Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. General Description of the Selected Journal Articles
3.2. Multi-Objective Optimization Workflows
3.2.1. Python-Based Workflows
Ref. | Year | Optimized Parameters | Long-Term Evaluation | Optimization Tool (Optimization Method) | Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCC | LCA | Energy Performance | Solar Accessibility | Thermal Comfort | Orientation | WWR | Windows Typology | Building Dimensions | Envelope Properties | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | Other | ||||
[27] | 2015 | x | x | N | Optimo | x | x | ||||||||||||||
[23] | 2015 | x | x | x | N | Octopus | x | ||||||||||||||
[24] | 2016 | x | x | x | N | jEPlus | x | ||||||||||||||
[20] | 2017 | x | N | Octopus | x | ||||||||||||||||
[17] | 2017 | x | x | N | Galapagos | x | x | x | |||||||||||||
[25] | 2018 | x | x | N | MOBO tool | x | x | x | |||||||||||||
[21] | 2018 | x | x | N | Octopus | x | x | x | x | ||||||||||||
[16] | 2020 | x | N | Galapagos | x | x | x | x | |||||||||||||
[15] | 2020 | x | x | N | Octopus | x | |||||||||||||||
[29] | 2020 | x | x | N | Optimo | x | x | ||||||||||||||
[28] | 2020 | x | x | N | Optimo | x | |||||||||||||||
[22] | 2020 | x | x | N | Octopus | x | x | ||||||||||||||
[2] | 2021 | x | x | N | MOBO | x | x | x | x | x | |||||||||||
[12] | 2021 | x | x | x | N | Python | x | x | |||||||||||||
[26] | 2021 | x | Y | jEPlus | x | x | x | x | x | ||||||||||||
[18] | 2021 | x | x | N | Colibrì, Octopus | x | x | ||||||||||||||
[19] | 2021 | x | x | N | Octopus | x | x | ||||||||||||||
[3] | 2021 | x | x | N | Colibri | x | x | x | x | x | x | ||||||||||
[14] | 2021 | x | x | N | Octopus | x | |||||||||||||||
[13] | 2021 | x | x | N | Octopus | x | x | x |
3.2.2. MATLAB-Based Workflows
Ref. | Year | Optimized Parameters | Long-Term Evaluation | Optimization Tool (Optimization Method) | Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCC | LCA | Energy Performance | Solar Accessibility | Thermal Comfort | Orientation | WWR | Windows Typology | Building Dimensions | Envelope Properties | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | Other | ||||
[37] | 2015 | x | x | x | N | MATLAB | x | x | x | x | x | x | |||||||||
[33] | 2015 | x | x | N | LINDO | x | x | ||||||||||||||
[30] | 2016 | x | x | N | MATLAB | x | x | ||||||||||||||
[31] | 2017 | x | x | N | MATLAB | x | x | x | |||||||||||||
[38] | 2018 | x | x | x | N | MATLAB | x | x | x | ||||||||||||
[36] | 2020 | x | x | x | N | MATLAB | x | x | x | ||||||||||||
[34] | 2020 | x | x | N | MATLAB | x | x | x | x | x | x | ||||||||||
[39] | 2020 | x | x | x | N | MATLAB | x | x | x | ||||||||||||
[41] | 2020 | x | x | N | MATLAB | x | x | ||||||||||||||
[32] | 2020 | x | x | N | MATLAB | x | |||||||||||||||
[35] | 2021 | x | N | MATLAB | x | x | x | x | |||||||||||||
[40] | 2021 | x | x | N | MATLAB | x | x | x | x | x |
3.2.3. Java-Based Workflows
3.2.4. Other Workflows
Ref. | Year | Optimized Parameters | Long-Term Evaluation | Optimization Tool (Optimization Method) | Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCC | LCA | Energy Performance | Solar Accessibility | Thermal Comfort | Orientation | WWR | Windows Typology | Building Dimensions | Envelope Properties | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | Other | ||||
[49] | 2014 | x | x | N | MS Excel | x | x | x | |||||||||||||
[50] | 2015 | x | x | N | Manually | x | |||||||||||||||
[56] | 2016 | x | N | Manually | x | x | x | ||||||||||||||
[47] | 2016 | x | x | N | Visual PROMETHEE | x | x | ||||||||||||||
[51] | 2016 | x | x | N | Manually | x | x | ||||||||||||||
[52] | 2016 | x | x | N | Manually | x | x | x | |||||||||||||
[45] | 2019 | x | N | modeFRONTIER | x | x | x | ||||||||||||||
[53] | 2020 | x | N | Manually | x | ||||||||||||||||
[48] | 2020 | x | x | N | MOPA | x | x | x | |||||||||||||
[54] | 2020 | x | x | N | Manually | x | x | ||||||||||||||
[46] | 2020 | x | N | modeFRONTIER | x | x | x | x | x | x | |||||||||||
[55] | 2021 | x | x | N | Manually | x | x | x | x |
3.3. Knowledge Gaps and Future Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
GHG | Greenhouse gases |
ZEB | Zero-energy building |
BPS | Building performance simulation |
GA | Genetic algorithm |
MOO | Multi-objective optimization |
BPO | Building performance optimization |
MOPSO | Multi-objective particle-swarm optimization |
SPEA2 | Strength Pareto evolutionary algorithm |
NSGA-II | Non-sorting genetic algorithm |
ANN | Artificial neural network |
WoS | Web of Science |
LCC | Life-cycle cost |
VBA | Visual Basic for Applications |
LCA | Life-cycle assessment |
WWR | Window-to-wall ratio |
RES | Renewable energy source |
MOBO | Multi-objective building optimization |
MOPA | Multi-objective performance analysis |
Appendix A
Ref. | Year | Location | Case Study | Optimized Parameters | Long-Term Evaluation | Simulation Engine | Optimization Tool (Optimization Method) | Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCC | LCA | Energy Performance | Solar Accessibility | Thermal Comfort | Orientation | WWR | Windows Typology | Building Dimensions | Envelope Properties | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | Other | |||||||
[49] | 2014 | Saudi Arabia | office building | x | x | N | MS Excel | MS Excel | x | x | x | |||||||||||||
[63] | 2014 | Germany | office building | x | x | x | N | MS Excel | n.d. | x | x | x | x | |||||||||||
[65] | 2014 | Netherlands | office building | x | x | N | TRNSYS, Radiance | n.d. | x | x | x | |||||||||||||
[27] | 2015 | UK | residential building | x | x | N | Autodesk GBS | Optimo | x | x | ||||||||||||||
[50] | 2015 | Japan | office building | x | x | N | Radiance, EnergyPlus | Manually | x | |||||||||||||||
[42] | 2015 | USA | educational building | x | x | N | Radiance, EnergyPlus | GenOpt | x | x | x | x | ||||||||||||
[62] | 2015 | miscellaneous | office building | x | N | EnergyPlus | Python | x | x | x | ||||||||||||||
[7] | 2015 | Italy | residential building | x | N | EnergyPlus | GenOpt | x | x | x | x | |||||||||||||
[23] | 2015 | Denmark | office building | x | x | x | N | Radiance, Be10 | Octopus | x | ||||||||||||||
[37] | 2015 | USA | residential building | x | x | x | N | EnergyPlus | MATLAB | x | x | x | x | x | x | |||||||||
[66] | 2015 | miscellaneous | commercial building | x | x | N | EnergyPlus | n.d. | x | x | x | x | x | x | ||||||||||
[67] | 2015 | Hong Kong | office building | x | x | N | TRNSYS | MATLAB | x | |||||||||||||||
[68] | 2015 | China | residential building | x | N | EnergyPlus | MATLAB | x | x | x | x | x | ||||||||||||
