Integrative Smart Grids’ Assessment System
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- -
- Stage 1: shaping the basis of the smart grid assessment system (based on the data of comparative analysis of the existing smart grid assessment systems);
- -
- Stage 2: designing a smart grid integrative assessment system (shaping a set of indicators of a smart grid’s efficiency covering all directions of its development).
- -
- Stage 3: designing an integrated system of indicators for evaluating a smart grid.
4. Results
Critical Areas for Evaluating the Efficiency of Smart Grids
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Barua, S.; Nath, S.D. The impact of COVID-19 on air pollution: Evidence from global data. J. Clean. Prod. 2021, 298, 126755. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef] [PubMed]
- Lalas, D.; Gakis, N.; Mirasgedis, S.; Georgopoulou, E.; Sarafidis, Y.; Doukas, H. Energy and GHG emissions aspects of the COVID impact in Greece. Energies 2021, 14, 1955. [Google Scholar] [CrossRef]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef]
- Ray, A. Containing Airborne Transmission of COVID-19 and Its Implications for Global Economic Recovery. Bus. Ethics Leadersh. 2021, 5, 5–81. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Air pollution impacts from COVID-19 pandemic control strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Latif, M.T.; Dominick, D.; Hawari, N.S.S.L.; Mohtar, A.A.A.; Othman, M. The concentration of major air pollutants during the movement control order due to the COVID-19 pandemic in the Klang Valley, Malaysia. Sustain. Cities Soc. 2021, 66, 102660. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Wang, S.; He, S.; Li, X.; He, P. Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China. Appl. Energy 2021, 282, 116179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. The Impact of the COVID-19 Pandemic on Gaseous and Solid Air Pollutants Concentrations and Emissions in the EU, with Particular Emphasis on Poland. Energies 2021, 14, 3264. [Google Scholar] [CrossRef]
- Peters, I.M.; Brabec, C.; Buonassisi, T.; Hauch, J.; Nobre, A.M. The Impact of COVID-19-Related Measures on the Solar Resource in Areas with High Levels of Air Pollution. Joule 2020, 4, 1681–1687. [Google Scholar] [CrossRef]
- Hariharan, R. COVID-19: A Boon for Tropical Solar Parks? A Time Series Based Analysis and Forecasting of Solar Irradiance. Energy Sources Part A Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Kolosok, S.; Bilan, Y.; Vasylieva, T.; Wojciechowski, A.; Morawski, M. A scoping review of renewable energy, sustainability and the environment. Energies 2021, 14, 4490. [Google Scholar] [CrossRef]
- Kwilinski, A.; Vyshnevskyi, O.; Dzwigol, H. Digitalization of the EU Economies and People at Risk of Poverty or Social Exclusion. J. Risk Financ. Manag. 2020, 13, 142. [Google Scholar] [CrossRef]
- Dzwigol, H.; Dzwigol-Barosz, M. Sustainable Development of the Company on the Basis of Expert Assessment of the Investment Strategy. Acad. Strateg. Manag. J. 2020, 19, 1–7. [Google Scholar]
- Petrushenko, Y.; Vadym, A.; Vorontsova, A.; Ponomarenko, O. Sustainable development goals as a tool for strategic planning in communities: A bibliometric analysis of research. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 202. [Google Scholar] [CrossRef]
- Biewendt, M. Sustainable Development: A Quantitative Analysis Regarding the Impact of Resource Rents on State Welfare from 2002 to 2017. SocioEcon. Chall. 2020, 4, 119–131. [Google Scholar] [CrossRef]
- Rosokhata, A.; Minchenko, M.; Khomenko, L.; Chygryn, O. Renewable energy: A bibliometric analysis. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 250. [Google Scholar] [CrossRef]
