Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches
Abstract
:1. Introduction
- A literature review is initially conducted, aiming to provide a comprehensive overview of the existing inertia-estimation techniques. Special emphasis is placed on the analysis of measurement-based approaches, since they can be easily implemented for wide-area monitoring applications [36].
- The performance of the most prevalent measurement-based inertia-estimation techniques is systematically evaluated.
- The effect of several factors, on the accuracy of the examined methods, is evaluated via Monte Carlo (MC) analysis.
- Guidelines and recommendations to enhance the accuracy of the examined techniques are proposed.
2. Power-System Inertia: Fundamental Concepts and Definitions
2.1. Inertia Definition
2.2. Inertia Time Constant
2.3. The Swing Equation
2.4. Overall Power-System Inertia
3. Inertia Estimation: Review of Available Techniques
3.1. Model-Based Inertia-Estimation Techniques
3.2. Measurement-Based Methods
3.2.1. Offline Post-Mortem Approaches
3.2.2. Online Real-Time Methods
4. Theoretical Background
4.1. Inertia Estimation via the Direct Use of the Swing Equation
4.2. Calculation of the RoCoF Using the Polynomial Approximation Approach
Algorithm 1 Determination of the Optimal Polynomial Order |
|
- Step 1: Initially, frequency and active power responses are forwarded as inputs to the algorithm.
- Step 2: is computed using (10). As already discussed, in cases of low noise levels, is very close to the actual inertia constant. Therefore, it is computed in this step as a rough (initial) inertia estimate and used as a benchmark value for the convergence of the algorithm.
- Step 4: The values of parameters , , and are defined by the user. is the maximum permissible value of the approximation order. and are two tolerance values, used for the convergence of the algorithm. is used to compare inertia estimates, computed at each iteration, with the initial estimate is derived from (10). is used to compare inertia estimates between two consecutive iterations. In this paper, is set to 10. and are considered equal to 1 s and 0.01 s, respectively.
- Step 5: The iterative process initiates. The iterative process lasts until is reached or until convergence has been achieved.
- Step 6 to 11: If both convergence criteria are met, then the algorithm terminates and the estimated inertia value is provided to the user. Otherwise, the approximation order n is increased by one, a new inertia estimation is computed and the algorithm moves back to Step 5. In cases where is reached and convergence criteria are not met, the algorithm fails to return an estimate. Obviously, values of and have a crucial impact on both the convergence and the accuracy of the algorithm.
4.3. Inertia Estimation Using the SW Method
4.4. Inertia Estimation via Transfer-Function Modeling
4.4.1. Method Based on Model Order Reduction
4.4.2. Method Based on the Impulse Response
4.5. ARMAX Modeling
5. Performance Evaluation of Measurement-Based Inertia-Estimation Techniques
5.1. System under Study
5.2. Summary of the Examined Methods
- Method #1: Inertia estimation is performed using the principles discussed in Section 4.2. is computed using (14). A fixed-order polynomial (fifth-order polynomial) is used to approximate .
- Method #2: In this approach, is computed once again using (14). Nevertheless, a variable-order polynomial is adopted to approximate and, thus, compute the RoCoF. The optimal order of the polynomial is determined using Algorithm 1.
- Method #3: Inertia estimation is performed using the principles discussed in Section 4.4.1. More specifically, second-order transfer functions are initially developed, using the simulated responses of frequency and active power. Subsequently, insignificant states of the derived transfer functions are eliminated and first-order transfer functions, which have the general form of (21), are computed. is determined using (22).
- Method #4: Simulated responses of frequency and active power are used to develop second order transfer functions. Subsequently, the impulse response of these transfer functions is computed and is calculated via (25).
- Method #5: The SW approach is used. is derived using (19).
5.3. Comparative Assessment
5.3.1. Impact of Window Length
5.3.2. Impact of Noise
5.3.3. Impact of Event Detection
5.3.4. Impact of Disturbance Level
5.3.5. Impact of Disturbance Location
5.3.6. Probabilistic Assessment
5.4. Discussion of the Results
6. Proposed Modifications
Algorithm 2 Pseudocode of the proposed iterative procedure |
|
6.1. Algorithmic Details
- Step 1 Active power and frequency responses are forwarded as inputs to Algorithm 2.
- Step 2: The user selects which method shall be used for inertia estimation. The available options are: Method #1, Method #2, Method #3, and Method #4. These methods are selected, because evaluation criteria can be used to quantify the quality of their estimates. These evaluation criteria are discussed in the next step. On the other hand, Method #5 is not considered as a candidate method, since efficient evaluation criteria cannot be easily implemented. Additionally, at this step, the value of is specified based on the selected method and on the remarks presented in Section 5.3.1. Finally, the user defines , i.e., the maximum length of the analysis window. In this paper, is limited to 100. Hence, the maximum length of the analysis window is set to 1 s. As already discussed, the length of the analysis window is restricted to 1 s, to ensure that primary frequency response services are not activated, thus prohibiting the accurate estimation of inertia constants.
