Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF Simulation
2.2. LLJ Analysis Domains
2.3. LLJ Detection and Characterization
2.3.1. LLJ Detection
2.3.2. Preliminary WRF Simulation Validation
2.3.3. LLJ Characterization
- (i)
- Joint probability distributions of LLJ core heights and speeds are analyzed across the selected LA groups and transect groups to examine how LLJ characteristics change with latitude and distance from the coast (macro- meso- and intra-farm scales). This analysis is performed for transect groups closest to the coast and farthest from the coast for both transects (Groups 1 and 3), plus LA groups 1 (south of MA) and 4 (highest and lowest latitude, respectively).
- (ii)
- Spatial extent (i.e., co-occurrence in space). In this analysis, conditional probabilities of LLJ occurrence are calculated for each LA centroid and/or each pair of points along both transects. For example, for transect A, the conditional probability is calculated that, if a LLJ is detected at point 1 (closest to the coast) in one hour, a LLJ will also occur at point 9 (farthest from the coast) in that same hour.
- (iii)
- LLJ probability of occurrence as a function of hour of the day and calendar month.
- (iv)
- Joint probability distributions are constructed for LLJ occurrence considering both hour of the day and wind direction at ~100 m for the month of highest LLJ frequency (June). This analysis focused on two LA groups. Probabilities of LLJs in the first group (LA group 1 in the north) are almost exclusively confined to the evening hours to early morning hours (approximately 8 pm–8 am, local time) in June. Conversely, for this month, probabilities of LLJs in the second (LA group 4 in the south) do not follow a pronounced diurnal cycle.
2.3.4. Analysis of Meteorological Conditions associated with LLJs
3. Results
3.1. Wind Climate
3.2. Preliminary WRF Simulation Validation
3.3. LLJ Identification and Characterization
3.4. Extended Analysis of LLJ Characterization
3.5. Meteorological Context for LLJs
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Energy Secretary Granholm Announces Ambitious New 30GW Offshore Wind Deployment Target by 2030. Available online: https://www.energy.gov/articles/energy-secretary-granholm-announces-ambitious-new-30gw-offshore-wind-deployment-target (accessed on 10 October 2021).
- Barthelmie, R.J.; Dantuono, K.E.; Renner, E.J.; Letson, F.L.; Pryor, S.C. Extreme Wind and Waves in US East Coast Offshore Wind Energy Lease Areas. Energies 2021, 14, 1053. [Google Scholar] [CrossRef]
- U.S. Offshore Wind Power Economic Impact Assessment. American Clean Power Association. Available online: https://supportoffshorewind.org/wp-content/uploads/sites/6/2020/03/AWEA_Offshore-Wind-Economic-ImpactsV3.pdf (accessed on 10 October 2021).
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. Wind Power Production from Very Large Offshore Wind Farms. Joule 2021, 5, 2663–2686. [Google Scholar] [CrossRef]
- Record of Decision, Vineyard Wind 1 Offshore Wind Energy Project Construction and Operations Plan. Bureau of Ocean Energy Management. Available online: https://www.boem.gov/sites/default/files/documents/renewable-energy/state-activities/Final-Record-of-Decision-Vineyard-Wind-1.pdf (accessed on 10 October 2021).
- Pryor, S.C.; Barthelmie, R.J. Comparison of Potential Power Production at On- and Offshore Sites. Wind Energy 2001, 4, 173–181. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Statistical Analysis of Flow Characteristics in the Coastal Zone. J. Wind Eng. Ind. Aerodyn. 2002, 90, 201–221. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Observations of Non-Dimensional Wind Shear in the Coastal Zone. Q. J. R. Meteorol. Soc. 1999, 125, 2685–2702. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Hansen, O.F.; Enevoldsen, K.; Højstrup, J.; Frandsen, S.; Pryor, S.C.; Larsen, S.; Motta, M.; Sanderhoff, P. Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 2005, 127, 170–176. [Google Scholar] [CrossRef]
- NYSERDA Announces Contracts for Collecting Environmental and Metocean Data in Support of Offshore Wind Energy Development—NYSERDA. Available online: https://www.nyserda.ny.gov/About/Newsroom/2019-Announcements/2019-01-31-NYSERDA-Announces-Contracts-for-Collecting-Environmental-and-Metocean-Data-in-Support-of-Offshore-Wind-Energy-Development (accessed on 10 October 2021).