- Ziabina, Y.; Kovalenko, Y. Regularities In the Development of the Theory of Energy Efficiency Management. SocioEcon. Chall. 2021, 5, 5–117. [Google Scholar] [CrossRef]
- Vasylieva, T.A.; Lieonov, S.V.; Makarenko, I.O.; Sirkovska, N. Sustainability information disclosure as an instrument of marketing communication with stakeholders: Markets, social and economic aspects. Mark. Manag. Innov. 2017, 4, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Kasych, A.; Vochozka, M. Theoretical and methodical principles of managing enterprise sustainable development. Mark. Manag. Innov. 2017, 2, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Hilares, K.; Vargas, R.; Gastelo-Roque, J.A. Impact of COVID-19 on the GHG emissions of the Peruvian Interconnected Electrical System. In Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020, Lima, Peru, 3–5 September 2020. [Google Scholar] [CrossRef]
- Kuzior, A.; Kwilinski, A.; Hroznyi, I. The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies. Energies 2021, 14, 2572. [Google Scholar] [CrossRef]
- Miśkiewicz, R. Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits. Energies 2020, 13, 6106. [Google Scholar] [CrossRef]
- Miśkiewicz, R. The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. J. Risk Financ. Manag. 2021, 14, 59. [Google Scholar] [CrossRef]
- Kyrylov, Y.; Hranovska, V.; Boiko, V.; Kwilinski, A.; Boiko, L. International Tourism Development in the Context of Increasing Globalization Risks: On the Example of Ukraine’s Integration into the Global Tourism Industry. J. Risk Financ. Manag. 2020, 13, 303. [Google Scholar] [CrossRef]
- Kwilinski, A. Mechanism of Formation of Industrial Enterprise Development Strategy in the Information Economy. Virtual Econ. 2018, 1, 7–25. [Google Scholar] [CrossRef]
- Kwilinski, A. Mechanism of Modernization of Industrial Sphere of Industrial Enterprise in Accordance with Requirements of the Information Economy. Mark. Manag. Innov. 2018, 4, 116–128. [Google Scholar] [CrossRef]
- Dementyev, V.V.; Kwilinski, A. Institutional Component of Production Costs. J. Inst. Stud. 2020, 12, 100–116. [Google Scholar] [CrossRef]
- Cyfert, S.; Chwiłkowska-Kubala, A.; Szumowski, W.; Miśkiewicz, R. The process of developing dynamic capabilities: The conceptualization attempt and the results of empirical studies. PLoS ONE 2021, 16, e0249724. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. Research Methods and Techniques in New Management Trends: Research Results. Virtual Econ. 2019, 2, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Dzwigol, H. Methodological and Empirical Platform of Triangulation in Strategic Management. Acad. Strateg. Manag. J. 2020, 19, 1–8. [Google Scholar]
- Dzwigol, H.; Dzwigol-Barosz, M.; Miskiewicz, R.; Kwilinski, A. Manager Competency Assessment Model in the Conditions of Industry 4.0. Entrep. Sustain. Issues 2020, 7, 2630–2644. [Google Scholar] [CrossRef]
- Polcyn, J. Eco-Efficiency and Human Capital Efficiency: Example of Small- and Medium-Sized Family Farms in Selected European Countries. Sustainability 2021, 13, 6846. [Google Scholar] [CrossRef]
- Navon, A.; Machlev, R.; Carmon, D.; Onile, A.E.; Belikov, J.; Levron, Y. Effects of the COVID-19 pandemic on energy systems and electric power grids—A review of the challenges ahead. Energies 2021, 14, 1056. [Google Scholar] [CrossRef]
- Kang, H.; An, J.; Kim, H.; Ji, C.; Hong, T.; Lee, S. Changes in energy consumption according to building use type under COVID-19 pandemic in South Korea. Renew. Sustain. Energy Rev. 2021, 148, 111294. [Google Scholar] [CrossRef] [PubMed]
