Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review
Abstract
:1. Introduction
2. Commercial Mobile Positive Pressure Ventilation Fans Available on the European Market
3. European Laws Setting the Limits of Pollution Emissions from Internal Combustion Engines in Positive Pressure Ventilation Fans Used in Rescue Operations
4. Allowable Limits of Emissions from Internal Combustion Engines Applied in Fans Used in Rescue Operations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vichit-Vadakan, N.; Vajanapoom, N. Health Impact from Air Pollution in Thailand: Current and Future Challenges. Environ. Health Perspect. 2011, 119, A197–A198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial Spillover Effects of Environmental Regulations on Air Pollution: Evidence from Urban Agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef] [PubMed]
- Bickerstaff, K.; Walker, G. Public Understandings of Air Pollution: The ‘Localisation’ of Environmental Risk. Glob. Environ. Chang. 2001, 11, 133–145. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Kulesza, R.J.; Doty, R.L.; D’Angiulli, A.; Torres-Jardón, R. Megacities Air Pollution Problems: Mexico City Metropolitan Area Critical Issues on the Central Nervous System Pediatric Impact. Environ. Res. 2015, 137, 157–169. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Yu, D.; Ma, Q. The Relationship between Urban Form and Air Pollution Depends on Seasonality and City Size. Environ. Sci. Pollut. Res. 2018, 25, 15554–15567. [Google Scholar] [CrossRef]
- Velásquez, R.M.A.; Lara, J.V.M. Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima. Urban Clim. 2020, 33, 100664. [Google Scholar] [CrossRef]
- Rubio, F.; Llopis-Albert, C.; Valero, F.; Besa, A.J. Sustainability and Optimization in the Automotive Sector for Adaptation to Government Vehicle Pollutant Emission Regulations. J. Bus. Res. 2020, 112, 561–566. [Google Scholar] [CrossRef]
- Selleri, T.; Melas, A.D.; Joshi, A.; Manara, D.; Perujo, A.; Suarez-Bertoa, R. An Overview of Lean Exhaust DeNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts 2021, 11, 404. [Google Scholar] [CrossRef]
- Greim, H. Diesel Engine Emissions: Are They No Longer Tolerable? Arch. Toxicol. 2019, 93, 2483–2490. [Google Scholar] [CrossRef]
- Wierzbicki, S. Evaluation of the effectiveness of on-board diagnostic systems in controlling exhaust gas emissions from motor vehicles. Diagnostyka 2019, 20, 75–79. [Google Scholar] [CrossRef]
- Zimmer, A.; Koch, N. Fuel Consumption Dynamics in Europe: Tax Reform Implications for Air Pollution and Carbon Emissions. Transp. Res. Part A Policy Pract. 2017, 106, 22–50. [Google Scholar] [CrossRef]
- Creutzig, F.; McGlynn, E.; Minx, J.; Edenhofer, O. Climate Policies for Road Transport Revisited (I): Evaluation of the Current Framework. Energy Policy 2011, 39, 2396–2406. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal Regulations of Restrictions of Air Pollution Made by Non-Road Mobile Machinery—The Case Study for Europe: A Review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. [Google Scholar] [CrossRef] [Green Version]
- Frey, H.C. Trends in Onroad Transportation Energy and Emissions. J. Air Waste Manag. Assoc. 2018, 68, 514–563. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Beik, Y.; Dziewiątkowski, M.; Szpica, D. Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment. SAE Int. J. Engines 2020, 13, 739–760. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Villalta, D.; Guzmán-Mendoza, M. Methanol and OMEx as Fuel Candidates to Fulfill the Potential EURO VII Emissions Regulation under Dual-Mode Dual-Fuel Combustion. Fuel 2021, 287, 119548. [Google Scholar] [CrossRef]
- Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Kordos, P.; Mikulski, M. Efficient Hydrotreated Vegetable Oil Combustion under Partially Premixed Conditions with Heavy Exhaust Gas Recirculation. Fuel 2020, 268, 117350. [Google Scholar] [CrossRef]
- Rimkus, A.; Stravinskas, S.; Matijošius, J. Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine. Appl. Sci. 2020, 10, 359. [Google Scholar] [CrossRef]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A Review of the European Passenger Car Regulations—Real Driving Emissions vs. Local Air Quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Zacharof, N. Real World Emissions Performance of Heavy-Duty Euro VI Diesel Vehicles. Atmos. Environ. 2019, 201, 348–359. [Google Scholar] [CrossRef]
- Puricelli, S.; Cardellini, G.; Casadei, S.; Faedo, D.; van den Oever, A.E.M.; Grosso, M. A Review on Biofuels for Light-Duty Vehicles in Europe. Renew. Sustain. Energy Rev. 2021, 137, 110398. [Google Scholar] [CrossRef]
- Weller, K.; Lipp, S.; Röck, M.; Matzer, C.; Bittermann, A.; Hausberger, S. Real World Fuel Consumption and Emissions From LDVs and HDVs. Front. Mech. Eng. 2019, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Merkisz, J.; Kozak, M.; Molik, P.; Nijak, D.; Andrzejewski, M.; Nowak, M.; Rymaniak, Ł.; Ziółkowski, A. The Analysis of the Emission Level from a Heavy-Duty Truck in City Traffic. Siln. Spalinowe 2012, 51, 80–88. [Google Scholar] [CrossRef]
- Merkisz, J.; Fuć, P.; Lijewski, P.; Pielecha, J. Actual Emissions from Urban Buses Powered with Diesel and Gas Engines. Transp. Res. Procedia 2016, 14, 3070–3078. [Google Scholar] [CrossRef] [Green Version]
- Lijewski, P.; Merkisz, J.; Fuć, P.; Ziółkowski, A.; Rymaniak, Ł.; Kusiak, W. Fuel Consumption and Exhaust Emissions in the Process of Mechanized Timber Extraction and Transport. Eur. J. For. Res. 2017, 136, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Rymaniak, Ł.; Fuć, P.; Lijewski, P.; Kamińska, M.; Daszkiewicz, P.; Ziółkowski, A. Evaluating the Environmental Costs in Poland of City Buses Meeting the Euro VI Norm Based on Tests in Real Operating Conditions. Arch. Transp. 2019, 52, 109–115. [Google Scholar] [CrossRef]
- Lončarević, Š.; Ilinčić, P.; Šagi, G.; Lulić, Z. Problems and Directions in Creating a National Non-Road Mobile Machinery Emission Inventory: A Critical Review. Sustainability 2022, 14, 3471. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Influence of Non-Commercial Fuel Supply Systems on Small Engine SI Exhaust Emissions in Relation to European Approval Regulations. Environ. Sci. Pollut. Res. 2022, 29, 55928–55943. [Google Scholar] [CrossRef]
- Lijewski, P.; Fuć, P.; Dobrzyński, M.; Markiewicz, F. Exhaust emissions from small engines in handheld devices. MATEC Web Conf. 2017, 118, 00016. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EU). On Requirements for Emission Limit Values of Gaseous and Particulate Pollutants and Type-approval with Respect to Internal Combustion Engines for Mobile Machines Non-road, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013 and Amending and Repealing Directive 97/68/WE. No 2016/1628 of the European Parliament and of the Council of 14 September 2016. Off. J. Eur. Union. 2016, 252, 53–117. [Google Scholar]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P. Small Engines Spark Ignited (SI) for Non-Road Mobile Machinery-Review. In Transport Means 2018, Proceedings of the 22nd International Scientific Conference, Trakai, Lithuania, 3–5 October 2018; Kaunas University of Technology: Kaunas, Lithuania, 2018; pp. 585–591. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [Google Scholar] [CrossRef] [Green Version]
- Szpica, D. Investigating Fuel Dosage Non-Repeatability of Low-Pressure Gas-Phase Injectors. Flow Meas. Instrum. 2018, 59, 147–156. [Google Scholar] [CrossRef]