- Steps 3 to 5: In these steps, the selected inertia-estimation method is applied iteratively, assuming different window lengths. At each iteration, the estimated inertia constant is computed and stored at a vector variable, i.e., at . Additionally, the evaluation criterion is computed and the corresponding value is stored on a dedicated variable, i.e., on vector . In this paper, the error index () of (30) is selected as the evaluation criterion.In the above notation, x denotes the actual (measured) data, while y denotes the corresponding estimates. For Method #1 and Method #2, x is the measured , while y is the corresponding approximation computed via (11). For Method #3 and Method #4, x is the TD response of the measured transfer function, i.e., the as computed from the measured signals of and . y is the approximation of by a second-order transfer function. An equal to 100% denotes a perfect approximation.Finally, m and K are increased by one and the algorithm moves to the next iteration. The algorithm terminates when .
- Step 6: In this step, a post-processing of the derived models/approximations is performed. Towards this objective, models/approximations that result in unrealistic inertia values, e.g., negative values or values higher than 15 s, are discarded. Models that lead to unstable transfer functions are also excluded from further analysis. The latter criterion is applicable only for Method #3 and Method #4.
- Step 7: In this step, the is used to identify the most accurate approximations/models. In general, the better the quality of the approximation is, the more accurate the inertia estimate [13]. Nevertheless, the conducted analysis revealed that in some cases, models exhibiting high values, e.g., higher than 90%, may lead to inaccurate inertia estimates, i.e., in estimates that present values close to 10%. Therefore, to eliminate the impact of these erroneous estimates, in the proposed approach, the final inertia value is not computed by utilizing a single model/approximation; on the contrary, is computed for Method #1, Method #2, and Method #4 as the mean value of the most accurate estimates, i.e., estimates that present the highest values. In this paper, 3% of the most accurate estimates is used for this purpose. Regarding Method #3, a different approach is applied. Indeed, to perform satisfactorily, Method #3 requires the identification and elimination of the insignificant states of the identified second-order transfer functions. Nevertheless, state elimination may result in inaccurate inertia estimates (especially when the poles of the identified second-order transfer functions are very close to each other). Therefore, the following approach is proposed: is initially computed. Models that present lower than 90% are discarded from the analysis. For the rest of the models, the corresponding poles are determined, i.e., the poles of the identified second-order transfer functions. In second-order transfer-function models, the pole that is closer to the imaginary axis, i.e., the pole with the lowest absolute real part, is the dominant pole that mainly affects the dynamic behavior of the examined system. Hence, it is reasonable to assume that a second-order transfer function, which has a set of well-separated poles, i.e., a pole with a very low real part and a pole with a very high real part, can be reduced to a first-order transfer function without introducing significant errors, i.e., the reduced model preserves the dynamic properties of the initial system. Therefore, in the proposed approach, for each model (identified second-order transfer function) the Euclidean distance of the poles is calculated. is computed as the mean value of the inertia estimates derived from transfer functions that present the highest Euclidean distances. To compute , the 3% of the transfer functions that exhibit the highest Euclidean distances are used.
6.2. Validation Results
Impact of Noise
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
ARMAX | AutoRegressive moving average exogenous |
AWGN | Additive white Gaussian noise |
CDF | Cumulative distribution function |
CoI | Center of inertia |
EI | Error index |
MC | Monte Carlo |
NLS | Nonlinear least square |
PE | Prediction error |
PMUs | Phasor measurement units |
RESs | Renewable energy sources |
RMS | Root mean square |
RoCoF | Rate of change of frequency |
SFRM | System frequency response model |
SG | Synchronous generators |
SNR | Signal-to-noise ratio |
SPS | Samples per second |
SW | Sliding window |
TD | Time domain |
References
- Heylen, E.; Teng, F.; Strbac, G. Challenges and Opportunities on Inertia Estimation and Forecasting in Low-Inertia Power Systems. Renew. Sustain. Energy Rev. 2021, 147, 111176. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, J.; Netto, M.; Krishnan, V.; Terzija, V.; Zhang, Y. Power System Inertia Estimation: Review of Methods and the Impacts of Converter-Interfaced Generations. Int. J. Electr. Power Energy Syst. 2022, 134, 107362. [Google Scholar] [CrossRef]
- Bevrani, H.; Golpira, H.; Messina, A.R.; Hatziargyriou, N.; Milano, F.; Ise, T. Power system frequency control: An updated review of current solutions and new challenges. Electr. Power Syst. Res. 2021, 194, 107114. [Google Scholar] [CrossRef]
- Smith, J.C.; Clark, C. The Future’s Energy Mix: The Journey to Integration [Guest Editorial]. IEEE Power Energy Mag. 2019, 17, 19–23. [Google Scholar] [CrossRef]
- Makolo, P.; Zamora, R.; Lie, T. The Role of Inertia for Grid Flexibility Under High Penetration of Variable Renewables—A Review of Challenges and Solutions. Renew. Sustain. Energy Rev. 2021, 147, 11223. [Google Scholar] [CrossRef]
- Matevosyan, J.; Badrzadeh, B.; Prevost, T.; Quitmann, E.; Ramasubramanian, D.; Urdal, H.; Achilles, S.; MacDowell, J.; Huang, S.H.; Vital, V.; et al. Grid-Forming Inverters: Are They the Key for High Renewable Penetration? IEEE Power Energy Mag. 2019, 17, 89–98. [Google Scholar] [CrossRef]
- Lew, D.; Bartlett, D.; Groom, A.; Jorgensen, P.; O’Sullivan, J.; Quint, R.; Rew, B.; Rockwell, B.; Sharma, S.; Stenclik, D. Secrets of Successful Integration: Operating Experience With High Levels of Variable, Inverter-Based Generation. IEEE Power Energy Mag. 2019, 17, 24–34. [Google Scholar] [CrossRef]
- ENTSO-E. Ten Year Development Plan. 2016. Available online: https://www.entsoe.eu/publications/tyndp/tyndp-2016/ (accessed on 15 October 2022).