- Mofijur, M.; Fattah, I.M.R.; Alam, M.A.; Islam, A.B.M.S.; Ong, H.C.; Rahman, S.M.A.; Najafi, G.; Ahmed, S.F.; Uddin, M.A.; Mahlia, T.M.I. Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 2021, 26, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Abadie, L.M. Energy market prices in times of covid-19: The case of electricity and natural gas in Spain. Energies 2021, 14, 1632. [Google Scholar] [CrossRef]
- Micheli, L.; Solas, Á.F.; Soria-Moya, A.; Almonacid, F.; Fernández, E.F. Short-term impact of the COVID-19 lockdown on the energy and economic performance of photovoltaics in the Spanish electricity sector. J. Clean. Prod. 2021, 308, 127045. [Google Scholar] [CrossRef]
- Olubusoye, O.E.; Ogbonna, A.E.; Yaya, O.O.S.; Umolo, D. An information-based index of uncertainty and the predictability of energy prices. Int. J. Energy Res. 2021, 45, 10235–10249. [Google Scholar] [CrossRef]
- Letunovska, N.; Saher, L.; Vasylieva, T.; Lieonov, S. Dependence of Public Health on Energy Consumption: A Cross-Regional Analysis. In Proceedings of the 1st Conference on Traditional and Renewable Energy Sources: Perspectives and Paradigms for the 21st Century, Prague, Czech Republic, 22–23 January 2021; Volume 250. [Google Scholar] [CrossRef]
- Pradhan, S.; Ghose, D. Shabbiruddin. Present and future impact of COVID-19 in the renewable energy sector: A case study on India. Energy Sources Part A Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Norouzi, N.; Zarazua de Rubens, G.Z.; Enevoldsen, P.; Behzadi Forough, A. The impact of COVID-19 on the electricity sector in Spain: An econometric approach based on prices. Int. J. Energy Res. 2021, 45, 6320–6332. [Google Scholar] [CrossRef]
- Tsai, W.T. Impact of COVID-19 on energy use patterns and renewable energy development in Taiwan. Energy Sources Part A Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Halbrügge, S.; Schott, P.; Weibelzahl, M.; Buhl, H.U.; Fridgen, G.; Schöpf, M. How did the German and other European electricity systems react to the COVID-19 pandemic? Appl. Energy 2021, 285, 116370. [Google Scholar] [CrossRef]
- Shah, M.I.; Kirikkaleli, D.; Adedoyin, F.F. Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark. Renew. Energy 2021, 175, 797–806. [Google Scholar] [CrossRef]
- Obst, D.; De Vilmarest, J.; Goude, Y. Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-19 Lockdown in France. IEEE Trans. Power Syst. 2021, 36, 4754–4763. [Google Scholar] [CrossRef]
- Ceylan, Z. The impact of COVID-19 on the electricity demand: A case study for Turkey. Int. J. Energy Res. 2021, 45, 13022–13039. [Google Scholar] [CrossRef]
- Bahmanyar, A.; Estebsari, A.; Ernst, D. The impact of different COVID-19 containment measures on electricity consumption in Europe. Energy Res. Soc. Sci. 2020, 68, 101683. [Google Scholar] [CrossRef] [PubMed]
- Aruga, K.; Islam, M.M.; Jannat, A. Effects of COVID-19 on Indian energy consumption. Sustainability 2020, 12, 5616. [Google Scholar] [CrossRef]
- Vasilyeva, T.; Kuzmenko, O.; Kuryłowicz, M.; Letunovska, N. Neural network modeling of the economic and social development trajectory transformation due to quarantine restrictions during covid-19. Econ. Sociol. 2021, 14, 313–330. [Google Scholar] [CrossRef]
- Bondarenko, A.F.; Zakharkina, L.S.; Syhyda, L.O.; Saher, L.Y. The economic and marketing attractiveness of countries: Measurement and positioning in terms of economic security. Int. J. Sustain. Dev. Plan. 2020, 15, 439–449. [Google Scholar] [CrossRef]
- Bublyk, M.; Koval, V.; Redkva, O. Analysis impact of the structural competition preconditions for ensuring economic security of the machine building complex. Mark. Innov. Manag. 2017, 4, 229–240. [Google Scholar]
- Dzwigol, H. Innovation in Marketing Research: Quantitative and Qualitative Analysis. Mark. Manag. Innov. 2020, 1, 128–135. [Google Scholar] [CrossRef]
