Urban Energy Management—A Systematic Literature Review
Abstract
:1. Introduction
2. Theoretical Background and Previous Studies
3. Research Method
3.1. Research Subject
3.2. Systematic Review
4. Results and Discussion
4.1. Results of Research Method Analysis
4.2. Results of Research Content Analysis
4.2.1. Urban Energy Management
4.2.2. Waste Management and Green Energy
4.2.3. Urban Traffic Management
4.2.4. Smart City/Sustainability
4.2.5. Smart Grids
4.2.6. Technology and Infrastructure
4.2.7. Building Energy Performance
4.2.8. Carbon/Gas Emission
4.2.9. City/Region and Country
4.2.10. State Policy/Governance
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 21 October 2008).
- European Commission. Joint Communication to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU External Energy Engagement in a Changing World; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Official Journal of the European Union, Document 32018R1999, REGULATION (EU) 2018/1999 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the Governance of the Energy Union and Climate Action, Amending Regulations (EC) No 663/2009 and (EC) No 715/2009 of the European Parliament and of the Council, Directives 94/22/EC, 98/70/EC, 2009/31/EC, 2009/73/EC, 2010/31/EU, 2012/27/EU and 2013/30/EU of the European Parliament and of the Council, Council Directives 2009/119/EC and (EU) 2015/652 and Repealing Regulation (EU) No 525/2013 of the European Parliament and of the Council 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.328.01.0001.01.ENG (accessed on 15 September 2022).
- Kamal-Chaoui, L.; Robert, A. Competitive cities and climate change. In OECD Regional Development Working Papers; OECD Publishing: Paris, France, 2009; p. 172. [Google Scholar]
- Demographia World Urban Areas. Built-Up Urban Areas or Urban Agglomerations 18th Annual Edition. 2022. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 15 September 2022).
- The Global Urban Economic Dialogue Series. The Economic Role of Cities. 2011. Available online: http://urban-intergroup.eu/wp-content/files_mf/economicroleofcities_unhabitat11.pdf (accessed on 10 September 2022).
- The World Bank. Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment (accessed on 23 August 2022).
- Sodiq, A.; Baloch, A.A.B.; Khan, S.A.; Sezer, N.; Mahmoud, S.; Jama, M.; Abdelaal, A. Towards modern sustainable cities: Review of Sustainability principles and trends. J. Clean. Prod. 2019, 227, 972–1001. [Google Scholar] [CrossRef]
- Branny, A.; Møller, M.S.; Korpilo, S.; McPhearson, T.; Gulsrud, N.; Olafsson, A.S.; Raymond, C.M.; Andersson, E. Smarter greener cities through a social-ecological-technological systems approach. Curr. Opin. Environ. Sustain. 2022, 55, 101168. [Google Scholar] [CrossRef]
- Leiva, J.; Palacios, A.; Aguado, J.A. Smart metering trends, implications and necessities: A policy review. Renew. Sustain. Energy Rev. 2016, 55, 227–233. [Google Scholar] [CrossRef]
- Sharif, R.A.; Pokharel, S. Smart city dimensions and associated risks: Review of literature. Sustain. Cities Soc. 2022, 77, 103542. [Google Scholar] [CrossRef]
- Sarker, I.H. Smart city data science: Towards data-driven smart cities with open research issues. Internet Things 2022, 19, 100528. [Google Scholar] [CrossRef]
- Deakin, M.; Reid, A. Smart cities: Under-gridding the sustainability of city-districts as energy efficient-low carbon zones. J. Clean. Prod. 2018, 173, 39–48. [Google Scholar] [CrossRef]
- Kristensen, M.H.; Hedegaard, R.E.; Petersen, S. Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling. Energy 2020, 201, 117687. [Google Scholar] [CrossRef]
- Vadiati, N. Alternatives to smart cities: A call for consideration of grassroots digital urbanism. Digit. Geogr. Soc. 2022, 3, 100030. [Google Scholar] [CrossRef]
- Guo, M.; Xia, M.; Chen, Q. A review of regional energy internet in smart city from the perspective of energy community. Energy Rep. 2022, 8, 161–182. [Google Scholar] [CrossRef]
- Valencia, A.; Zhang, W.; Chang, N.-B. Sustainability transitions of urban food-energy-water-waste infrastructure: A living laboratory approach for circular economy. Resour. Conserv. Recycl. 2022, 177, 105991. [Google Scholar] [CrossRef]