[33] | 2015 | Australia | residential building | x | x | N | SimaPro | LINDO | x | x | ||||||||||||||
[56] | 2016 | Romania | residential building | x | N | DesignBuilder | Manually | x | x | x | ||||||||||||||
[47] | 2016 | Greece | office building | x | x | N | n.d. | Visual PROMETHEE | x | x | ||||||||||||||
[51] | 2016 | Serbia | office building | x | x | N | Radiance, EnergyPlus | Manually | x | x | ||||||||||||||
[69] | 2016 | Norway | residential building | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[70] | 2016 | Argentina | residential building | x | N | EnergyPlus | Python | x | x | x | x | x | x | |||||||||||
[6] | 2016 | miscellaneous | residential building | x | N | DesignBuilder | n.d. | x | x | x | x | |||||||||||||
[24] | 2016 | Spain | residential building | x | x | x | N | EnergyPlus | jEPlus | x | ||||||||||||||
[71] | 2016 | Hong Kong | residential building | x | N | EnergyPlus | jEPlus | x | x | x | x | x | ||||||||||||
[61] | 2016 | USA | other | x | N | DesignBuilder, RSMeans, MySQL | n.d. | x | x | x | x | x | ||||||||||||
[72] | 2016 | Iran | office building | x | x | N | EnergyPlus | MATLAB | x | x | x | |||||||||||||
[64] | 2016 | USA | office building | x | x | N | eQuest, AthenaIE | n.d. | x | x | x | |||||||||||||
[73] | 2016 | China | other | x | N | Ladybug | Octopus | x | ||||||||||||||||
[74] | 2016 | Iran | test room | x | N | EnergyPlus | jEPlus | x | x | x | x | x | ||||||||||||
[75] | 2016 | Portugal | residential building | x | N | EnergyPlus | n.d. | x | x | x | x | |||||||||||||
[30] | 2016 | Hong Kong | office building | x | x | N | EnergyPlus | MATLAB | x | x | ||||||||||||||
[52] | 2016 | Indonesia | office building | x | x | N | Radiance | Manually | x | x | x | |||||||||||||
[76] | 2016 | miscellaneous | office building | x | x | N | Radiance, EnergyPlus | Octopus | x | x | x | x | x | |||||||||||
[20] | 2017 | Italy | educational building | x | N | Ladybug, Honeybee | Octopus | x | ||||||||||||||||
[31] | 2017 | France | residential building | x | x | N | TRNSYS | MATLAB | x | x | x | |||||||||||||
[77] | 2017 | Argentina | residential building | x | N | EnergyPlus | Python | x | x | x | x | x | x | x | ||||||||||
[17] | 2017 | Spain | residential building | x | x | N | DIVA | Galapagos | x | x | x | |||||||||||||
[78] | 2017 | miscellaneous | residential building | x | x | N | EnergyPlus, R | jEPlus | x | x | x | x | x | |||||||||||
[38] | 2018 | Italy | office building | x | x | x | N | EnergyPlus | MATLAB | x | x | x | ||||||||||||
[79] | 2018 | Italy | other | x | x | x | x | N | n.d. | n.d. | x | |||||||||||||
[25] | 2018 | miscellaneous | residential building | x | x | N | TRNSYS | MOBO tool | x | x | x | |||||||||||||
[21] | 2018 | Norway | residential building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x | x | ||||||||||||
[80] | 2018 | China | residential building | x | N | EnergyPlus | MATLAB | x | x | x | x | x | x | x | ||||||||||
[44] | 2018 | Italy | educational building | x | x | N | TRNSYS | GenOpt | x | x | x | x | ||||||||||||
[81] | 2018 | Poland | residential building | x | N | EnergyPlus | MATLAB | x | x | x | x | x | ||||||||||||
[82] | 2018 | China | residential building | x | x | N | DesignBuilder | n.d. | x | x | x | x | x | |||||||||||
[83] | 2018 | China | residential building | x | N | EnergyPlus | jEPlus | x | x | x | x | x | ||||||||||||
[84] | 2018 | miscellaneous | residential building | x | x | N | TRNSYS | MOBO tool | x | x | x | x | ||||||||||||
[85] | 2018 | China | other | x | N | DesignBuilder | MATLAB | x | x | |||||||||||||||
[86] | 2018 | China | residential building | x | x | N | DesignBuilder | MATLAB | x | x | x | |||||||||||||
[87] | 2018 | Iran | residential building | x | x | N | BCS19 | n.d. | x | x | x | |||||||||||||
[88] | 2018 | Singapore | office building | x | x | N | python | Python | x | x | x | |||||||||||||
[89] | 2018 | China | sport building | x | x | N | Ladybug, Honeybee, Karamba | modeFRONTIER | x | x | ||||||||||||||
[90] | 2018 | Japan | office building | x | N | StarCD | n.d. | x | x | x | x | |||||||||||||
[60] | 2019 | Italy | residential building | x | N | EnergyPlus | MATLAB | x | ||||||||||||||||
[91] | 2019 | Spain | educational building | x | x | N | thermodynamic equations | n.d. | x | x | ||||||||||||||
[92] | 2019 | India | other | x | N | CFD | n.d. | x | ||||||||||||||||
[93] | 2019 | Canada | residential building | x | x | N | TRNSYS | Python | x | x | x | x | x | x | ||||||||||
[94] | 2019 | Singapore | residential building | x | x | x | N | EnergyPlus | jEPlus | x | x | x | x | x | x | x | x | |||||||
[95] | 2019 | Norway | test room | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[96] | 2019 | Mexico | residential building | x | x | N | EnergyPlus | Python | x | x | x | x | x | x | x | |||||||||
[97] | 2019 | Switzerland | office building | x | x | N | EnergyPlus | Opossum | x | |||||||||||||||
[98] | 2019 | South Korea | educational building | x | N | EnergyPlus | Python | x | x | x | ||||||||||||||
[99] | 2019 | Italy | residential building | x | x | N | EnergyPlus | MATLAB | x | x | x | x | ||||||||||||
[100] | 2019 | Italy | office building | x | x | N | EnergyPlus | MATLAB | x | x | x | x | x | x | ||||||||||
[45] | 2019 | China | other | x | N | EnergyPlus | modeFRONTIER | x | x | x | ||||||||||||||
[101] | 2019 | China | test room | x | x | N | EnergyPlus | n.d. | x | x | x | |||||||||||||
[102] | 2019 | Sweden | residential building | x | N | Honeybee | Octopus | x | x | x | x | |||||||||||||
[103] | 2020 | China | other | x | N | n.d. | n.d. | x | ||||||||||||||||
[53] | 2020 | Turkey | residential building | x | N | Autodesk CFD, eQUEST | Manually | x | ||||||||||||||||
[104] | 2020 | n.d. | other | x | x | N | Data driven | n.d. | x | x | x | |||||||||||||
[105] | 2020 | miscellaneous | residential building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x | x | ||||||||||||
[48] | 2020 | Belgium | other | x | x | N | Ladybug, Honeybee | MOPA | x | x | x | |||||||||||||
[36] | 2020 | Italy | neighborhood | x | x | x | N | EnergyPlus | MATLAB | x | x | x | ||||||||||||
[16] | 2020 | Iran | educational building | x | N | Ladybug, Honeybee | Galapagos | x | x | x | x | |||||||||||||
[57] | 2020 | Morocco | commercial building | x | x | Y | n.d. | MATLAB | x | |||||||||||||||
[106] | 2020 | Poland | residential building | x | Y | EnergyPlus | MATLAB | x | ||||||||||||||||
[107] | 2020 | Denmark | office building | x | N | EnergyPlus | MOBO | x | ||||||||||||||||
