Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study
Abstract
:1. Introduction
2. Methods
2.1. Characteristics of the Disintegration Apparatus
2.2. Disintegration Batch Tests
2.3. Evaluation of the Impact of Thickened Waste Activated Sludge Disintegration on the Efficiency of the Anaerobic Digestion Process
3. Results and Discussion
3.1. Disintegration Batch Test Results. Selection of Energy Density Level for the Full Scale Experiment
3.2. Full Scale Experiment Results. Effects of Disintegration of Thickened Waste Activated Sludge on Anaerobic Digestion Efficiency
4. Conclusions
- The percent share of waste activated sludge subject to disintegration is a crucial parameter affecting the efficiency of biogas production. Increasing the value of this parameter from 25% to 100%, even at a much lower energy density used in the disintegration (therefore with much smaller amounts of organic compounds released from the sludge flocs) resulted in an increase in biogas production.
- Mechanical disintegration of thickened waste activated sludge in appropriately selected process conditions is an economically justifiable strategy for the intensification of anaerobic sludge stabilisation. Conducting disintegration of the entire stream of waste activated sludge directed to the fermentation tank at energy density of 30 kJ/L resulted in an increase in biogas production by 14.1%. Such a surplus would allow for production of approximately 1300 MJ/d, i.e., 360 kWh/d net electricity.
- The obtained results also permit formulating a recommendation for WWTP operators to carry out a research phase prior to the application in order to define the process conditions and determine whether it is economical to introduce sludge disintegration at the plant in question.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Statistics Poland, Statistical Products Department. Statistical Yearbook of the Republic of Poland; Central Statistical Office of Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rzeczypospolitej-polskiej-2020,2,20.html (accessed on 19 November 2021).
- Directive (EU) 2018/2001 of the European Parlament and of the Council on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: www.eur-lex.europa.eu (accessed on 19 November 2021).
- Ministry of State Assets (Poland). Poland’s National Energy and Climate Plan for the Years 2021–2030; Ministry of State Assets: Warsaw, Poland, 2019. Available online: www.gov.pl (accessed on 19 November 2021). (In Polish)
- Statistics Poland, Enterprises Department. Energy from Renewable Sources in 2019; Central Statistical Office of Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2019-roku,3,14.html (accessed on 19 November 2021).
- European Biogas Association. EBA Statistical Report 2020 (Abridged Version). Available online: www.europeanbiogas.eu (accessed on 19 November 2021).
- Energy Regulatory Office (Poland). National Potential of RES in Numbers—2021. Available online: www.ure.gov.pl/pl (accessed on 19 November 2021). (In Polish)
- Magazynbiomasa.pl. Biogas in Poland. Report 2020. Available online: www.magazynbiomasa.pl (accessed on 19 November 2021). (In Polish).
- Liu, X.; Xu, Q.; Wang, D.; Wu, Y.; Fu, Q.; Li, Y.; Yang, Q.; Liu, Y.; Ni, B.; Wang, Q.; et al. Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresour. Technol. 2019, 290, 121776. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Tang, X.; Yi, H.; Dong, L.; Han, Y.; Liu, J. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment. Bioresour. Technol. 2020, 304, 122979. [Google Scholar] [CrossRef] [PubMed]
- Tulun, Ş.; Bilgin, M. Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment. Fuel 2019, 254, 115671. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.; Guo, X.; Xiao, B. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G.; Bruni, L. Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilization. Ultrason. Sonochem. 2019, 59, 104750. [Google Scholar] [CrossRef] [PubMed]
- Neis, U.; Nickel, K.; Lunden, A. Improving anaerobic and aerobic degradation by ultrasonic disintegration of biomass. J. Environ. Sci. Health Part A 2008, 43, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Petkovšek, M.; Mlakar, M.; Levstek, M.; Stražar, M.; Širok, B.; Dular, M. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration. Ultrason. Sonochem. 2015, 26, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Boni, M.R.; D’Amato, E.; Polettini, A.; Pomi, R.; Rossi, A. Effect of ultrasonication on anaerobic degradability of solid waste digestate. Waste Manag. 2016, 48, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Siles, J.A.; Martín, M.A.; Chica, A.F.; Estévez-Pastor, F.S.; Toro-Baptista, E. Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge. Renew. Energy 2018, 115, 917–925. [Google Scholar] [CrossRef]
- Żubrowska-Sudoł, M.; Podedworna, J.; Sytek-Szmeichel, K.; Bisak, A.; Krawczyk, P.; Garlicka, A. The effects of mechanical sludge disintegration to enhance full-scale anaerobic digestion of municipal sludge. Therm. Sci. Eng. Prog. 2018, 5, 289–295. [Google Scholar] [CrossRef]
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manag. 2016, 166, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Houtmeyers, S.; Degrève, J.; Willems, K.; Dewil, R.; Appels, L. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour. Technol. 2014, 171, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lippert, T.; Bandelin, J.; Musch, A.; Drewes, J.E.; Koch, K. Energy-positive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input. Bioresour. Technol. 2018, 264, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Garlicka, A.; Zubrowska-Sudol, M.; Umiejewska, K.; Roubinek, O.; Palige, J.; Chmielewski, A. Effects of Thickened Excess Sludge Pre-Treatment using Hydrodynamic Cavitation for Anaerobic Digestion. Energies 2020, 13, 2483. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubrowska-Sudol, M.; Sytek-Szmeichel, K.; Krawczyk, P.; Bisak, A. Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study. Energies 2022, 15, 555. https://doi.org/10.3390/en15020555
Zubrowska-Sudol M, Sytek-Szmeichel K, Krawczyk P, Bisak A. Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study. Energies. 2022; 15(2):555. https://doi.org/10.3390/en15020555
Chicago/Turabian StyleZubrowska-Sudol, Monika, Katarzyna Sytek-Szmeichel, Piotr Krawczyk, and Agnieszka Bisak. 2022. "Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study" Energies 15, no. 2: 555. https://doi.org/10.3390/en15020555
APA StyleZubrowska-Sudol, M., Sytek-Szmeichel, K., Krawczyk, P., & Bisak, A. (2022). Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study. Energies, 15(2), 555. https://doi.org/10.3390/en15020555