- Szpica, D.; Czaban, J. Operational Assessment of Selected Gasoline and LPG Vapour Injector Dosage Regularity. Mechanics 2014, 20, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Wieland, A.; Achleitner, E.; Lyubar, A.; Schlücker, E. Rail Pressure-Based Diagnostic Functions for Gasoline Direct Injection Systems. MTZ Worldw. 2020, 81, 56–61. [Google Scholar] [CrossRef]
- Lee, Z.; Kim, D.; Park, S. Effects of Spray Behavior and Wall Impingement on Particulate Matter Emissions in a Direct Injection Spark Ignition Engine Equipped with a High Pressure Injection System. Energy Convers. Manag. 2020, 213, 112865. [Google Scholar] [CrossRef]
- Warguła, Ł.; Krawiec, P.; Kukla, M.; Wieczorek, B.; Kaczmarzyk, P. Innovations in chainsaws utilised as mechanical rescue devices. Saf. Fire Technol. 2020, 55, 142–153. [Google Scholar] [CrossRef]
- Warguła, Ł.; Krawiec, P.; Waluś, K.; Polasik, J. Electronic Control Injection-Ignition Systems in Propulsion of Non-Road Mobile Machinery. J. Mech. Transp. Eng. 2018, 70, 61–78. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Dziechciarz, A.; Małozięć, D.; Ondrušová, D. Ocena emisji związków chemicznych podczas rozkładu termicznego i spalania pasów klinowych. Przemysł Chem. 2020, 99, 92–98. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Małozięć, D.; Kaczmarzyk, P.; Dziechciarz, A.; Czarnecka-Komorowska, D. The Toxicological Testing and Thermal Decomposition of Drive and Transport Belts Made of Thermoplastic Multilayer Polymer Materials. Polymers 2020, 12, 2232. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Czarnecka-Komorowska, D.; Janik, P.; Dziechciarz, A.; Kaczmarzyk, P. Chemical Compounds Released by Combustion of Polymer Composites Flat Belts. Sci. Rep. 2021, 11, 8269. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Małozięć, D. Hazards Resulting from the Burning Wood Impregnated with Selected Chemical Compounds. Appl. Sci. 2020, 10, 6093. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Klapsa, W.; Janik, P.; Krawiec, P. Identification and Evaluation of Technical and Operational Parameters of Mobile Positive Pressure Ventilation Fans Used during Rescue Operations. Saf. Fire Technol. 2021, 58, 74–91. [Google Scholar] [CrossRef]
- Cimolino, U.; Emrich, C.; Svensson, S. Taktische Ventilation: Be-und Entlüftungssysteme im Einsatz; Ecomed-Storck GmbH: Landsberg am Lech, Germany, 2012; ISBN 978-3-609-68426-0. [Google Scholar]
- Garcia, K.; Kauffmann, R.; Schelble, R. Positive Pressure Attack for Ventilation & Firefighting; PennWell Books: Tulsa, OK, USA, 2006; ISBN 978-1-59370-048-5. [Google Scholar]
- Kaczmarzyk, P.; Janik, P.; Klapsa, W.; Bugaj, G. Possibilities of Using Mobile Fans and the Parameters Conditioning the Effectiveness of Tactical Mechanical Ventilation. Saf. Fire Technol. 2022, 59, 58–82. [Google Scholar] [CrossRef]
- Lambert, K.; Merci, B. Experimental Study on the Use of Positive Pressure Ventilation for Fire Service Interventions in Buildings with Staircases. Fire Technol. 2014, 50, 1517–1534. [Google Scholar] [CrossRef] [Green Version]
- Panindre, P.; Mousavi, N.S.S.; Kumar, S. Improvement of Positive Pressure Ventilation by Optimizing Stairwell Door Opening Area. Fire Saf. J. 2017, 92, 195–198. [Google Scholar] [CrossRef]
- Magagnotti, N.; Picchi, G.; Sciarra, G.; Spinelli, R. Exposure of Mobile Chipper Operators to Diesel Exhaust. Ann. Occup. Hyg. 2014, 58, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining Exhaust Fumes Exposure in Chainsaw Operations. Environ. Pollut. 2016, 218, 1162–1169. [Google Scholar] [CrossRef]
- Ramfan. Available online: https://ramfan.pl/ (accessed on 30 December 2021).
- Rosenbauer. Available online: https://www.Rosenbauer.com (accessed on 30 December 2021).
- Leader. Available online: https://www.leader-group.company/en/firefighting-equipment/fire-ventilators (accessed on 30 December 2021).