- Papadopoulos, P.; Coit, D.; Azizezzat, A. Seizing Opportunity: Maintenance Optimization in Offshore Wind Farms Considering Accessibility, Production, and Crew Dispatch. IEEE Trans. Sustain. Energy 2021, 13, 111–121. [Google Scholar] [CrossRef]
- Debnath, M.; Doubrawa, P.; Optis, M.; Hawbecker, P.; Bodini, N. Extreme Wind Shear Events in US Offshore Wind Energy Areas and the Role of Induced Stratification. Wind Energy Sci. 2021, 6, 1043–1059. [Google Scholar] [CrossRef]
- Ahsbahs, T.; Maclaurin, G.; Draxl, C.; Jackson, C.R.; Monaldo, F.; Badger, M. US East Coast Synthetic Aperture Radar Wind Atlas for Offshore Wind Energy. Wind Energy Sci. 2020, 5, 1191–1210. [Google Scholar] [CrossRef]
- Lima, D.C.A.; Soares, P.M.M.; Semedo, A.; Cardoso, R.M. A Global View of Coastal Low-Level Wind Jets Using an Ensemble of Reanalyses. J. Clim. 2018, 31, 1525–1546. [Google Scholar] [CrossRef]
- Ranjha, R.; Svensson, G.; Tjernström, M.; Semedo, A. Global Distribution and Seasonal Variability of Coastal Low-Level Jets Derived from ERA-Interim Reanalysis. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 20412. [Google Scholar] [CrossRef] [Green Version]
- Guest, P.; Persson, P.O.G.; Wang, S.; Jordan, M.; Jin, Y.; Blomquist, B.; Fairall, C. Low-level Baroclinic Jets over the New Arctic Ocean. J. Geophys. Res. Ocean. 2018, 123, 4074–4091. [Google Scholar] [CrossRef]
- Burk, S.D.; Thompson, W.T. The Summertime Low-Level Jet and Marine Boundary Layer Structure along the California Coast. Mon. Weather Rev. 1996, 124, 668–686. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.M.M.; Cardoso, R.M.; Semedo, Á.; Chinita, M.J.; Ranjha, R. Climatology of the Iberia Coastal Low-Level Wind Jet: Weather Research Forecasting Model High-Resolution Results. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 22377. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulou, E.M.; Toumi, R. The Persian Gulf Summertime Low-level Jet over Sloping Terrain. Q. J. R. Meteorol. Soc. 2012, 138, 145–157. [Google Scholar] [CrossRef]
- Macklin, S.A.; Bond, N.A.; Walker, J.P. Structure of a Low-Level Jet over Lower Cook Inlet, Alaska. Mon. Weather Rev. 1990, 118, 2568–2578. [Google Scholar] [CrossRef] [Green Version]
- Fennel, W.; Lass, H.U. On the Impact of Wind Curls on Coastal Currents. J. Mar. Syst. 2007, 68, 128–142. [Google Scholar] [CrossRef]
- Ranjha, R.; Tjernström, M.; Semedo, A.; Svensson, G.; Cardoso, R.M. Structure and Variability of the Oman Coastal Low-Level Jet. Tellus A Dyn. Meteorol. Oceanogr. 2015, 67, 25285. [Google Scholar] [CrossRef]
- Hallgren, C.; Arnqvist, J.; Ivanell, S.; Körnich, H.; Vakkari, V.; Sahlée, E. Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea. Energies 2020, 13, 3670. [Google Scholar] [CrossRef]
- Smedman, A.S.; Bergstrom, H.; Hogstrom, U. Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet. Oceanogr. Lit. Rev. 1996, 9, 869. [Google Scholar] [CrossRef]
- Pichugina, Y.L.; Brewer, W.A.; Banta, R.M.; Choukulkar, A.; Clack, C.T.M.; Marquis, M.C.; McCarty, B.J.; Weickmann, A.M.; Sandberg, S.P.; Marchbanks, R.D.; et al. Properties of the Offshore Low Level Jet and Rotor Layer Wind Shear as Measured by Scanning Doppler Lidar. Wind Energy 2017, 20, 987–1002. [Google Scholar] [CrossRef]
- Gutierrez, W.; Araya, G.; Basu, S.; Ruiz-Columbie, A.; Castillo, L. Toward understanding low level jet climatology over west Texas and its impact on wind energy. J. Phys. Conf. Ser. 2014, 524, 012008. [Google Scholar] [CrossRef] [Green Version]