- Blakers, A.; Lu, B.; Stocks, M. 100% Renewable electricity in Australia. Energy 2017, 133, 471–482. [Google Scholar] [CrossRef]
- Mehigan, L.; Kez, D.; Collins, S.; Foley, A.; Gallachoir, B.; Deane, P. Renewables In The European Power System and The Impact on System Rotational Inertia. Energy 2018, 161, 117776. [Google Scholar] [CrossRef]
- Prabhakar, K.; Jain, S.K.; Padhy, P.K. Inertia Estimation in Modern Power System: A Comprehensive Review. Electr. Power Syst. Res. 2022, 211, 108222. [Google Scholar] [CrossRef]
- Tielens, P.; Hertem, D.V. The Relevance of Inertia in Power Systems. Renew. Sustain. Energy Rev. 2016, 55, 999–1009. [Google Scholar] [CrossRef]
- Lugnani, L.; Dotta, D.; Lackner, C.; Chow, L. ARMAX-Based Method For Inertial Constant Estimation of Generation Units Using Synchrophasors. Electr. Power Syst. Res. 2020, 180, 106097. [Google Scholar] [CrossRef]
- Ratnam, K.S.; Palanisamy, K.; Yang, G. Future low-inertia power systems: Requirements, issues, and solutions—A review. Renew. Sustain. Energy Rev. 2020, 124, 109773. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al. Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281. [Google Scholar] [CrossRef]
- Milano, F.; Dorfler, F.; Hug, G.; Hill, D.J.; Verbic, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Tamrakar, U.; Copp, D.A.; Nguyen, T.; Hansen, T.M.; Tonkoski, R. Optimization-Based Fast-Frequency Estimation and Control of Low-Inertia Microgrids. IEEE Trans. Energy Convers. 2021, 36, 1459–1468. [Google Scholar] [CrossRef]
- Fernandez-Guillamon, A.; Gomez-Lazaro, E.; Molina-Garcia, A. Extensive Frequency Response and Inertia Analysis Under High Renewable Energy Source Integration Scenarios: Application to the European Interconnected Power System. IET Renew. Power Gener. 2020, 14, 2885–2896. [Google Scholar] [CrossRef]
- MacIver, C.; Bell, K.; Nedd, M. An Analysis of the August 9th 2019 GB Transmission System Frequency Incident. Electr. Power Syst. Res. 2021, 199, 107444. [Google Scholar] [CrossRef]
- Bialek, J. What Does the GB Power Outage on 9 August 2019 Tell Us About the Current State of Decarbonised Power Systems? Energy Policy 2020, 146, 111821. [Google Scholar] [CrossRef]
- AEMO. Update Report—Black System Event in South Australia on 28 September 2016. Technical Report. 2016. Available online: https://apo.org.au/sites/default/files/resource-files/2016-10/apo-nid68095.pdf (accessed on 15 October 2022).
- Fernandez-Guillamon, A.; Vigueras-Rodriguez, A.; Molina-Garcia, A. Analysis of Power System Inertia Estimation in High Wind Power Plant Integration Scenarios. IET Renew. Power Gener. 2019, 13, 2807–2816. [Google Scholar] [CrossRef]
- Ulbig, A.; Borsche, T.S.; Andersson, G. Impact of Low Rotational Inertia on Power System Stability and Operation. IFAC Proc. 2014, 47, 7290–7297. [Google Scholar] [CrossRef] [Green Version]
- Tamrakar, U.; Shrestha, D.; Maharjan, M.; Bhattarai, B.P.; Hansen, T.M.; Tonkoski, R. Virtual Inertia: Current Trends and Future Directions. Appl. Sci. 2017, 7, 654. [Google Scholar] [CrossRef] [Green Version]
- Kryonidis, G.C.; Malamaki, K.N.D.; Mauricio, J.M.; Demoulias, C.S. A New Perspective on the Synchronverter Model. Int. J. Electr. Power Energy Syst. 2022, 140, 108072. [Google Scholar] [CrossRef]
- Golpira, H.; Bevrani, H.; Messina, A.R. Emulation of Virtual Inertia to Accommodate Higher Penetration Levels of Distributed Generation in Power Grids. IEEE Trans. Power Syst. 2019, 34, 3384–3394. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Nishikawa, R.; Hayashi, Y.; Mitani, Y. Inertia Estimation of The 60 Hz Japanese Power System from Synchrophasor Measurements. IEEE Trans. Power Syst. 2022. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Mitani, Y.; Ngamroo, I. Inertia Assessment From Transient Measurements: Recent Perspective From Japanese WAMS. IEEE Access 2022, 10, 66332–66334. [Google Scholar] [CrossRef]
- Sun, M.; Feng, Y.; Wall, P.; Azizi, S.; Yu, J.; Terzija, V. On-line Power System Inertia Calculation Using Wide Area Measurements. Int. J. Electr. Power Energy Syst. 2019, 109, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Yu, J.; Al-Ashwal, N.; Heimisson, B.; Terzija, V. Measuring Effective Area Inertia To Determine Fast-Acting Frequency Response Requirements. Int. J. Electr. Power Energy Syst. 2019, 113, 1–8. [Google Scholar] [CrossRef]