- Batfan. Available online: https://strefa998.pl/turbowentylator/2512-wentylator-oddymiajacy-akumulatorowy-batfan-3-li.html (accessed on 30 December 2021).
- Alusteel. Available online: http://alusteel.pl/wentylatory (accessed on 30 December 2021).
- Fogo. Available online: https://www.fogo.pl/ (accessed on 30 December 2021).
- Pavliš. Available online: https://www.firefighting-phhp.com (accessed on 30 December 2021).
- Poje, A.; Mihelič, M. Influence of Chain Sharpness, Tension Adjustment and Type of Electric Chainsaw on Energy Consumption and Cross-Cutting Time. Forests 2020, 11, 1017. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Warguła, Ł.; Janik, P.; Krawiec, P. Influence of Measurement Methodologies for the Volumetric Air Flow Rate of Mobile Positive Pressure Fans on Drive Unit Performance. Energies 2022, 15, 3953. [Google Scholar] [CrossRef]
Brand | Fan Model | Electric Engine Power, kW | Literature Source |
---|---|---|---|
Ramfan | EX50 Li | 0.6 | [55] |
Ramfan | EV420 turbo force | 1.1 | [55] |
Ramfan | EX420 turbo force, power stream | 1.1 | [55] |
Ramfan | EX520 Turboforce, Power Stream, Power Shroud | 1.1 | [55] |
Rosenbauer | Fanergy E16 513040 | 2.2 | [56] |
Rosenbauer | Fanergy E16 Compact | 2.2 | [56] |
Rosenbauer | Fanergy E22 | 2.2 | [56] |
Rosenbauer | Fanergy E16 Ex | 1.85 | [56] |
Rosenbauer | Fanergy RTE AX B16 | 1.25 | [56] |
Leader | BAT FAN NEO | 0.6 | [57] |
Leader | SA315 | 1.1 | [57] |
Leader | SR460 | 0.375 | [57] |
Leader | ES 220 NEO | 1.5 | [57] |
Leader | ES 230 NEO | 2.2 | [57] |
Leader | EDS 230 NEO | 1.1 | [57] |
Leader | EDS 230.2 NEO | 1.5 | [57] |
Leader | ES 245 | 2.2 | [57] |
Leader | ESP 230 NEO | 2.2 | [57] |
Leader | ESP 280 | 7.5 | [57] |
Leader | ESV 230 NEO | 2.2 | [57] |
Leader | EVG 230 NEO | 1.1 | [57] |
Leader | ESV 245 | 2.2 | [57] |
Leader | ESV 280 | 7.5 | [57] |
Leader | PARK FAN 80 | 7.5 | [57] |
Leader | SAX 320 | 1.1 | [57] |
Leader | ESX 230 | 1.85 | [57] |
Batfan | Batfan 3 Li | 0.6 | [58] |
Brand | Fan Model | Engine Model | Displacement, cm3 | Engine Power, kW | Engine Type | Literature Source |
---|---|---|---|---|---|---|
Ramfan | GX 200 L/GX 200 | Honda GXH50 | 49 | 1.6 | SI | [55] |
Ramfan | GF 165 | Honda GX160 | 163 | 3.6 | SI | [55] |
Ramfan | GX 310 | Honda GX160 | 163 | 3.6 | SI | [55] |
Ramfan | GX350 | Honda GX200 | 196 | 4.1 | SI | [55] |
Ramfan | GX400 | Honda GX200 | 196 | 4.1 | SI | [55] |
Ramfan | GX500 | Honda GX270 | 270 | 6.3 | SI | [55] |
Ramfan | GX600 | Briggs & Stratton Vanguard V-Twin OHV mod.35 | 570 | 13.4 | SI | [55] |
Ramfan | VX700 | Honda GX630 | 688 | 17 | SI | [55] |
Ramfan | GF 164 SE | Honda GC160 | 160 | 3.4 | SI | [55] |
Rosenbauer | Fanergy V16 513020 | Briggs & Stratton 6.5 KM | 420 | 4.41 | SI | [56] |
Rosenbauer | Fanergy V16 513022 | Briggs & Stratton 6.5 KM | 420 | 4.41 | SI | [56] |