[34] | 2020 | China | residential building | x | x | N | EnergyPlus | MATLAB | x | x | x | x | x | x | ||||||||||
[39] | 2020 | Japan | residential building | x | x | x | N | Ladybug, Honeybee | MATLAB | x | x | x | ||||||||||||
[15] | 2020 | USA | office building | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[108] | 2020 | Oman | residential building | x | x | N | EnergyPlus | MATLAB | x | x | x | x | ||||||||||||
[109] | 2020 | South Korea | office building | x | N | EnergyPlus | MATLAB | x | ||||||||||||||||
[54] | 2020 | Sweden | neighborhood | x | x | N | Honeybee | Manually | x | x | ||||||||||||||
[29] | 2020 | Australia | residential building | x | x | N | n.d. | Optimo | x | x | ||||||||||||||
[110] | 2020 | Portugal | residential building | x | N | EnergyPlus | n.d. | x | x | x | x | |||||||||||||
[111] | 2020 | Mauritius | residential building | x | x | N | EnergyPlus | jEPlus | x | x | x | |||||||||||||
[112] | 2020 | Iran | residential building | x | x | N | EnergyPlus | n.d. | x | x | x | |||||||||||||
[28] | 2020 | Australia | residential building | x | x | N | EnergyPlus | Optimo | x | |||||||||||||||
[41] | 2020 | Portugal | residential building | x | x | N | thermodynamic equations | MATLAB | x | x | ||||||||||||||
[113] | 2020 | Italy | residential building | x | x | x | N | EnergyPlus | n.d. | x | x | x | x | x | x | |||||||||
[114] | 2020 | Hong Kong | sport building | x | x | N | TRNSYS, MATLAB | n.d. | x | |||||||||||||||
[115] | 2020 | Turkey | residential building | x | x | N | EnergyPlus | GenOpt | x | |||||||||||||||
[116] | 2020 | China | residential building | x | x | N | EnergyPlus, Python | Python | x | x | x | x | x | |||||||||||
[117] | 2020 | China | educational building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x | x | ||||||||||||
[118] | 2020 | USA | residential building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x | |||||||||||||
[119] | 2020 | China | office building | x | N | DesignBuilder | jEPlus | x | x | x | x | |||||||||||||
[120] | 2020 | Republic of Korea | office building | x | N | EnergyPlus | MATLAB | x | x | |||||||||||||||
[121] | 2020 | miscellaneous | test room | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[43] | 2020 | Morocco | residential building | x | N | EnergyPlus | GenOpt | x | x | x | x | x | ||||||||||||
[122] | 2020 | China | office building | x | x | N | EnergyPlus | Python | x | x | x | x | x | x | ||||||||||
[32] | 2020 | Brazil | office building | x | x | N | Domus, Daysim | MATLAB | x | |||||||||||||||
[22] | 2020 | Iran | office building | x | x | N | Ladybug, Honeybee | Octopus | x | x | ||||||||||||||
[46] | 2020 | Greece | office building | x | N | Ladybug, Honeybee | modeFRONTIER | x | x | x | x | x | x | |||||||||||
[123] | 2020 | Iran | office building | x | x | N | EnergyPlus | jEPlus | x | |||||||||||||||
[124] | 2020 | Argentina | residential building | x | N | EnergyPlus | Python | x | x | x | x | x | ||||||||||||
[2] | 2021 | Morocco | residential building | x | x | N | TRNSYS | MOBO | x | x | x | x | x | |||||||||||
[12] | 2021 | Canada | miscellaneous | x | x | x | N | SimaPro, HOT2000, HTAP | Python | x | x | |||||||||||||
[125] | 2021 | Algeria | educational building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x | x | x | |||||||||||
[55] | 2021 | Brazil | educational building | x | x | N | Insight 360, DesignBuilder | Manually | x | x | x | x | ||||||||||||
[126] | 2021 | China | office building | x | x | N | Dynamo, Radiance, Daysim, Green Building Studio, MATLAB (Self-Organizing Mapping) | n.d. | x | x | ||||||||||||||
[127] | 2021 | UK | office building | x | x | x | N | Data driven | n.d. | x | x | x | ||||||||||||
[128] | 2021 | China | test room | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[58] | 2021 | China | educational building | x | x | Y | Ladybug, Honeybee | Python | x | x | x | x | x | x | ||||||||||
[129] | 2021 | China | residential building | x | x | N | EnergyPlus | MATLAB | x | x | x | |||||||||||||
[130] | 2021 | Malaysia | test room | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[131] | 2021 | n.d. | miscellaneous | x | N | ANSYS | MATLAB | x | x | |||||||||||||||
[132] | 2021 | China | educational building | x | N | DesignBuilder | Design-Expert | x | x | x | ||||||||||||||
[35] | 2021 | Iran | office building | x | N | EnergyPlus | MATLAB | x | x | x | x | |||||||||||||
[26] | 2021 | miscellaneous | residential building | x | Y | EnergyPlus | jEPlus | x | x | x | x | x | ||||||||||||
[133] | 2021 | Italy | neighbourhood | x | x | N | EnergyPlus | MATLAB | x | x | x | x | ||||||||||||
[134] | 2021 | Turkey | residential building | x | x | N | EnergyPlus | MATLAB | x | x | x | x | ||||||||||||
[135] | 2021 | miscellaneous | educational building | x | N | Ladybug, ClimateStudio for Rhino | Design Space Exploration | x | x | |||||||||||||||
[18] | 2021 | Iran | office building | x | x | N | Ladybug, Honeybee, EnergyPlus, OpenStudio, Daysim | Colibrì, Octopus | x | x | ||||||||||||||
[136] | 2021 | USA | office building | x | x | N | Ladybug, Honeybee | n.d. | x | |||||||||||||||
[137] | 2021 | China | residential building | x | N | QuVue, Eddy3d | MATLAB | x | ||||||||||||||||
[138] | 2021 | Serbia | residential building | x | N | DesignBuilder | n.d. | x | x | x | x | |||||||||||||
[139] | 2021 | Shanghai | residential building | x | N | DesignBuilder | n.d. | x | x | x | x | x | x | |||||||||||
[19] | 2021 | China | educational building | x | x | N | Ladybug, Honeybee | Octopus | x | x | ||||||||||||||
[140] | 2021 | Australia | test room | x | N | CFStrace | n.d. | x | ||||||||||||||||
[141] | 2021 | Brazil | residential building | x | N | EnergyPlus | MATLAB | x | x | x | ||||||||||||||
[142] | 2021 | Italy | educational building | x | x | x | N | Ladybug, Honeybee | MATLAB | x | x | x | x | x | ||||||||||
[143] | 2021 | China | educational building | x | N | DesignBuilder | MATLAB | x | x | x | ||||||||||||||
[144] | 2021 | Iran | residential building | x | x | N | Ladybug, Honeybee, Revit | Octopus | x | x | x | |||||||||||||
[145] | 2021 | Australia | residential building | x | x | N | TRNSYS | jEPlus | x | x | x | x | ||||||||||||
[146] | 2021 | Australia | miscellaneous | x | x | x | N | Revit, Insight | AMPL | x | x | x | x | |||||||||||
[3] | 2021 | China | educational building | x | x | N | Ladybug, Honeybee | Colibri | x | x | x | x | x | x | ||||||||||
[147] | 2021 | South Korea | residential building | x | x | x | N | TRNSYS | MATLAB | x | x | x | x | x | ||||||||||