- da Silva, L.; Marques Prietto, P.D.; Pavan Korf, E. Sustainability indicators for urban solid waste management in large and medium-sized worldwide cities. J. Clean. Prod. 2019, 237, 117802. [Google Scholar] [CrossRef]
- García-Gil, A.; Muela Maya, S.; Garrido Schneider, E.; Mejías Moreno, M.; Vázquez-Suñé, E.; Marazuela, M.Á.; Mateo Lázaro, J.; Sánchez-Navarro, J.Á. Sustainability Indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers. Renew. Energy 2019, 134, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Kroh, J. Sustain(able) urban (eco)systems: Stakeholder-related success factors in urban innovation projects. Technol. Forecast. Soc. Change 2021, 168, 120767. [Google Scholar] [CrossRef]
- Xu, Y.-C.; Li, X.-H.; Ren, K.; Chai, L.-H. Structures of urban carbon cycle based on network indicators: Cases of typical cities in China. J. Clean. Prod. 2021, 282, 125405. [Google Scholar] [CrossRef]
- Haraguchi, M.; Siddiqi, A.; Narayanamurti, V. Stochastic cost-benefit analysis of urban waste-to-energy systems. J. Clean. Prod. 2019, 224, 751–765. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy Management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Suciu, R.; Girardin, L.; Maréchal, F. Energy integration of CO2 networks and power to gas for emerging energy autonomous cities in Europe. Energy 2018, 157, 830–842. [Google Scholar] [CrossRef]
- Ohnishi, S.; Fujii, M.; Ohata, M.; Rokuta, I.; Fujita, T. Efficient energy recovery through a combination of waste-to-energy systems for a low-carbon city. Resour. Conserv. Recycl. 2018, 128, 394–405. [Google Scholar] [CrossRef]
- Li, B. Effective energy utilization through economic development for sustainable management in smart cities. Energy Rep. 2022, 8, 4975–4987. [Google Scholar] [CrossRef]
- Xia, X.; Wu, X.; BalaMurugan, S.; Karuppiah, M. Effect of environmental and social responsibility in energy-efficient management models for smart cities infrastructure. Sustain. Energy Technol. Assess. 2021, 47, 101525. [Google Scholar] [CrossRef]
- Teotónio, I.; Silva, C.M.; Cruz, C.O. Eco-solutions for urban environments regeneration: The economic value of green roofs. J. Clean. Prod. 2018, 199, 121–135. [Google Scholar] [CrossRef]
- Letnik, T.; Farina, A.; Mencinger, M.; Lupi, M.; Božičnik, S. Dynamic management of loading bays for energy efficient urban freight deliveries. Energy 2018, 159, 916–928. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2021; IEA: Indianapolis, IN, USA, 2021; Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 4 July 2022).
- OECD. Energy. 2011. Available online: https://www.oecd-ilibrary.org/energy/world-energy-outlook-2011_weo-2011-en (accessed on 12 June 2022).
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef] [Green Version]
- Boyko, C.T.; Gaterell, M.R.; Barber, A.R.G.; Brown, J.; Bryson, J.R.; Butler, D.; Caputo, S.; Caserio, M.; Coles, R.; Cooper, R.; et al. Benchmarking sustainability in cities: The role of indicators and future scenarios. Glob. Environ. Chang. 2012, 22, 245–254. [Google Scholar] [CrossRef]
- Ahern, J. Sustainable urban landscapes: The Surrey Design Charrette: Patrick M. Condon (Ed.); University of British Columbia Press, Vancouver, British Columbia, 1996, 96 pp. Landsc. Urban Plan. 2000, 50, 271–273. [Google Scholar] [CrossRef]
- Sanders, A.E.; Lim, S.; Sohn, W. Resilience to urban poverty: Theoretical and empirical considerations for population health. Am. J. Public Health 2008, 98, 1101–1106. [Google Scholar] [CrossRef]
- Rijke, J.; Farrelly, M.; Brown, R.; Zevenbergen, C. Configuring transformative governance to enhance resilient urban water systems. Environ. Sci. Policy 2013, 25, 62–72. [Google Scholar] [CrossRef]
- Wallace, D.; Wallace, R. Urban systems during disasters. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- Rutherford, J.; Coutard, O. Urban energy transitions: Places, processes and politics of socio-technical change. Urban Stud. 2014, 51, 1353–1377. [Google Scholar] [CrossRef]