- Barthelmie, R.J.; Shepherd, T.J.; Aird, J.A.; Pryor, S.C. Power and Wind Shear Implications of Large Wind Turbine Scenarios in the US Central Plains. Energies 2020, 13, 4269. [Google Scholar] [CrossRef]
- Doosttalab, A.; Siguenza-Alvarado, D.; Pulletikurthi, V.; Jin, Y.; Bocanegra Evans, H.; Chamorro, L.P.; Castillo, L. Interaction of Low-Level Jets with Wind Turbines: On the Basic Mechanisms for Enhanced Performance. J. Renew. Sustain. Energy 2020, 12, 053301. [Google Scholar] [CrossRef]
- Na, J.S.; Koo, E.; Jin, E.K.; Linn, R.; Ko, S.C.; Muñoz-Esparza, D.; Lee, J.S. Large-eddy Simulations of Wind-farm Wake Characteristics Associated with a Low-level Jet. Wind Energy 2018, 21, 163–173. [Google Scholar] [CrossRef]
- Gutierrez, W.; Ruiz-Columbie, A.; Tutkun, M.; Castillo, L. The Structural Response of a Wind Turbine under Operating Conditions with a Low-Level Jet. Renew. Sustain. Energy Rev. 2019, 108, 380–391. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, C.; Li, S. Influence of Low-Level Jet Intensity on Aerodynamic Loads of Horizontal Axis Wind Turbine Rotor. Eng. Appl. Comput. Fluid Mech. 2019, 13, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Colle, B.A.; Novak, D.R. The New York Bight Jet: Climatology and Dynamical Evolution. Mon. Weather Rev. 2010, 138, 2385–2404. [Google Scholar] [CrossRef]
- Nunalee, C.G.; Basu, S. Mesoscale Modeling of Coastal Low-Level Jets: Implications for Offshore Wind Resource Estimation. Wind Energy 2014, 17, 1199–1216. [Google Scholar] [CrossRef]
- Strobach, E.; Sparling, L.C.; Rabenhorst, S.D.; Demoz, B. Impact of Inland Terrain on Mid-Atlantic Offshore Wind and Implications for Wind Resource Assessment: A Case Study. J. Appl. Meteorol. Climatol. 2018, 57, 777–796. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, G.; Markowski, P.M.; Jewtoukoff, V.; Young, G.S.; Stensrud, D.J. The Orinoco Low-level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. J. Geophys. Res. Atmos. 2019, 124, 10696–10711. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, Z. Warm-Sector Heavy Rainfall in Southern China and Its WRF Simulation Evaluation: A Low-Level-Jet Perspective. Mon. Weather Rev. 2019, 147, 4461–4480. [Google Scholar] [CrossRef]
- Hahmann, A.N.; Vincent, C.L.; Peña, A.; Lange, J.; Hasager, C.B. Wind Climate Estimation Using WRF Model Output: Method and Model Sensitivities over the Sea. Int. J. Climatol. 2015, 35, 3422–3439. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Giannakopoulou, E.M.; Nhili, R. WRF Model Methodology for Offshore Wind Energy Applications. Adv. Meteorol. 2014, 2014, 319819. [Google Scholar] [CrossRef] [Green Version]
- Tay, K.; Koh, T.Y.; Skote, M. Characterizing Mesoscale Variability in Low-Level Jet Simulations for CBLAST-LOW 2001 Campaign. Meteorol. Atmos. Phys. 2021, 133, 163–179. [Google Scholar] [CrossRef]
- Edson, J.; Crawford, T.; Crescenti, J.; Farrar, T.; Frew, N.; Gerbi, G.; Helmis, C.; Hristov, T.; Khelif, D.; Jessup, A. The Coupled Boundary Layers and Air–Sea Transfer Experiment in Low Winds. Bull. Am. Meteorol. Soc. 2007, 88, 341–356. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, 187. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Li, H.; Claremar, B.; Wu, L.; Hallgren, C.; Körnich, H.; Ivanell, S.; Sahlée, E. A Sensitivity Study of the WRF Model in Offshore Wind Modeling over the Baltic Sea. Geosci. Front. 2021, 12, 101229. [Google Scholar] [CrossRef]