[148] | 2021 | Sweden | residential building | x | x | N | EnergyPlus | Python | x | x | ||||||||||||||
[8] | 2021 | China | educational building | x | N | EnergyPlus, Eppy | MATLAB | x | x | x | x | x | ||||||||||||
[14] | 2021 | Malaysia | office building | x | x | N | Ladybug, Honeybee | Octopus | x | |||||||||||||||
[40] | 2021 | Taiwan | office building | x | x | N | Numerical model | MATLAB | x | x | x | x | x | |||||||||||
[13] | 2021 | Japan | residential building | x | x | N | Ladybug, Honeybee | Octopus | x | x | x |
References
- International Energy Agency. The Critical Role of Buildings; International Energy Agency: Paris, France, 2019.
- Abdou, N.; EL Mghouchi, Y.; Hamdaoui, S.; EL Asri, N.; Mouqallid, M. Multi-objective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Build. Environ. 2021, 204, 108141. [Google Scholar] [CrossRef]
- Zou, Y.; Zhan, Q.; Xiang, K. A comprehensive method for optimizing the design of a regular architectural space to improve building performance. Energy Rep. 2021, 7, 981–996. [Google Scholar] [CrossRef]
- Machairas, V.; Tsangrassoulis, A.; Axarli, K. Algorithms for optimization of building design: A review. Renew. Sustain. Energy Rev. 2014, 31, 101–112. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building performance analysis. Appl. Energy 2014, 113, 1043–1058. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; de Rossi, F.; Ruggiero, S.; Vanoli, G.P. Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study. Appl. Energy 2016, 183, 938–957. [Google Scholar] [CrossRef]
- Carlucci, S.; Cattarin, G.; Causone, F.; Pagliano, L. Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy Build. 2015, 104, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Yue, N.; Li, L.; Morandi, A.; Zhao, Y. A metamodel-based multi-objective optimization method to balance thermal comfort and energy efficiency in a campus gymnasium. Energy Build. 2021, 253, 111513. [Google Scholar] [CrossRef]
- Fang, K.-T.; Li, R.; Sudjianto, A. Design and Modeling for Computer Experiments; Chapman and Hall/CRC: New York, NY, USA, 2005; ISBN 0429143761. [Google Scholar]
- Asadi, E.; Da Silva, M.G.; Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 2014, 81, 444–456. [Google Scholar] [CrossRef]
- Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [Google Scholar] [CrossRef]
- Zhang, H.; Hewage, K.; Prabatha, T.; Sadiq, R. Life cycle thinking-based energy retrofits evaluation framework for Canadian residences: A Pareto optimization approach. Build. Environ. 2021, 204, 108115. [Google Scholar] [CrossRef]
- Wang, J.; Mae, M.; Taniguchi, K.; Cheng, Y.; Yagi, S.; Saito, K. Multi-phase framework for optimization of thermal and daylight performance of residential buildings based on the combination of ventilation and window design. J. Asian Archit. Build. Eng. 2021, 20, 785–805. [Google Scholar] [CrossRef]
- Bahdad, A.A.S.; Fadzil, S.F.S.; Onubi, H.O.; BenLasod, S.A. Multi-dimensions optimization for optimum modifications of light-shelves parameters for daylighting and energy efficiency. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Kim, H.; Clayton, M.J. A multi-objective optimization approach for climate-adaptive building envelope design using parametric behavior maps. Build. Environ. 2020, 185, 107292. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Ghomeishi, M.; Dehghanbanadaki, A. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 2020, 61, 102325. [Google Scholar] [CrossRef]
- Camporeale, P.E.; Moyano, M.D.P.M.; Czajkowski, J.D. Multi-objective optimisation model: A housing block retrofit in Seville. Energy Build. 2017, 153, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Talaei, M.; Mahdavinejad, M.; Azari, R.; Prieto, A.; Sangin, H. Multi-objective optimization of building-integrated microalgae photobioreactors for energy and daylighting performance. J. Build. Eng. 2021, 42, 102832. [Google Scholar] [CrossRef]
- Zhuang, D.; Zhang, X.; Lu, Y.; Wang, C.; Jin, X.; Zhou, X.; Shi, X. A performance data integrated BIM framework for building life-cycle energy efficiency and environmental optimization design. Autom. Constr. 2021, 127, 103712. [Google Scholar] [CrossRef]
- Zani, A.; Tagliabue, L.C.; Poli, T.; Ciribini, A.L.C.; De Angelis, E.; Manfren, M. Occupancy Profile Variation Analyzed through Generative Modelling to Control Building Energy Behavior. Procedia Eng. 2017, 180, 1495–1505. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Wiberg, A.H.; Ceci, G.; Manni, M.; Lolli, N.; Berardi, U. Parametric design to minimize the embodied GHG emissions in a ZEB. Energy Build. 2018, 167, 106–123. [Google Scholar] [CrossRef] [Green Version]
- Pilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Appl. Energy 2020, 261, 114356. [Google Scholar] [CrossRef]
- Negendahl, K.; Nielsen, T.R. Building energy optimization in the early design stages: A simplified method. Energy Build. 2015, 105, 88–99. [Google Scholar] [CrossRef]
- Carreras, J.; Pozo, C.; Boer, D.; Guillén-Gosálbez, G.; Caballero, J.A.; Ruiz-Femenia, R.; Jiménez, L. Systematic approach for the life cycle multi-objective optimization of buildings combining objective reduction and surrogate modeling. Energy Build. 2016, 130, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Passive design optimization of low energy buildings in different climates. Energy 2018, 165, 591–613. [Google Scholar] [CrossRef]
- Pajek, L.; Košir, M. Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation. Appl. Energy 2021, 297, 117116. [Google Scholar] [CrossRef]
- Rahmani Asl, M.; Zarrinmehr, S.; Bergin, M.; Yan, W. BPOpt: A framework for BIM-based performance optimization. Energy Build. 2015, 108, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hammad, A.W.A.; Kamardeen, I.; Akbarnezhad, A. Optimising Embodied Energy and Thermal Performance of Thermal Insulation in Building Envelopes via an Automated Building Information Modelling (BIM) Tool. Buildings 2020, 10, 218. [Google Scholar] [CrossRef]
- Chen, Z.; Hammad, A.W.A.; Kamardeen, I.; Haddad, A. Optimising Window Design on Residential Building Facades by Considering Heat Transfer and Natural Lighting in Nontropical Regions of Australia. Buildings 2020, 10, 206. [Google Scholar] [CrossRef]
- Wu, M.H.; Ng, T.S.; Skitmore, M.R. Sustainable building envelope design by considering energy cost and occupant satisfaction. Energy Sustain. Dev. 2016, 31, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Gilles, F.; Bernard, S.; Ioannis, A.; Simon, R. Decision-making based on network visualization applied to building life cycle optimization. Sustain. Cities Soc. 2017, 35, 565–573. [Google Scholar] [CrossRef] [Green Version]