- Abbasabadi, N.; Ashayeri, M. Urban energy use modeling methods and tools: A review and an outlook. Build. Environ. 2019, 161, 106270. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.M.; Mels, A.R.; Keesman, K.J.; Rijnaarts, H.H.M. Resource management as a key factor for sustainable urban planning. J. Environ. Manag. 2011, 92, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Xianchun, Z.; Zhuoran, S. The research review of land-use and land-management problems in the joint of urban and rural area for the last two decades. Energy Procedia 2012, 16, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Koo, C.; Kim, J.; Lee, M.; Jeong, K. A Review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase. Appl. Energy 2015, 155, 671–707. [Google Scholar] [CrossRef]
- Jaccard, M. Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Clean and Enduring Energy, 2006th ed.; Cambridge University Press: Cambridge, UK, 2006; ISBN 0-521-67979-6. [Google Scholar]
- Keirstead, J.; Jennings, M.; Sivakumar, A. A review of urban energy system models: Approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef] [Green Version]
- Manfren, M.; Caputo, P.; Costa, G. Paradigm shift in urban energy systems through distributed generation: Methods and models. Appl. Energy 2011, 88, 1032–1048. [Google Scholar] [CrossRef]
- Sahin, O.; Stewart, R.A.; Giurco, D.; Porter, M.G. Renewable hydropower generation as a co-benefit of balanced urban water portfolio management and flood risk mitigation. Renew. Sustain. Energy Rev. 2017, 68, 1076–1087. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.N. Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh. Renew. Sustain. Energy Rev. 2018, 81, 2472–2486. [Google Scholar] [CrossRef]
- Theodoridou, I.; Karteris, M.; Mallinis, G.; Papadopoulos, A.M.; Hegger, M. Assessment of retrofitting measures and solar systems’ potential in urban areas using geographical information systems: Application to a Mediterranean city. Renew. Sustain. Energy Rev. 2012, 16, 6239–6261. [Google Scholar] [CrossRef]
- Tanko, A.I. Urban energy challenges in Sub-Saharan Africa. Curr. Opin. Environ. Sustain. 2016, 20, 80–85. [Google Scholar] [CrossRef]
- Lehmann, S. Implementing the urban nexus approach for improved resource-efficiency of developing cities in Southeast-Asia. City Cult. Soc. 2018, 13, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Dua, A.; Singh, M.; Kumar, N.; Prakash, S. Fuzzy rough set based energy management system for self-sustainable smart city. Renew. Sustain. Energy Rev. 2018, 82, 3633–3644. [Google Scholar] [CrossRef]
- Lohri, C.R.; Rajabu, H.M.; Sweeney, D.J.; Zurbrügg, C. Char fuel production in developing countries—A review of urban biowaste carbonization. Renew. Sustain. Energy Rev. 2016, 59, 1514–1530. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Q.; Ren, J.; Gao, W. Cost-effectiveness analysis of local energy management based on urban—Rural cooperation in China. Appl. Therm. Eng. 2014, 64, 224–232. [Google Scholar] [CrossRef]
- Pincetl, S.; Bunje, P.; Holmes, T. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 2012, 107, 193–202. [Google Scholar] [CrossRef]
- El-Sayed Mohamed Mahgoub, M.; van der Steen, N.P.; Abu-Zeid, K.; Vairavamoorthy, K. Towards sustainability in urban water: A life cycle analysis of the urban water system of Alexandria City, Egypt. J. Clean. Prod. 2010, 18, 1100–1106. [Google Scholar] [CrossRef]
- Spatari, S.; Yu, Z.; Montalto, F.A. Life cycle implications of urban green infrastructure. Environ. Pollut. 2011, 159, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
- Loubet, P.; Roux, P.; Loiseau, E.; Bellon-Maurel, V. Life Cycle Assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. Water Res. 2014, 67, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, A.; Gabarrell, X.; Rieradevall, J. LCA of selective waste collection systems in dense urban areas. Waste Manag. 2009, 29, 903–914. [Google Scholar] [CrossRef]
- Slagstad, H.; Brattebø, H. LCA for household waste management when planning a new urban settlement. Waste Manag. 2012, 32, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Opher, T.; Friedler, E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. J. Environ. Manag. 2016, 182, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Myeong, S.; Park, J.; Lee, M. Research models and methodologies on the smart city: A systematic literature review. Sustainability 2022, 14, 1687. [Google Scholar] [CrossRef]
- Lim, C.; Cho, G.-H.; Kim, J. Understanding the linkages of smart-city technologies and applications: Key lessons from a text mining approach and a call for future research. Technol. Forecast. Soc. Chang. 2021, 170, 120893. [Google Scholar] [CrossRef]