- Mohanan, V.A.V.; Mareels, I.M.; Evans, R.J.; Kolluri, R.R. Stabilising Influence of a Synchronous Condenser in Low Inertia Networks. IET Gener. Transm. Distrib. 2019, 14, 3582–3593. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers. In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, Australia, 6–9 November 2016. [Google Scholar] [CrossRef]
- Rodriguez del Nozal, A.; Kontis, E.O.; Mauricio, J.M.; Demoulias, C.S. Provision of inertial response as ancillary service from active distribution networks to the transmission system. IET Gener. Transm. Distrib. 2020, 14, 5123–5134. [Google Scholar] [CrossRef]
- Nouti, D.; Ponci, F.; Monti, A. Heterogeneous Inertia Estimation for Power Systems with High Penetration of Converter-Interfaced Generation. Energies 2021, 14, 5047. [Google Scholar] [CrossRef]
- Garcia, A.; Ortega, A.; Rouco, L.; Sigrist, L. A review of Methods for the Estimation of Inertia and Its Distribution. In FLEXENET—Technical Report; Instituto de Investigacion Tecnologica (I.I.T.): Madrid, Spain, 2021. [Google Scholar]
- Kryonidis, G.C.; Kontis, E.O.; Papadopoulos, T.A.; Pippi, K.D.; Nousdilis, A.I.; Barzegkar-Ntovom, G.A.; Boubaris, A.D.; Papanikolaou, N.P. Ancillary Services in Active Distribution Networks: A Review of Technological Trends From Operational and Online Analysis Perspective. Renew. Sustain. Energy Rev. 2021, 147, 111198. [Google Scholar] [CrossRef]
- Spahic, E.; Varma, D.; Beck, G.; Kuhn, G.; Hild, V. Impact of reduced system inertia on stable power system operation and an overview of possible solutions. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Fang, J.; Tang, Y.; Li, H.; Blaabjerg, F. The Role of Power Electronics in Future Low Inertia Power Systems. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H. Online Identification of Power System Equivalent Inertia Constant. IEEE Trans. Ind. Electron. 2017, 64, 8098–8107. [Google Scholar] [CrossRef]
- Wall, P.; Terzija, V. Simultaneous Estimation of the Time of Disturbance and Inertia in Power Systems. IEEE Trans. Power Deliv. 2014, 29, 2018–2031. [Google Scholar] [CrossRef]
- Azizi, S.; Sun, M.; Liu, G.; Terzija, V. Local Frequency-Based Estimation of the Rate of Change of Frequency of the Center of Inertia. IEEE Trans. Power Syst. 2020, 35, 4948–4951. [Google Scholar] [CrossRef]
- Liu, S.; Li, G.; Zhou, M. Power System Transient Stability Analysis with Integration of DFIGs Based on center of Inertia. CSEE J. Power Energy Syst. 2016, 2, 20–29. [Google Scholar] [CrossRef]
- Sun, M.; Liu, G.; Popov, M.; Terzija, V.; Azizi, S. Underfrequency Load Shedding Using Locally Estimated RoCoF of the Center of Inertia. IEEE Trans. Power Syst. 2021, 36, 4212–4222. [Google Scholar] [CrossRef]
- Gorbunov, A.; Peng, J.C.H.; Bialek, J.W.; Vorobev, P. Can Center-of-Inertia Model be Identified From Ambient Frequency Measurements? IEEE Trans. Power Syst. 2022, 37, 2459–2462. [Google Scholar] [CrossRef]
- Zimmer, V.; Decker, I.C.; Silva, A.S. A Robust Approach for the Identification of Synchronous Machine Parameters and Dynamic States Based on PMU Data. Electr. Power Syst. Res. 2018, 165, 167–178. [Google Scholar] [CrossRef]
- Cari, E.P.T.; Landgraf, T.G.; Alberto, L.F.C. A Constrained Minimization Approach for the Estimation of Parameters of Transient Generator Models. Electr. Power Syst. Res. 2017, 143, 252–261. [Google Scholar] [CrossRef]
- Hiskens, I.A.; Koeman, A. Parameter Estimation From Power System Disturbance Measurements. In Proceedings of the EMPD 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137), Singapore, 5 March 1998; Volume 2, pp. 667–672. [Google Scholar] [CrossRef]