- Floors, R.; Vincent, C.L.; Gryning, S.E.; Peña, A.; Batchvarova, E. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling. Bound. Layer Meteorol. 2013, 147, 469–491. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V. Climate and Carbon Cycle Changes from 1850 to 2100 in MPI-ESM Simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Modeling Earth Syst. 2003, 5, 572–597. [Google Scholar] [CrossRef]
- Pryor, S.C.; Shepherd, T.J.; Bukovsky, M.; Barthelmie, R.J. Assessing the Stability of Wind Resource and Operating Conditions. J. Phys. Conf. Ser. 2020, 1452, 012084. [Google Scholar] [CrossRef]
- Keller, J.D.; Wahl, S. Representation of Climate in Reanalyses: An Intercomparison for Europe and North America. J. Clim. 2021, 34, 1667–1684. [Google Scholar] [CrossRef]
- Kalverla, P.C.; Duncan, J.B., Jr.; Steeneveld, G.-J.; Holtslag, A.A.M. Low-Level Jets over the North Sea Based on ERA5 and Observations: Together They Do Better. Wind Energy Sci. 2019, 4, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Aird, J.A.; Barthelmie, R.J.; Shepherd, T.J.; Pryor, S.C. WRF-Simulated Low-Level Jets over Iowa: Characterization and Sensitivity Studies. Wind Energy Sci. 2021, 6, 1015–1030. [Google Scholar] [CrossRef]
- Banks, R.F.; Tiana-Alsina, J.; Rocadenbosch, F.; Baldasano, J.M. Performance Evaluation of the Boundary-Layer Height from Lidar and the Weather Research and Forecasting Model at an Urban Coastal Site in the North-East Iberian Peninsula. Bound.-Layer Meteorol. 2015, 157, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- McGrath-Spangler, E.L.; Denning, A.S. Global Seasonal Variations of Midday Planetary Boundary Layer Depth from CALIPSO Space-borne LIDAR. J. Geophys. Res. Atmos. 2013, 118, 1226–1233. [Google Scholar] [CrossRef]
- Blackadar, A.K. Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions. Bull. Am. Meteorol. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef] [Green Version]
d01 | d02 | d03 | |
---|---|---|---|
Simulation Period | 2 calendar years in the contemporary climate | ||
Lateral Boundary Conditions | MPI-ESM-LR Global Climate Model (Low Resolution Max Planck Institute for Meteorology Earth System Model) | ||
Grid resolution (km) | 12 × 12 | 4 × 4 | 1.3 × 1.3 |
Time step (s) | 60 | 20 | 6.66 |
Cumulus scheme | Kain-Fritsch | None | None |
Vertical levels | 41 | ||
Microphysics | WRF-single-moment-microphysics classes 5 (WSM5) | ||
Longwave radiation | Rapid radiative transfer model | ||
Shortwave radiation | Goddard | ||
Surface layer physics | Eta similarity | ||
Land surface physics | Noah land surface model | ||
Planetary boundary layer | MYNN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aird, J.A.; Barthelmie, R.J.; Shepherd, T.J.; Pryor, S.C. Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy. Energies 2022, 15, 445. https://doi.org/10.3390/en15020445
Aird JA, Barthelmie RJ, Shepherd TJ, Pryor SC. Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy. Energies. 2022; 15(2):445. https://doi.org/10.3390/en15020445
Chicago/Turabian StyleAird, Jeanie A., Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor. 2022. "Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy" Energies 15, no. 2: 445. https://doi.org/10.3390/en15020445