. Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation? Energies 2022, 15, 7315. https://doi.org/10.3390/en15197315
Moriarty P, Honnery D. Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation? Energies. 2022; 15(19):7315. https://doi.org/10.3390/en15197315
Chicago/Turabian StyleMoriarty, Patrick, and Damon Honnery. 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?" Energies 15, no. 19: 7315. https://doi.org/10.3390/en15197315
APA StyleMoriarty, P., & Honnery, D. (2022). Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation? Energies, 15(19), 7315. https://doi.org/10.3390/en15197315