- Talebi, M.A.; Rahimpour, M.; Gholami, A.; Vahedi, A.; Shayanfar, S.A. A Genetic Algorithm Approach for Identifying Synchronous Generator Parameters from Excitation Disturbance Test. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Aghamolki, H.G.; Miao, Z.; Fan, L.; Jiang, W. Identification of Synchronous Generator Model With Frequency Control Using Unscented Kalman Filter. Electr. Power Syst. Res. 2015, 126, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wehbe, Y. Extended Kalman Filtering Based Real-Time Dynamic State and Parameter Estimation Using PMU Data. Electr. Power Syst. Res. 2013, 103, 168–177. [Google Scholar] [CrossRef]
- Zhou, N.; Meng, D.; Huang, Z.; Welch, G. Dynamic State Estimation of a Synchronous Machine Using PMU Data: A Comparative Study. IEEE Trans. Smart Grid 2015, 6, 450–460. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, J.; Terzija, V.; Zhang, Y. Decentralized Data-Driven Estimation of Generator Rotor Speed and Inertia Constant Based on Adaptive Unscented Kalman Filter. Int. J. Electr. Power Energy Syst. 2022, 137, 107853. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Milano, F. On-Line Inertia Estimation for Synchronous and Non-Synchronous Devices. IEEE Trans. Power Syst. 2021, 36, 2693–2701. [Google Scholar] [CrossRef]
- Milano, F.; Ortega, A. A Method for Evaluating Frequency Regulation in an Electrical Grid—Part I: Theory. IEEE Trans. Power Syst. 2021, 36, 183–193. [Google Scholar] [CrossRef]
- Milano, F.; Ortega, A. A Method for Evaluating Frequency Regulation in an Electrical Grid—Part II: Applications to Non-Synchronous Devices. IEEE Trans. Power Syst. 2021, 36, 194–203. [Google Scholar] [CrossRef]
- Zhong, W.; Tzounas, G.; Liu, M.; Milano, F. On-line Inertia Estimation of Virtual Power Plants. Electr. Power Syst. Res. 2022, 212, 108336. [Google Scholar] [CrossRef]
- Conte, F.; D’Agostino, F.; Silvestro, F. Operational Constrained Nonlinear Modeling and Identification of Active Distribution Networks. Electr. Power Syst. Res. 2019, 168, 92–104. [Google Scholar] [CrossRef]
- Mat Zali, S.; Milanović, J.V. Generic Model of Active Distribution Network for Large Power System Stability Studies. IEEE Trans. Power Syst. 2013, 28, 3126–3133. [Google Scholar] [CrossRef]
- Renmu, H.; Jin, M.; Hill, D. Composite Load Modeling via Measurement Approach. IEEE Trans. Power Syst. 2006, 21, 663–672. [Google Scholar] [CrossRef]
- Regulski, P.; Vilchis-Rodriguez, D.S.; Djurović, S.; Terzija, V. Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method. IEEE Trans. Power Deliv. 2015, 30, 553–560. [Google Scholar] [CrossRef]
- Chakrabortty, A.; Chow, J.H.; Salazar, A. A Measurement-Based Framework for Dynamic Equivalencing of Large Power Systems Using Wide-Area Phasor Measurements. IEEE Trans. Smart Grid 2011, 2, 68–81. [Google Scholar] [CrossRef]
- Chavan, G.; Chakrabortty, A.; Bhattacharya, S.; Salazar, A.; Ashrafi, F.H. Identification and Predictive Analysis of a Multi-Area WECC Power System Model Using Synchrophasors. IEEE Trans. Smart Grid 2017, 8, 1977–1986. [Google Scholar] [CrossRef]
- Shiroei, M.; Mohammadi-Ivatloo, B.; Parniani, M. Low-order Dynamic Equivalent Estimation of Power Systems Using Data of Phasor Measurement Units. Int. J. Electr. Power Energy Syst. 2016, 47, 134–141. [Google Scholar] [CrossRef]
- Annakkage, U.D.; Nair, N.K.C.; Liang, Y.; Gole, A.M.; Dinavahi, V.; Gustavsen, B.; Noda, T.; Ghasemi, H.; Monti, A.; Matar, M.; et al. Dynamic System Equivalents: A Survey of Available Techniques. IEEE Trans. Power Deliv. 2012, 27, 411–420. [Google Scholar] [CrossRef]
- Cai, G.; Wang, B.; Yang, D.; Sun, Z.; Wang, L. Inertia Estimation Based on Observed Electromechanical Oscillation Response for Power Systems. IEEE Trans. Power Syst. 2016, 34, 4291–4299. [Google Scholar] [CrossRef]
- Yang, D.; Wang, B.; Ma, J.; Chen, Z.; Cai, G.; Sun, Z.; Wang, L. Ambient-Data-Driven Modal-Identification-Based Approach to Estimate the Inertia of an Interconnected Power System. IEEE Access 2020, 8, 118799–118807. [Google Scholar] [CrossRef]
- Yang, D.; Wang, B.; Cai, G.; Chen, Z.; Ma, J.; Sun, Z.; Wang, L. Data-Driven Estimation of Inertia for Multiarea Interconnected Power Systems Using Dynamic Mode Decomposition. IEEE Trans. Ind. Inform. 2021, 17, 2686–2695. [Google Scholar] [CrossRef]