- de Almeida Rocha, A.P.; Reynoso-Meza, G.; Oliveira, R.C.L.F.; Mendes, N. A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection. Appl. Energy 2020, 262, 114497. [Google Scholar] [CrossRef]
- Islam, H.; Jollands, M.; Setunge, S.; Bhuiyan, M.A. Optimization approach of balancing life cycle cost and environmental impacts on residential building design. Energy Build. 2015, 87, 282–292. [Google Scholar] [CrossRef]
- Yong, Z.; Li-juan, Y.; Qian, Z.; Xiao-yan, S. Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters. J. Build. Eng. 2020, 32, 101505. [Google Scholar] [CrossRef]
- Ghaderian, M.; Veysi, F. Multi-objective optimization of energy efficiency and thermal comfort in an existing office building using NSGA-II with fitness approximation: A case study. J. Build. Eng. 2021, 41, 102440. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F.; Vanoli, G.P. Optimization of solar energy exploitation for a neighborhood towards nearly zero energy buildings. In Proceedings of the 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 23–26 September 2020; pp. 1–7. [Google Scholar]
- Karatas, A.; El-Rayes, K. Optimizing tradeoffs among housing sustainability objectives. Autom. Constr. 2015, 53, 83–94. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F.; Vanoli, G.P. A Multi-Criteria Approach to Achieve Constrained Cost-Optimal Energy Retrofits of Buildings by Mitigating Climate Change and Urban Overheating. Climate 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Castro-Lacouture, D.; Yamagata, Y. Decision support for retrofitting building envelopes using multi-objective optimization under uncertainties. J. Build. Eng. 2020, 32, 101413. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, M.D.; Tsai, K.T.; Deng, M.J.; Ishii, H. Multi-objective optimization design of green building envelopes and air conditioning systems for energy conservation and CO2 emission reduction. Sustain. Cities Soc. 2021, 64, 102555. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Silva, A.; Teixeira, J.C.; Teixeira, S. Multi-Objective Optimization of Solar Thermal Systems Applied to Portuguese Dwellings. Energies 2020, 13, 6739. [Google Scholar] [CrossRef]
- Futrell, B.J.; Ozelkan, E.C.; Brentrup, D. Bi-objective optimization of building enclosure design for thermal and lighting performance. Build. Environ. 2015, 92, 591–602. [Google Scholar] [CrossRef]
- Ameur, M.; Kharbouch, Y.; Mimet, A. Optimization of passive design features for a naturally ventilated residential building according to the bioclimatic architecture concept and considering the northern Morocco climate. Build. Simul. 2020, 13, 677–689. [Google Scholar] [CrossRef]
- Ferrara, M.; Sirombo, E.; Fabrizio, E. Automated optimization for the integrated design process: The energy, thermal and visual comfort nexus. Energy Build. 2018, 168, 413–427. [Google Scholar] [CrossRef]
- Si, B.; Wang, J.; Yao, X.; Shi, X.; Jin, X.; Zhou, X. Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Adv. Eng. Inform. 2019, 40, 93–109. [Google Scholar] [CrossRef]
- Giouri, E.D.; Tenpierik, M.; Turrin, M. Zero energy potential of a high-rise office building in a Mediterranean climate: Using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings. Energy Build. 2020, 209, 109666. [Google Scholar] [CrossRef]
- Stamatakis, A.; Mandalaki, M.; Tsoutsos, T. Multi-criteria analysis for PV integrated in shading devices for Mediterranean region. Energy Build. 2016, 117, 128–137. [Google Scholar] [CrossRef]
- Amer, M.; Hamdy, M.; Wortmann, T.; Mustafa, A.; Attia, S. Methodology for design decision support of cost-optimal zero-energy lightweight construction. Energy Build. 2020, 223, 110170. [Google Scholar] [CrossRef]
- Bayoumi, M.; Fink, D. Maximizing the performance of an energy generating façade in terms of energy saving strategies. Renew. Energy 2014, 64, 294–305. [Google Scholar] [CrossRef]
- Hiyama, K.; Wen, L. Rapid response surface creation method to optimize window geometry using dynamic daylighting simulation and energy simulation. Energy Build. 2015, 107, 417–423. [Google Scholar] [CrossRef]
- Harmathy, N.; Magyar, Z.; Folić, R. Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement. Energy 2016, 114, 302–317. [Google Scholar] [CrossRef]
- Mangkuto, R.A.; Rohmah, M.; Asri, A.D. Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Appl. Energy 2016, 164, 211–219. [Google Scholar] [CrossRef]
- Utkucu, D.; Sözer, H. An evaluation process for natural ventilation using a scenario-based multi-criteria and multi-interaction analysis. Energy Rep. 2020, 6, 644–661. [Google Scholar] [CrossRef]
- Mukkavaara, J.; Sandberg, M. Architectural Design Exploration Using Generative Design: Framework Development and Case Study of a Residential Block. Buildings 2020, 10, 201. [Google Scholar] [CrossRef]
- Carriço de Lima Montenegro Duarte, J.G.; Ramos Zemero, B.; Dias Barreto de Souza, A.C.; de Lima Tostes, M.E.; Holanda Bezerra, U. Building Information Modeling approach to optimize energy efficiency in educational buildings. J. Build. Eng. 2021, 43, 102587. [Google Scholar] [CrossRef]
- Croitoru, C.; Nastase, I.; Sandu, M.; Lungu, C. Multi-criteria Design and Impact on Energy Consumption of a Residential House—A Parametric Study. Energy Procedia 2016, 85, 141–148. [Google Scholar] [CrossRef]
- Allouhi, A. Solar PV integration in commercial buildings for self-consumption based on life-cycle economic/environmental multi-objective optimization. J. Clean. Prod. 2020, 270, 122375. [Google Scholar] [CrossRef]
- Zou, Y.; Lou, S.; Xia, D.; Lun, I.Y.F.; Yin, J. Multi-objective building design optimization considering the effects of long-term climate change. J. Build. Eng. 2021, 44, 102904. [Google Scholar] [CrossRef]
- Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Jiménez Navarro, J.P.; Colombo, E.; Quoilin, S. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020, 267, 115100. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F.; Vanoli, G.P. Weather-data-based control of space heating operation via multi-objective optimization: Application to Italian residential buildings. Appl. Therm. Eng. 2019, 163, 114384. [Google Scholar] [CrossRef]
- Xu, W.; Chong, A.; Karaguzel, O.T.; Lam, K.P. Improving evolutionary algorithm performance for integer type multi-objective building system design optimization. Energy Build. 2016, 127, 714–729. [Google Scholar] [CrossRef]
- Méndez Echenagucia, T.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy 2015, 154, 577–591. [Google Scholar] [CrossRef]