Rosenbauer | Fanergy V22 | Briggs & Stratton 6.5 KM | 420 | 4.41 | SI | [56] |
Rosenbauer | Fanergy XL35 | BMW 50 kW boxer type | 850 | 50 | SI | [56] |
Leader | MT 215 L NEO | Honda GXH50 | 49 | 1.47 | SI | [57] |
Leader | MT 225 NEO | Honda GX120 | 118 | 2.21 | SI | [57] |
Leader | MT 236 NEO | Honda GX160 | 163 | 2.94 | SI | [57] |
Leader | MT 240 NEO | Honda GX200 | 196 | 3.68 | SI | [57] |
Leader | MT 245 | Honda GX200 | 196 | 3.68 | SI | [57] |
Leader | MT 280 | Honda GX390 | 389 | 0.74 | SI | [57] |
Leader | MT 296 | Briggs & Stratton -Vanguard | 479 | 11.77 | SI | [57] |
Leader | Easy 2000 | Honda GX630 | 688 | 14.71 | SI | [57] |
Leader | Easy 4000 | BMW | 1170 | 84.58 | SI | [57] |
Alusteel | Kobra H34 | Honda Gx160 | 163 | 3.4 | SI | [59] |
Fogo | Fogo MW 22 | Briggs & Stration 6.0 KM | 420 | 4.4 | SI | [60] |
Alusteel | Skorpion MAXI | Honda GX 160 | 163 | 3.4 | SI | [59] |
Pavliš | PH VP 450 | Honda GX 200 | 196 | 4.1 | SI | [61] |
Pavliš | PH VP 600 | Honda GX 270 | 270 | 6.3 | SI | [61] |
Rosenbauer | Fanergy XL63 | Deutz 92 kW | 3620 | 92 | CI | [56] |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
kW | cm3 | CO | HC + NOx | |||
g/kWh | ||||||
No | NRS-vr/vi-1a | P < 19 | 80 ≤ V < 225 | 2019 | 610 | 10 |
Yes | NRS-vr/vi-1b | V ≥ 225 | 2019 | 610 | 8 | |
No | NRS-v-2a | 19 ≤ P < 30 | V ≤ 1000 | 2019 | 610 | 8 |
No | NRS-v-2b | V > 1000 | 2019 | 4.40 * | 2.70 * | |
Yes | NRS-v-3 | 30 ≤ P < 56 | any | 2019 |
A | Category | Ign. | Net Power | Date | CO | HC | NOx | PM | PN |
---|---|---|---|---|---|---|---|---|---|
kW | g/kWh | g/kWh | g/kWh | g/kWh | 1/kWh | ||||
No | NRE-v/c-1 | CI | P < 8 | 2019 | 8.00 | 7.50 a,c | 0.40 b | - | |
No | NRE-v/c-2 | CI | 8 ≤ P < 19 | 2019 | 6.60 | 7.50 a,c | 0.40 | - | |
No | NRE-v/c-3 | CI | 19 ≤ P < 37 | 2019 | 5.00 | 4.70 a,c | 0.015 | 1 × 1012 | |
No | NRE-v/c-4 | CI | 37 ≤ P < 56 | 2019 | 5.00 | 4.70 a,c | 0.015 | 1 × 1012 | |
Yes | NRE-v/c-5 | All | 56 ≤ P < 130 | 2019 | 5.00 | 0.19 c | 0.40 | 0.015 | 1 × 1012 |
No | NRE-v/c-6 | All | 130 ≤ P < 560 | 2019 | 3.50 | 0.19 c | 0.40 | 0.015 | 1 × 1012 |
No | NRE-v/c-7 | All | P > 560 | 2019 | 3.50 | 0.19 d | 3.50 | 0.045 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kaczmarzyk, P. Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies 2022, 15, 7672. https://doi.org/10.3390/en15207672
Warguła Ł, Kaczmarzyk P. Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies. 2022; 15(20):7672. https://doi.org/10.3390/en15207672
Chicago/Turabian StyleWarguła, Łukasz, and Piotr Kaczmarzyk. 2022. "Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review" Energies 15, no. 20: 7672. https://doi.org/10.3390/en15207672
APA StyleWarguła, Ł., & Kaczmarzyk, P. (2022). Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies, 15(20), 7672. https://doi.org/10.3390/en15207672