- Wang, B.; Yang, D.; Cai, G.; Ma, J.; Chen, Z.; Wang, L. Online Inertia Estimation Using Electromechanical Oscillation Modal Extracted from Synchronized Ambient Data. J. Mod. Power Syst. Clean Energy 2022, 10, 241–244. [Google Scholar] [CrossRef]
- IEEE Task Force on Identification of Electromechanical Modes. Identification of Electromechanical Modes. Identification of Electromechanical Modes in Power Systems. In IEEE Power & Energy Society—Technical Report; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Guo, S.; Bialek, J. Synchronous machine inertia constants updating using Wide Area Measurements. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Guo, S.; Norris, S.; Bialek, J. Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information. IEEE Trans. Power Syst. 2014, 29, 2854–2861. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wang, X.; Ooi, B.T. Estimation of Inertia for Synchronous and Non-Synchronous Generators Based on Ambient Measurements. IEEE Trans. Power Syst. 2021, 37, 3747–3757. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Ooi, B.T. Online purely data-driven estimation of inertia and center-of-inertia frequency for power systems with VSC-interfaced energy sources. Int. J. Electr. Power Energy Syst. 2022, 137, 107643. [Google Scholar] [CrossRef]
- Gorbunov, A.; Dymarsky, A.; Bialek, J. Estimation of Parameters of a Dynamic Generator Model From Modal PMU Measurements. IEEE Trans. Power Syst. 2020, 35, 53–62. [Google Scholar] [CrossRef]
- Phurailatpam, C.; Rather, Z.H.; Bahrani, B.; Doolla, S. Estimation of Non-Synchronous Inertia in AC Microgrids. IEEE Trans. Sustain. Energy 2021, 12, 1903–1914. [Google Scholar] [CrossRef]
- Johnsson, V.; Samuelsson, O. Estimation of Power System Inertia from Electromechanical Modes. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020. [Google Scholar] [CrossRef]
- Tamrakar, U.; Copp, D.A.; Nguyen, T.A.; Hansen, T.M.; Tonkoski, R. Real-Time Estimation of Microgrid Inertia and Damping Constant. IEEE Access 2021, 9, 114523–114534. [Google Scholar] [CrossRef]
- Schiffer, J.; Aristidou, P.; Ortega, R. Online Estimation of Power System Inertia Using Dynamic Regressor Extension and Mixing. IEEE Trans. Power Syst. 2019, 34, 4993–5001. [Google Scholar] [CrossRef] [Green Version]
- Zografos, D.; Ghandhari, M.; Eriksson, R. Power System Inertia Estimation: Utilization of Frequency and Voltage Response After A Disturbance. Electr. Power Syst. Res. 2018, 161, 52–60. [Google Scholar] [CrossRef]
- Zografos, D.; Ghandhari, M. Estimation of Power System Inertia. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Inoue, T.; Taniguchi, H.; Ikeguchi, Y.; Yoshida, K. Estimation of Power System Inertia Constant and Capacity of Spinning-Reserve Support Generators Using Measured Frequency Transients. IEEE Trans. Power Syst. 1997, 12, 136–143. [Google Scholar] [CrossRef]
- Ashton, P.M.; Taylor, G.A.; Carter, A.M.; Bradley, M.E.; Hung, W. Application of phasor measurement units to estimate power system inertial frequency response. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, B.; Sun, H.; Li, W.; Yang, C.; Wei, W.; Zhao, B.; Xu, S. Power System Inertia Estimation Method Based on Maximum Frequency Deviation. IET Renew. Power Gener. 2022, 16, 622–633. [Google Scholar] [CrossRef]
- Phurailatpam, C.; Rather, Z.H.; Bahrani, B.; Doolla, S. Measurement-Based Estimation of Inertia in AC Microgrids. IEEE Trans. Sustain. Energy 2020, 11, 1975–1984. [Google Scholar] [CrossRef]
- Panda, R.K.; Mohapatra, A.; Srivastava, S.C. Online Estimation of System Inertia in a Power Network Utilizing Synchrophasor Measurements. IEEE Trans. Power Syst. 2020, 35, 3122–3132. [Google Scholar] [CrossRef]
- Du, P.; Makarov, Y. Using Disturbance Data to Monitor Primary Frequency Response for Power System Interconnections. IEEE Trans. Power Syst. 2014, 29, 1431–1432. [Google Scholar] [CrossRef]
- Chassin, D.; Huang, Z.; Donnelly, M.; Hassler, C.; Ramirez, E.; Ray, C. Estimation of WECC system inertia using observed frequency transients. IEEE Trans. Power Syst. 2005, 20, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Kontis, E.; Pasiopoulou, I.; Kirykos, D.; Papadopoulos, T.; Papagiannis, G. Estimation of Power System Inertia: A Comparative Assessment of Measurement-Based Techniques. Electr. Power Syst. Res. 2021, 196, 107250. [Google Scholar] [CrossRef]