- Shao, Y.; Geyer, P.; Lang, W. Integrating requirement analysis and multi-objective optimization for office building energy retrofit strategies. Energy Build. 2014, 82, 356–368. [Google Scholar] [CrossRef]
- Azari, R.; Garshasbi, S.; Amini, P.; Rashed-Ali, H.; Mohammadi, Y. Multi-objective optimization of building envelope design for life cycle environmental performance. Energy Build. 2016, 126, 524–534. [Google Scholar] [CrossRef]
- Kasinalis, C.; Loonen, R.C.G.M.; Cóstola, D.; Hensen, J.L.M. Framework for assessing the performance potential of seasonally adaptable facades using multi-objective optimization. Energy Build. 2014, 79, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, A.E.I.; Wright, J.A. Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Appl. Soft Comput. 2015, 33, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, S.; Zhao, Y.; Yan, C. Renewable energy system optimization of low/zero energy buildings using single-objective and multi-objective optimization methods. Energy Build. 2015, 89, 61–75. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Jia, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy Build. 2015, 88, 135–143. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Chatzichristos, S.; Leon, V.A. Solar Optimization of Housing Development. Energy Procedia 2016, 91, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Bre, F.; Silva, A.S.; Ghisi, E.; Fachinotti, V.D. Residential building design optimisation using sensitivity analysis and genetic algorithm. Energy Build. 2016, 133, 853–866. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Sun, K. A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong. Energy 2016, 113, 267–281. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Delgarm, S.; Kowsary, F. A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in Iran. Energy Build. 2016, 127, 552–560. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Wang, Y. Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China. Sol. Energy 2016, 132, 38–50. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 2016, 170, 293–303. [Google Scholar] [CrossRef]
- Figueiredo, A.; Kämpf, J.; Vicente, R. Passive house optimization for Portugal: Overheating evaluation and energy performance. Energy Build. 2016, 118, 181–196. [Google Scholar] [CrossRef]
- Konis, K.; Gamas, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design support. Sol. Energy 2016, 125, 161–179. [Google Scholar] [CrossRef]
- Bre, F.; Fachinotti, V.D. A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy Build. 2017, 154, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, H. A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios. Appl. Energy 2017, 206, 541–557. [Google Scholar] [CrossRef]
- Bonamente, E.; Brunelli, C.; Castellani, F.; Garinei, A.; Biondi, L.; Marconi, M.; Piccioni, E. A life-cycle approach for multi-objective optimisation in building design: Methodology and application to a case study. Civ. Eng. Environ. Syst. 2018, 35, 158–179. [Google Scholar] [CrossRef]
- Gou, S.; Nik, V.M.; Scartezzini, J.L.; Zhao, Q.; Li, Z. Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy Build. 2018, 169, 484–506. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J. Multi-Objective Optimization of the Envelope of Building with Natural Ventilation. Energies 2018, 11, 1383. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Yang, W. Application of Multi-Objective Genetic Algorithm Based Simulation for Cost-Effective Building Energy Efficiency Design and Thermal Comfort Improvement. Front. Energy Res. 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, H. Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China. Appl. Energy 2018, 215, 145–158. [Google Scholar] [CrossRef]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Multi-objective optimization methodology for net zero energy buildings. J. Build. Eng. 2018, 16, 57–71. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, S.; Yang, W.; Li, C.-Q. Design Optimization Considering Variable Thermal Mass, Insulation, Absorptance of Solar Radiation, and Glazing Ratio Using a Prediction Model and Genetic Algorithm. Sustainability 2018, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Guo, J.; Li, J.; Hou, H.; Meng, Q.; Wang, W. A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy Build. 2018, 158, 1613–1624. [Google Scholar] [CrossRef]
- Shakouri, H.; Rahmani, M.; Hosseinzadeh, M.; Kazemi, A. Multi-objective optimization-simulation model to improve the buildings’ design specification in different climate zones of Iran. Sustain. Cities Soc. 2018, 40, 394–415. [Google Scholar] [CrossRef]
- Chen, K.W.; Janssen, P.; Schlueter, A. Multi-objective optimisation of building form, envelope and cooling system for improved building energy performance. Autom. Constr. 2018, 94, 449–457. [Google Scholar] [CrossRef]
- Yang, D.; Ren, S.; Turrin, M.; Sariyildiz, S.; Sun, Y. Multi-disciplinary and multi-objective optimization problem re-formulation in computational design exploration: A case of conceptual sports building design. Autom. Constr. 2018, 92, 242–269. [Google Scholar] [CrossRef]
- Lee, J. Multi-objective optimization case study with active and passive design in building engineering. Struct. Multidiscip. Optim. 2019, 59, 507–519. [Google Scholar] [CrossRef]
- Salandin, A.; Soler, D.; Bevivino, M. An Integer Linear Programming approach to minimize the cost of the refurbishment of a façade to improve the energy efficiency of a building. Math. Methods Appl. Sci. 2020, 43, 8067–8088. [Google Scholar] [CrossRef]
- Sarkar, A.; Bardhan, R. Optimal interior design for naturally ventilated low-income housing: A design-route for environmental quality and cooling energy saving. Adv. Build. Energy Res. 2020, 14, 494–526. [Google Scholar] [CrossRef]
- Gagnon, R.; Gosselin, L.; Armand Decker, S. Performance of a sequential versus holistic building design approach using multi-objective optimization. J. Build. Eng. 2019, 26, 100883. [Google Scholar] [CrossRef]
- Lan, L.; Wood, K.L.; Yuen, C. A holistic design approach for residential net-zero energy buildings: A case study in Singapore. Sustain. Cities Soc. 2019, 50, 101672. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Lobaccaro, G.; Goia, F.; Chaudhary, G. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Appl. Energy 2019, 247, 731–744. [Google Scholar] [CrossRef]
- García Kerdan, I.; Morillón Gálvez, D.; Sousa, G.; Suárez de la Fuente, S.; Silva, R.; Hawkes, A. Thermodynamic and thermal comfort optimisation of a coastal social house considering the influence of the thermal breeze. Build. Environ. 2019, 155, 224–246. [Google Scholar] [CrossRef]