- Vasylieva, T.; Pavlyk, V.; Bilan, Y.; Mentel, G.; Rabe, M. Assessment of Energy Efficiency Gaps: The Case for Ukraine. Energies 2021, 14, 1323. [Google Scholar] [CrossRef]
- Formankova, S.; Trenz, O.; Faldik, O.; Kolomaznik, J.; Vanek, P. The future of investing-sustainable and responsible investing. Mark. Manag. Innov. 2018, 2, 94–102. [Google Scholar] [CrossRef]
- Pavlyk, V. Assessment of Green Investment Impact on the Energy Efficiency Gap of the National Economy. Financ. Mark. Inst. Risks 2020, 4, 117–123. [Google Scholar] [CrossRef]
- Samusevych, Y.; Vysochyna, A.; Vasylieva, T.; Lyeonov, S.; Pokhylko, S. Environmental, Energy and Economic Security: Assessment and Interaction. In Proceedings of the E3S Web of Conferences, Kenitra, Morocco, 25–27 December 2020; Volume 234. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine. Energies 2021, 14, 2126. [Google Scholar] [CrossRef]
- Mentel, G.; Vasilyeva, T.; Samusevych, Y.; Vysochyna, A.; Karbach, R.; Streimikis, J. The evaluation of economic, environmental and energy security: Composite approach. Int. J. Glob. Environ. Issues 2020, 19, 177–195. [Google Scholar] [CrossRef]
- Samusevych, Y.; Maroušek, J.; Kuzmenko, O.; Streimikis, J.; Vysochyna, A. Environmental taxes in ensuring national security: A structural optimization model. J. Int. Stud. 2021, 14, 292–312. [Google Scholar] [CrossRef]
- Mentel, G.; Vasilyeva, T.; Samusevych, Y.; Pryymenko, S. Regional Differentiation of Electricity Prices: Social-Equitable Approach. Int. J. Environ. Technol. Manag. 2018, 21, 354–372. [Google Scholar] [CrossRef]
- Didenko, I.; Volik, K.; Vasylieva, T.; Lyeonov, S.; Antoniuk, N. Environmental migration and country security: Theoretical analysis and empirical research. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 234. [Google Scholar] [CrossRef]
- Kolosok, S.; Vasylieva, T.; Lyeonov, S. Machine analysis of the UK electrical energy initiatives based on the e-petitions to the UK government and parliament. Proc. CEUR Workshop Proc. 2021, 2870, 1562–1573. [Google Scholar]
- Lyulyov, O.; Vakulenko, I.; Pimonenko, T.; Kwilinski, A.; Dzwigol, H.; Dzwigol-Barosz, M. Comprehensive assessment of smart grids: Is there a universal approach? Energies 2021, 14, 3497. [Google Scholar] [CrossRef]
- Sun, Q.; Ge, X.; Liu, L.; Xu, X.; Zhang, Y.; Niu, R.; Zeng, Y. Review of smart grid comprehensive assessment systems. Energy Procedia 2011, 12, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Awan, R.U.; Nawaz, M.A.; Mohsin, M.; Rasheed, A.K.; Iqbal, N. Assessing the socio-economic viability of solar commercialization and electrification in South Asian countries. Environ. Dev. Sustain. 2021, 23, 9875–9897. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Hilorme, T.; Sokolova, L.; Portna, O.; Lysiak, L.; Boretskaya, N. The model of evaluation of the renewable energy resources development under conditions of efficient energy consumption. In Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision, Granada, Spain, 10–11 April 2020; pp. 7514–7526. [Google Scholar]
- Almeshaiei, E.; Al-Habaibeh, A.; Shakmak, B. Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems’ manufacturers. J. Clean. Prod. 2020, 244, 118788. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zhao, Y.; Zhang, R.; Wen, J. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Appl. Energy 2020, 27, 115733. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K. Security assessment of the smart grid: A review focusing on the NAN architecture. In Proceedings of the IEEE International Conference on Adaptive Science and Technology, ICAST 2018, Accra, Ghana, 22–24 August 2018; Available online: http://www.scopus.com (accessed on 21 July 2021).