- Ashton, P.M.; Saunders, C.S.; Taylor, G.A.; Carter, A.M.; Bradley, M.E. Inertia Estimation of the GB Power System Using Synchrophasor Measurements. IEEE Trans. Power Syst. 2015, 30, 701–709. [Google Scholar] [CrossRef]
- Wall, P.; Gonzalez-Longatt, F.; Terzija, V. Estimation of generator inertia available during a disturbance. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Del Giudice, D.; Grillo, S. Analysis of the Sensitivity of Extended Kalman Filter-Based Inertia Estimation Method to the Assumed Time of Disturbance. Energies 2019, 12, 483. [Google Scholar] [CrossRef] [Green Version]
- Tuttelberg, K.; Kilter, J.; Wilson, D.; Uhlen, K. Estimation of Power System Inertia From Ambient Wide Area Measurements. IEEE Trans. Power Syst. 2018, 33, 7249–7257. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Zhang, J.; Chen, G.; Wu, Z.; Huang, S.; Liang, Y. Online Estimation of Power System Inertia Constant Under Normal Operating Conditions. IEEE Access 2020, 8, 101426–101436. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, J.; Zhou, Y.; Qu, S. Online Identification of Inertia Distribution in Normal Operating Power System. IEEE Trans. Power Syst. 2020, 35, 3301–3304. [Google Scholar] [CrossRef]
- Makolo, P.; Oladeji, I.; Zamora, R.; Lie, T. Data-Driven Inertia Estimation Based on Frequency Gradient For Power Systems With High Penetration of Renewable Energy Sources. Electr. Power Syst. Res. 2021, 195, 107171. [Google Scholar] [CrossRef]
- Yang, D.; Cai, G.; Ma, J.; Tian, J.; Chen, Z.; Wang, L. Inertia-Adaptive Model Predictive Control-Based Load Frequency Control for Interconnected Power Systems With Wind Power. IET Gener. Transm. Distrib. 2020, 14, 5029–5036. [Google Scholar] [CrossRef]
- Perić, V.S.; Vanfretti, L. Power-System Ambient-Mode Estimation Considering Spectral Load Properties. IEEE Trans. Power Syst. 2014, 29, 1133–1143. [Google Scholar] [CrossRef]
- Schmitt, A.; Lee, B. Steady-state inertia estimation using a neural network approach with modal information. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Paidi, E.S.N.R.; Marzooghi, H.; Yu, J.; Terzija, V. Development and Validation of Artificial Neural Network-Based Tools for Forecasting of Power System Inertia With Wind Farms Penetration. IEEE Syst. J. 2020, 14, 4978–4989. [Google Scholar] [CrossRef]
- Poudyal, A.; Fourney, R.; Tonkoski, R.; Hansen, T.M.; Tamrakar, U.; Trevizan, R.D. Convolutional Neural Network-based Inertia Estimation Using Local Frequency Measurements. In Proceedings of the 52nd North America Power Symposium, Tempe, AZ, USA, 11–13 April 2021; pp. 1–6. [Google Scholar]
- Poudyal, A.; Tamrakar, U.; Trevizan, R.D.; Fourney, R.; Tonkoski, R.; Hansen, T.M. Multiarea Inertia Estimation Using Convolutional Neural Networks and Federated Learning. IEEE Syst. J. 2021, 99, 1–12. [Google Scholar] [CrossRef]
- Cao, X.; Stephen, B.; Abdulhadi, I.F.; Booth, C.D.; Burt, G.M. Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation. IEEE Trans. Power Syst. 2016, 31, 3394–3403. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.M.; Mirheydar, M. A Low-Order System Frequency Response Model. IEEE Trans. Power Syst. 1990, 5, 720–729. [Google Scholar] [CrossRef]
- DIgSILENT GmbH. DIgSILENT Solutions PowerFactory Version 20; DIgSILENT GmbH: Gomaringen, Germany, 2022. [Google Scholar]
- Available online: https://www2.kios.ucy.ac.cy/testsystems/ (accessed on 15 October 2022).
Method | Reference |
---|---|
#1 and/or #2 | [22,27,28,29,52,79,80,81,82,83,84,89] |
#3 and/or #4 | [13,39,75,88,92,93,94,95,96] |
#5 | [40,88,90,91] |
G1 | G2 | G3 | ||||
---|---|---|---|---|---|---|
K | (%) | K | (%) | K | (%) | |
Method #1 | 14 | 0.0106 | 23 | 0.0051 | 76 | 0.0244 |
Method #2 | 13 | 0.0168 | 57 | 0.0396 | 76 | 0.0244 |
Method #3 | 10 | 0.1231 | 11 | 0.1581 | 13 | 0.0224 |
Method #4 | 100 | 0.0044 | 31 | 0.1143 | 40 | 0.0164 |
G1 | G2 | G3 | |||||||
---|---|---|---|---|---|---|---|---|---|
W | B | (%) | W | B | (%) | W | B | (%) | |
Method #5 | 2 | 1 | 1.26 | 2 | 1 | 0.60 | 2 | 3 | 0.11 |