- Waibel, C.; Evins, R.; Carmeliet, J. Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials. Appl. Energy 2019, 242, 1661–1682. [Google Scholar] [CrossRef]
- Hong, T.; Kim, J.; Lee, M. A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance. Energy 2019, 174, 823–834. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Maria Mauro, G.; Napolitano, D.F. Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy 2019, 174, 359–374. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Vanoli, G.P. A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin. Appl. Energy 2019, 241, 331–361. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, Y.; Huang, Y.; Meng, X. A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance. Renew. Energy 2019, 134, 1190–1199. [Google Scholar] [CrossRef]
- Shadram, F.; Mukkavaara, J. Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings. Energy Build. 2019, 183, 283–296. [Google Scholar] [CrossRef]
- Si, Y.; Yu, J.; Wang, N.; Ding, X.; Yuan, L. Research on evaluation and optimization of sustainable indoor environment of public buildings in Xi’an in summer. Intell. Build. Int. 2020, 12, 271–283. [Google Scholar] [CrossRef]
- Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M. Imran Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms. Energies 2020, 13, 4363. [Google Scholar] [CrossRef]
- Manni, M.; Lobaccaro, G.; Lolli, N.; Bohne, R.A. Parametric design to maximize solar irradiation and minimize the embodied GHG emissions for a ZEB in nordic and mediterranean climate zones. Energies 2020, 13, 4981. [Google Scholar] [CrossRef]
- Grygierek, K.; Sarna, I. Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions. Energies 2020, 13, 5332. [Google Scholar] [CrossRef]
- Guo, R.; Heiselberg, P.; Hu, Y.; Zhang, C.; Vasilevskis, S. Optimization of night ventilation performance in office buildings in a cold climate. Energy Build. 2020, 225, 110319. [Google Scholar] [CrossRef]
- Al-Saadi, S.N.; Al-Jabri, K.S. Optimization of envelope design for housing in hot climates using a genetic algorithm (GA) computational approach. J. Build. Eng. 2020, 32, 101712. [Google Scholar] [CrossRef]
- Seong, N.-C.; Kim, J.-H.; Choi, W. Adjustment of Multiple Variables for Optimal Control of Building Energy Performance via a Genetic Algorithm. Buildings 2020, 10, 195. [Google Scholar] [CrossRef]
- Figueiredo, A.; Vicente, R.; Oliveira, R.; Rodrigues, F.; Samagaio, A. Multiscale Modelling Approach Targeting Optimisation of PCM into Constructive Solutions for Overheating Mitigation in Buildings. Appl. Sci. 2020, 10, 8009. [Google Scholar] [CrossRef]
- Vishwamitra, O.; Nidhish, S. Multi-objective optimization of the energy performance of residential buildings in tropical climates. In Proceedings of the 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), Balaclava, Mauritius, 25–27 November 2020; pp. 240–243. [Google Scholar]
- Bagheri-Esfeh, H.; Safikhani, H.; Motahar, S. Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm. J. Energy Storage 2020, 32, 101772. [Google Scholar] [CrossRef]
- Ciardiello, A.; Rosso, F.; Dell’Olmo, J.; Ciancio, V.; Ferrero, M.; Salata, F. Multi-objective approach to the optimization of shape and envelope in building energy design. Appl. Energy 2020, 280, 115984. [Google Scholar] [CrossRef]
- Li, Y.; Nord, N.; Zhang, N.; Zhou, C. An ANN-based optimization approach of building energy systems: Case study of swimming pool. J. Clean. Prod. 2020, 277, 124029. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yılmaz, B.Ç. A weighted multi-objective optimisation approach to improve based facade aperture sizes in terms of energy, thermal comfort and daylight usage. J. Build. Phys. 2020, 44, 435–460. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W.; Zhai, X.; Li, X. Sustainable framework for buildings in cold regions of China considering life cycle cost and environmental impact as well as thermal comfort. Energy Rep. 2020, 6, 3036–3050. [Google Scholar] [CrossRef]
- Bakmohammadi, P.; Noorzai, E. Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Rep. 2020, 6, 1590–1607. [Google Scholar] [CrossRef]
- Li, Z.; Genovese, P.V.; Zhao, Y. Study on Multi-Objective Optimization-Based Climate Responsive Design of Residential Building. Algorithms 2020, 13, 238. [Google Scholar] [CrossRef]
- Zhao, J.; Du, Y. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Sol. Energy 2020, 206, 997–1017. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, H.; Hong, T.; Lee, M. Determining the optimal window size of office buildings considering the workers’ task performance and the building’s energy consumption. Build. Environ. 2020, 177, 106872. [Google Scholar] [CrossRef]
- Settino, J.; Carpino, C.; Perrella, S.; Arcuri, N. Multi-Objective Analysis of a Fixed Solar Shading System in Different Climatic Areas. Energies 2020, 13, 3249. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W. Impact of adjustment strategies on building design process in different climates oriented by multiple performance. Appl. Energy 2020, 266, 114822. [Google Scholar] [CrossRef]
- Naderi, E.; Sajadi, B.; Behabadi, M.A.; Naderi, E. Multi-objective simulation-based optimization of controlled blind specifications to reduce energy consumption, and thermal and visual discomfort: Case studies in Iran. Build. Environ. 2020, 169, 106570. [Google Scholar] [CrossRef]
- Bre, F.; Roman, N.; Fachinotti, V.D. An efficient metamodel-based method to carry out multi-objective building performance optimizations. Energy Build. 2020, 206, 109576. [Google Scholar] [CrossRef]
- Lakhdari, K.; Sriti, L.; Painter, B. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Build. Environ. 2021, 204, 108173. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, C.; Han, Y.; Liu, Q. Intelligent optimization: A novel framework to automatize multi-objective optimization of building daylighting and energy performances. J. Build. Eng. 2021, 43, 102804. [Google Scholar] [CrossRef]
- Luo, X.J.; Oyedele, L.O. A data-driven life-cycle optimisation approach for building retrofitting: A comprehensive assessment on economy, energy and environment. J. Build. Eng. 2021, 43, 102934. [Google Scholar] [CrossRef]
- Hong, X.; Shi, F.; Wang, S.; Yang, X.; Yang, Y. Multi-objective optimization of thermochromic glazing based on daylight and energy performance evaluation. Build. Simul. 2021, 14, 1685–1695. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, X.; Dong, Q.; Rodriguez, D. Optimization of zero-energy building by multi-criteria optimization method: A case study. J. Build. Eng. 2021, 44, 102969. [Google Scholar] [CrossRef]