- Wadhawan, Y.; Almajali, A.; Neuman, C. A comprehensive analysis of smart grid systems against cyber-physical attacks. Electronics 2018, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Lešić, V.; Martinčević, A.; Vašak, M. Modular energy cost optimization for buildings with integrated microgrid. Appl. Energy 2017, 197, 14–28. [Google Scholar] [CrossRef]
- Mansour-lakouraj, M.; Shahabi, M. Comprehensive analysis of risk-based energy management for dependent micro-grid under normal and emergency operations. Energy 2019, 171, 928–943. [Google Scholar] [CrossRef]
- Tascikaraoglu, A. Evaluation of spatio-temporal forecasting methods in various smart city applications. Renew. Sustain. Energy Rev. 2018, 82, 424–435. [Google Scholar] [CrossRef]
- Maier, S. Smart energy systems for smart city districts: Case study Reininghaus District. Energy. Sustain. Soc. 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Adil, A.M.; Ko, Y. Socio-technical evolution of decentralized energy systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037. [Google Scholar] [CrossRef]
- Kolosok, S.; Myroshnychenko, I.; Mishenina, H.; Yarova, I. Renewable Energy Innovation in Europe: Energy Efficiency Analysis. In Proceedings of the E3S Web of Conferences, Kenitra, Morocco, 25–27 December 2021. [Google Scholar] [CrossRef]
- Telizhenko, O.; Shevchenko, T.; Mishenina, G. Sustainable management of the municipal solid waste resource potential in the context of product lifecycle continuity. J. Environ. Manag. Tour. 2016, 7, 664–671. [Google Scholar] [CrossRef]
- Shevchenko, T.; Koblianska, I.; Saher, L. Development of biodegradable municipal waste separate collection system in Ukraine to fulfill the requirements of the European Union directives. J. Environ. Manag. Tour. 2016, 7, 361–369. [Google Scholar] [CrossRef]
- Zorpas, A.A. Strategy development in the framework of waste management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Kolosok, S.; Myroshnychenko, I.; Zakharkina, L. Open Data in Electrical Energy Balancing of Ukraine: Green Deal and Security Aspects. In Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine, 6–10 October 2020; Volume 2732, pp. 270–281. [Google Scholar]
- Pimonenko, T.; Us, Y.; Myroshnychenko, Y.; Dubyna, O.; Vasylyna, T. Green Financing for Carbon-Free Growth: Role of Banks Marketing Strategy. Financ. Mark. Inst. Risks 2021, 5, 71–78. [Google Scholar] [CrossRef]
- Mačaitytė, I.; Virbašiūtė, G. Volkswagen Emission Scandal and Corporate Social Responsibility—A Case Study. Business Ethics and Leadership 2018, 2, 6–13. [Google Scholar] [CrossRef]
- Chygryn, O.; Rosokhata, A.; Rybina, O.; Stoyanets, N. Green competitiveness: The evolution of concept formation. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 234. [Google Scholar] [CrossRef]
- Yelnikova, J.; Barhaq, A.R. Transparency of Responsible Investment Environment. Bus. Ethics Leadersh. 2020, 4, 4–68. [Google Scholar] [CrossRef]
- Bhandari, M.P. Climate Change Impacts on Agriculture, a Case Study of Bangladesh, India, Nepal, and Pakistan. SocioEcon. Chall. 2021, 5, 5–35. [Google Scholar] [CrossRef]
- Bilan, Y.; Srovnalã-KovÃi, P.; Streimikis, J.; Lyeonov, S.; Tiutiunyk, I.; Humenna, Y. From shadow economy to lower carbon intensity: Theory and evidence. Int. J. Glob. Environ. Issues 2020, 19, 196–216. [Google Scholar] [CrossRef]