No Noise | SNR = 30 dB | SNR = 20 dB | |||
---|---|---|---|---|---|
G1 | 0.35 | 11.02 | 4.03 | 15.76 | 12.04 |
G2 | 0.66 | 10.25 | 5.51 | 17.53 | 14.90 |
G3 | 0.33 | 6.88 | 4.47 | 13.07 | 11.72 |
SNR = 30 dB | SNR = 20 dB | ||||||||
---|---|---|---|---|---|---|---|---|---|
K | (%) | K | (%) | ||||||
G1 | 55 | 45 | 0.62 | 3.28 | 50 | 40 | 1.35 | 5.89 | |
Method #1 | G2 | 10 | 3 | 0.81 | 3.06 | 27 | 30 | 2.66 | 7.66 |
G3 | 11 | 3 | 4.41 | 2.80 | 31 | 30 | 5.08 | 6.29 | |
G1 | 29 | 12 | 7.25 | 0.54 | 31 | 18 | 5.69 | 2.71 | |
Method #2 | G2 | 17 | 1 | 4.37 | 0.75 | 19 | 13 | 4.97 | 8.64 |
G3 | 19 | 1 | 0.61 | 0.61 | 21 | 11 | 2.37 | 8.35 | |
G1 | 23 | 9 | 4.30 | 4.17 | 37 | 21 | 4.74 | 5.58 | |
Method #3 | G2 | 27 | 12 | 4.70 | 5.70 | 38 | 15 | 5.61 | 6.28 |
G3 | 33 | 12 | 2.72 | 2.53 | 50 | 22 | 2.88 | 3.32 | |
G1 | 56 | 30 | 2.30 | 3.37 | 53 | 27 | 2.72 | 4.75 | |
Method #4 | G2 | 51 | 27 | 1.59 | 2.59 | 54 | 24 | 2.28 | 4.67 |
G3 | 52 | 25 | 0.83 | 1.76 | 59 | 24 | 1.51 | 3.66 |
SNR = 30 dB | SNR = 20 dB | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | B | (%) | W | B | (%) | |||||||
G1 | 2 | 1 | 4 | 1 | 5.21 | 5.54 | 6 | 5 | 6 | 5 | 7.56 | 20.7 |
G2 | 3 | 3 | 5 | 2 | 3.32 | 4.15 | 7 | 5 | 12 | 11 | 8.41 | 16.01 |
G3 | 5 | 4 | 7 | 4 | 0.99 | 2.17 | 11 | 7 | 9 | 7 | 6.31 | 17.54 |
Method #2 | Method #3 | Method #4 | |||||||
---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G1 | G2 | G3 | G1 | G2 | G3 | |
SNR = 30 dB | 52 | 29 | 32 | 61 | 52 | 63 | 26 | 48 | 55 |
SNR = 20 dB | 62 | 48 | 42 | 52 | 52 | 55 | 45 | 44 | 45 |
Disturbance Level (MW) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | ||
G1 | 85 | 85 | 82 | 7 | 14 | 12 | 10 | 67 | 65 | 65 | |
Method #1 | G2 | 35 | 26 | 25 | 23 | 23 | 18 | 20 | 22 | 21 | 22 |
G3 | 81 | 82 | 77 | 75 | 76 | 76 | 79 | 80 | 11 | 88 | |
G1 | 17 | 33 | 12 | 22 | 13 | 11 | 15 | 16 | 11 | 97 | |
Method #2 | G2 | 28 | 58 | 66 | 61 | 57 | 32 | 44 | 58 | 13 | 43 |
G3 | 52 | 11 | 49 | 81 | 76 | 75 | 73 | 100 | 11 | 99 | |
G1 | 10 | 10 | 9 | 9 | 10 | 10 | 9 | 9 | 9 | 9 | |
Method #3 | G2 | 9 | 12 | 9 | 9 | 11 | 9 | 17 | 9 | 14 | 10 |
G3 | 11 | 11 | 12 | 11 | 13 | 9 | 14 | 12 | 15 | 10 | |
G1 | 46 | 32 | 52 | 36 | 100 | 50 | 56 | 64 | 73 | 83 | |
Method #4 | G2 | 25 | 30 | 26 | 29 | 31 | 29 | 28 | 82 | 29 | 28 |
G3 | 30 | 40 | 38 | 39 | 40 | 40 | 40 | 40 | 41 | 41 |
Disturbance Level (MW) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Method #5 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | |
G1 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 3 | 1 | |
G2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 1 | |
G3 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | |
G1 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | |
G2 | 4 | 3 | 4 | 2 | 5 | 3 | 2 | 2 | 3 | 4 | |
G3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Disturbance Location | B5 | B6 | B7 | |||
---|---|---|---|---|---|---|
G1 | 2 | 1 | 2 | 1 | 2 | 4 |
G2 | 2 | 1 | 4 | 3 | 4 | 1 |
G3 | 2 | 3 | 2 | 1 | 2 | 1 |
Method #1 | Method #2 | Method #3 | Method #4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G1 | G2 | G3 | G1 | G2 | G3 | G1 | G2 | G3 | |
15.36 | 9.49 | 12.63 | 15.48 | 6.37 | 7.23 | 6.96 | 7.86 | 4.88 | 5.95 | 6.58 | 4.89 | |
9.59 | 13.01 | 12.30 | 4.49 | 2.91 | 2.11 | 4.02 | 7.70 | 4.51 | 4.77 | 5.98 | 4.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimoulias, S.C.; Kontis, E.O.; Papagiannis, G.K. Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches. Energies 2022, 15, 7767. https://doi.org/10.3390/en15207767
Dimoulias SC, Kontis EO, Papagiannis GK. Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches. Energies. 2022; 15(20):7767. https://doi.org/10.3390/en15207767
Chicago/Turabian StyleDimoulias, Stelios C., Eleftherios O. Kontis, and Grigoris K. Papagiannis. 2022. "Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches" Energies 15, no. 20: 7767. https://doi.org/10.3390/en15207767
APA StyleDimoulias, S. C., Kontis, E. O., & Papagiannis, G. K. (2022). Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches. Energies, 15(20), 7767. https://doi.org/10.3390/en15207767