- Bahdad, A.A.S.; Fadzil, S.F.S.; Onubi, H.O.; BenLasod, S.A. Sensitivity analysis linked to multi-objective optimization for adjustments of light-shelves design parameters in response to visual comfort and thermal energy performance. J. Build. Eng. 2021, 44, 102996. [Google Scholar] [CrossRef]
- Paul, R.; Dalui, S. Shape Optimization to Reduce Wind Pressure on the Surfaces of a Rectangular Building with Horizontal Limbs. Period. Polytech. Civ. Eng. 2021, 65, 134–149. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Zhang, L.; Wu, X. Optimizing energy efficiency and thermal comfort in building green retrofit. Energy 2021, 237, 121509. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F.; Vanoli, G.P. Comprehensive analysis to drive the energy retrofit of a neighborhood by optimizing the solar energy exploitation—An Italian case study. J. Clean. Prod. 2021, 314, 127998. [Google Scholar] [CrossRef]
- Acar, U.; Kaska, O.; Tokgoz, N. Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. J. Build. Eng. 2021, 42, 102499. [Google Scholar] [CrossRef]
- Taylor, M.; Brown, N.C.; Rim, D. Optimizing thermal comfort and energy use for learning environments. Energy Build. 2021, 248, 111181. [Google Scholar] [CrossRef]
- Huang, L.; Fan, C.; Zhai, Z. A graphical multi-objective performance evaluation method with architect-friendly mode. Front. Archit. Res. 2021, 10, 420–431. [Google Scholar] [CrossRef]
- Wang, S.; Yi, Y.K.; Liu, N. Multi-objective optimization (MOO) for high-rise residential buildings’ layout centered on daylight, visual, and outdoor thermal metrics in China. Build. Environ. 2021, 205, 108263. [Google Scholar] [CrossRef]
- Vukadinović, A.; Radosavljević, J.; Đorđević, A.; Protić, M.; Petrović, N. Multi-objective optimization of energy performance for a detached residential building with a sunspace using the NSGA-II genetic algorithm. Sol. Energy 2021, 224, 1426–1444. [Google Scholar] [CrossRef]
- Lin, Y.; Zhong, S.; Yang, W.; Hao, X.; Li, C.Q. Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort. Sustain. Energy Technol. Assess. 2021, 46, 101277. [Google Scholar] [CrossRef]
- Mashaly, I.A.; Garcia-Hansen, V.; Cholette, M.E.; Isoardi, G. A daylight-oriented multi-objective optimisation of complex fenestration systems. Build. Environ. 2021, 197, 107828. [Google Scholar] [CrossRef]
- Vettorazzi, E.; Figueiredo, A.; Rebelo, F.; Vicente, R.; Grala da Cunha, E. Optimization of the passive house concept for residential buildings in the South-Brazilian region. Energy Build. 2021, 240, 110871. [Google Scholar] [CrossRef]
- D’Agostino, D.; D’Agostino, P.; Minelli, F.; Minichiello, F. Proposal of a new automated workflow for the computational performance-driven design optimization of building energy need and construction cost. Energy Build. 2021, 239, 110857. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Q.; Chen, H.; Wang, L.; Deng, T.; Zhang, L.; Wu, X. Multiobjective optimization of building energy consumption based on BIM-DB and LSSVM-NSGA-II. J. Clean. Prod. 2021, 294, 126153. [Google Scholar] [CrossRef]
- Abbasi, S.; Noorzai, E. The BIM-Based multi-optimization approach in order to determine the trade-off between embodied and operation energy focused on renewable energy use. J. Clean. Prod. 2021, 281, 125359. [Google Scholar] [CrossRef]
- Naji, S.; Aye, L.; Noguchi, M. Multi-objective optimisations of envelope components for a prefabricated house in six climate zones. Appl. Energy 2021, 282, 116012. [Google Scholar] [CrossRef]
- Hammad, A.W.A.; Figueiredo, K.; Rosa, A.C.; Vazquez, E.; Haddad, A. Enhancing the passive design of buildings: A mixed integer non-linear programming approach for the selection of building materials and construction building systems. Energy Rep. 2021, 7, 8162–8175. [Google Scholar] [CrossRef]
- Jung, Y.; Heo, Y.; Lee, H. Multi-objective optimization of the multi-story residential building with passive design strategy in South Korea. Build. Environ. 2021, 203, 108061. [Google Scholar] [CrossRef]
- Mukkavaara, J.; Shadram, F. An integrated optimization and sensitivity analysis approach to support the life cycle energy trade-off in building design. Energy Build. 2021, 253, 111529. [Google Scholar] [CrossRef]
LCC | LCA | EN | DAYL | WIND | THERM | |
---|---|---|---|---|---|---|
53 | 18 | 37 | 9 | 0 | 26 | LCC |
25 | 13 | 5 | 0 | 10 | LCA | |
115 | 45 | 0 | 60 | EN | ||
57 | 0 | 24 | DAYL | |||
1 | 0 | WIND | ||||
73 | THERM |
Orientation | WWR | Windows (Type) | Building Dimension/Shape | Envelope Insulation | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
40 | 32 | 30 | 11 | 33 | 8 | 8 | 15 | 5 | 2 | 3 | 1 | Orientation |
71 | 57 | 13 | 52 | 12 | 13 | 28 | 10 | 3 | 5 | 3 | WWR | |
84 | 7 | 68 | 14 | 20 | 30 | 14 | 10 | 7 | 4 | Windows (type) | ||
21 | 9 | 0 | 0 | 3 | 1 | 1 | 0 | 0 | Building dimension/shape | |||
86 | 18 | 25 | 27 | 11 | 14 | 9 | 5 | Envelope insulation | ||||
18 | 4 | 5 | 3 | 1 | 2 | 2 | Infiltration rate | |||||
34 | 8 | 7 | 7 | 6 | 4 | Heating system | ||||||
40 | 9 | 2 | 3 | 0 | Shading device | |||||||
20 | 0 | 4 | 0 | Natural ventilation | ||||||||
19 | 0 | 0 | RES | |||||||||
10 | 3 | Lighting appliances | ||||||||||
8 | Occupancy pattern |
Ref. | Year | Optimized Parameters | Long-Term Evaluation | Optimization Tool (Optimization Method) | Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCC | LCA | Energy Performance | Solar Accessibility | Thermal Comfort | Orientation | WWR | Windows Typology | Building Dimensions | Envelope Properties | Infiltration Rate | Heating System | Shading Device | Natural Ventilation | RES | Lighting Appliances | Occupancy Pattern | Other | ||||
[42] | 2015 | x | x | N | GenOpt | x | x | x | x | ||||||||||||
[7] | 2015 | x | N | GenOpt | x | x | x | x | |||||||||||||
[44] | 2018 | x | x | N | GenOpt | x | x | x | x | ||||||||||||
[43] | 2020 | x | N | GenOpt | x | x | x | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manni, M.; Nicolini, A. Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review. Energies 2022, 15, 486. https://doi.org/10.3390/en15020486
Manni M, Nicolini A. Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review. Energies. 2022; 15(2):486. https://doi.org/10.3390/en15020486
Chicago/Turabian StyleManni, Mattia, and Andrea Nicolini. 2022. "Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review" Energies 15, no. 2: 486. https://doi.org/10.3390/en15020486
APA StyleManni, M., & Nicolini, A. (2022). Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review. Energies, 15(2), 486. https://doi.org/10.3390/en15020486