- El Amri, A.; Oulfarsi, S.; Boutti, R.; Sahib Eddine, A.; Hmioui, A. Carbon Financial Markets Underlying Climate Change Mitigation, Pricing and Challenges: Technical Analysis. Financ. Mark. Inst. Risks 2021, 5, 5–17. [Google Scholar] [CrossRef]
- Halynska, Y.; Bondar, T. Combined electricity pricing model taking into account the “green tariff” and traditional factors. In E3S Web of Conference; EDP Sciences: Les Ulis, France, 2021; Volume 234. [Google Scholar] [CrossRef]
- Santiago, I.; Moreno-Munoz, A.; Quintero-Jiménez, P.; Garcia-Torres, F.; Gonzalez-Redondo, M.J. Electricity demand during pandemic times: The case of the COVID-19 in spain. Energy Policy 2021, 148, 111964. [Google Scholar] [CrossRef]
- Werth, A.; Gravino, P.; Prevedello, G. Impact analysis of COVID-19 responses on energy grid dynamics in Europe. Appl. Energy 2021, 281, 116045. [Google Scholar] [CrossRef] [PubMed]
- García, S.; Parejo, A.; Personal, E.; Ignacio Guerrero, J.; Biscarri, F.; León, C. A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level. Appl. Energy 2021, 287, 116547. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B. Greening the post-pandemic recovery in the G20. Environ. Resour. Econ. 2020, 76, 685–703. [Google Scholar] [CrossRef] [PubMed]
- Polcyn, J.; Us, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Factors Influencing the Renewable Energy Consumption in Selected European Countries. Energies 2022, 15, 108. [Google Scholar] [CrossRef]
Indicator Group | Indicator Subgroup | Symbol | Assessment System | Indicators |
---|---|---|---|---|
The stability of the grid | System self-recovery | S1ki | DDD | sDGR, sSSR, sTT *, sRPL * |
System reliability | S2ki | EUA | sIR, sLV, sLTT | |
System security | S3ki | DDD | sAR, sNA, sISS * | |
Information efficiency | Customer monitoring, control, and informatization system | I1ki | DDD | iCSG, iOA *, iRA * |
Energy internet and customer informatization | I2ki | DDD | iSSO, iNI, iCSF, iBN | |
ERP systems and decision support | I3ki | DDD | iERP, iLAS, iADM * | |
Economic efficiency | Capital Investments | E1ki | IBM | ePI, eCA, eMI |
Optimization of asset management | E2ki | IBM | ePS, eAO, eWS | |
Forming a business model | E3ki | IBM | eTF, eLM, eASP, eFBM, tECO * | |
Technical efficiency | Automation | T1ki | DDD | tTM, tSS, tFS, tDDM |
Distributed energy generation | T2ki | DDD | tBM, tDRS, tSDG | |
Productivity | T3ki | DDD | tML, tESL, tNP *, tOP * | |
Environmental Friendliness | Reducing harmful emissions | Ec1ki | TTS | efCO, efE |
Land use | Ec2ki | DDD | efL, efEA | |
The use of alternative energy and distributed energy generation | Ec3ki | DDD | efWP, efDE, efUN, efEP | |
Communication Efficiency | Openness policy | C1ki | DDD | cDD, cIS, cIO |
Interaction with consumers | C2ki | DDD | cSP, cQA, cESC | |
Availability of electric transport infrastructure | Electric vehicles | El1ki | DDD | elVs, elC, elDC |
Indicators | Code | Indicators | Code |
---|---|---|---|
Average troubleshooting time | sTT | Land use (savings) | efL |
The rate of reduction in peak load | sRPL | Specific indicators of energy per unit area | efEA |
Distribution grid self-recovery index | sDGR | Share of distributed energy generation and storage | efDE |
The speed of self-recovery of the distribution network | sSSR | The speed of development of wind and photovoltaic networks | efWP |
Improving reliability | sIR | Coefficient of unused wind energy | efUN |
Provision limiting voltage | sLV | Distributed energy permeability | efEP |
Increasing the lifetime of transformers | sLTT | Reduction in CO2 emissions | efCO |
Indicators of structural safety | sISS | Environment protection | efE |
Application of accident reduction technologies | sAR | The proportion of lines that use the technology of monitoring and control | tTM |
Number of accidents | sNA | The share of smart substations | tSS |
Online availability of data to consumers, data accumulation through all information channels | iOA | Coverage by energy forecasting system | tFS |
Remote asset monitoring systems | iRA | Distribution network dispatching management | tDDM |
The percentage of customers connected to a smart grid | iCSG | Bidirectional measurement | tBM |
The share of secure operations of the information and communication system | iSSO | The use of distributed energy generation sources and their support facilities | tDRS |
Number of information events | iNI | Forecast of the speed of distribution of distributed energy generation | tSDG |
Coverage of substations with fiber-optic network and cable coverage of the highway | iCSF | Forming «ecosystems» | tECO |
Automated internal decision making | iADM | The number of new products, the amount of energy or its capacity supplied as ancillary | tNP |
Bandwidth of the communication network platform | iBN | Maximum load on the network | tML |
Coverage of a smart grid with an ERP system | iERP | Operations’ Performance Index | tOP |
The level of availability of business systems | iLAS | Investments in the openness of the energy business | cIO |
Cost analysis of new systems | eCA | Depth of information disclosure | cDD |
Optimizing asset utilization participants in the supply chain | eAO | Information update speed | cIS |
Development strategy of mobile workforce | eWS | The scale and proportion of electricity purchases by large consumers | cSP |
Pilot investments to support the use of a differentiated resource portfolio | ePI | The index assessing the quality of service | cQA |
Modeling of investment assets for key components based on smart grid data | eMI | Energy savings through consumption management | cESC |
Developing a strategy for a diversified resource portfolio | ePS | Number and share of annual sales of hybrid and electric vehicles | elVs |
Optimized formation of tariffs | eTF | The density of the charging stations | elC |
Distribution of resources in local markets | eLM | Degree of conformity of the charging station | elDC |
Profit from ancillary services | eASP | Share of energy-saving lines | tESL |
Formation of the business model at the functional level | eFBM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwilinski, A.; Lyulyov, O.; Dzwigol, H.; Vakulenko, I.; Pimonenko, T. Integrative Smart Grids’ Assessment System. Energies 2022, 15, 545. https://doi.org/10.3390/en15020545
Kwilinski A, Lyulyov O, Dzwigol H, Vakulenko I, Pimonenko T. Integrative Smart Grids’ Assessment System. Energies. 2022; 15(2):545. https://doi.org/10.3390/en15020545
Chicago/Turabian StyleKwilinski, Aleksy, Oleksii Lyulyov, Henryk Dzwigol, Ihor Vakulenko, and Tetyana Pimonenko. 2022. "Integrative Smart Grids’ Assessment System" Energies 15, no. 2: 545. https://doi.org/10.3390/en15020545
APA StyleKwilinski, A., Lyulyov, O., Dzwigol, H., Vakulenko, I., & Pimonenko, T. (2022). Integrative Smart Grids’ Assessment System. Energies, 15(2), 545. https://doi.org/10.3390/en15020545