- Vergara-Araya, M.; Lehn, H.; Poganietz, W.-R. Integrated water, waste and energy management systems—A case study from Curauma, Chile. Resour. Conserv. Recycl. 2020, 156, 104725. [Google Scholar] [CrossRef]
- Gassner, A.; Lederer, J.; Kovacic, G.; Mollay, U.; Schremmer, C.; Fellner, J. Projection of material flows and stocks in the urban transport sector until 2050—A scenario-based analysis for the City of Vienna. J. Clean. Prod. 2021, 311, 127591. [Google Scholar] [CrossRef]
- Chen, C.; Long, H.; Zeng, X. Planning a sustainable urban electric power system with considering effects of new energy resources and clean production levels under uncertainty: A case study of Tianjin, China. J. Clean. Prod. 2018, 173, 67–81. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Song, Q.; Duan, H.; Yu, D.; Li, J.; Wang, C.; Zuo, J. Characterizing the essential materials and energy performance of city buildings: A case study of Macau. J. Clean. Prod. 2018, 194, 263–276. [Google Scholar] [CrossRef]
- Tissen, C.; Menberg, K.; Benz, S.A.; Bayer, P.; Steiner, C.; Götzl, G.; Blum, P. Identifying key locations for shallow geothermal use in Vienna. Renew. Energy 2021, 167, 1–19. [Google Scholar] [CrossRef]
- Soriano, L.; Rubió, J. Impacts of combined sewer overflows on surface water bodies. The case study of the Ebro River in Zaragoza City. J. Clean. Prod. 2019, 226, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, B. Three-tier carbon accounting model for cities. Appl. Energy 2018, 229, 163–175. [Google Scholar] [CrossRef]
- Epting, J.; Baralis, M.; Künze, R.; Mueller, M.H.; Insana, A.; Barla, M.; Huggenberger, P. Geothermal potential of tunnel infrastructures—Development of tools at the city-scale of Basel, Switzerland. Geothermics 2020, 83, 101734. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Hao, Y.; Zhang, P.; Xiong, X.; Shi, Z. System dynamics modeling of food-energy-water resource security in a megacity of China: Insights from the case of Beijing. J. Clean. Prod. 2022, 355, 131773. [Google Scholar] [CrossRef]
- Cooper, C.M.; Troutman, J.P.; Awal, R.; Habibi, H.; Fares, A. Climate change-induced variations in blue and green water usage in U.S. urban agriculture. J. Clean. Prod. 2022, 348, 131326. [Google Scholar] [CrossRef]
- Mohajeri, N.; Perera, A.T.D.; Coccolo, S.; Mosca, L.; Le Guen, M.; Scartezzini, J.-L. Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050. Renew. Energy 2019, 143, 810–826. [Google Scholar] [CrossRef]
- Lin, J.; Kang, J.; Bai, X.; Li, H.; Lv, X.; Kou, L. Modeling the urban water-energy nexus: A case study of Xiamen, China. J. Clean. Prod. 2019, 215, 680–688. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, C.; Zhang, J.; Guo, H.; Zhou, N.; Zhao, D. Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China. Appl. Energy 2019, 251, 113369. [Google Scholar] [CrossRef]
- Xie, S.; Hu, X.; Zhang, Q.; Lin, X.; Mu, B.; Ji, H. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. J. Power Sources 2020, 450, 227638. [Google Scholar] [CrossRef]
- Jain, S.; Singhal, S.; Pandey, S. Environmental life cycle assessment of construction and demolition waste recycling: A case of urban India. Resour. Conserv. Recycl. 2020, 155, 104642. [Google Scholar] [CrossRef]
- Sereenonchai, S.; Arunrat, N.; Stewart, T.N. Low-carbon city communication: Integrated strategies for urban and rural municipalities in Thailand. Chin. J. Popul. Resour. Environ. 2020, 18, 16–25. [Google Scholar] [CrossRef]
- Fuldauer, L.I.; Parker, B.M.; Yaman, R.; Borrion, A. Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. J. Clean. Prod. 2018, 185, 929–940. [Google Scholar] [CrossRef]
- Salvia, G.; Morello, E. Sharing cities and citizens sharing: Perceptions and practices in Milan. Cities 2020, 98, 102592. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Manteiga, R.; Moreira, M.T.; Feijoo, G. Assessing the sustainability of Spanish cities considering environmental and socio-economic indicators. J. Clean. Prod. 2018, 178, 599–610. [Google Scholar] [CrossRef]
- Burke, J.; Gras Alomà, R.; Yu, F.; Kruguer, J. Geospatial analysis framework for evaluating urban design typologies in relation with the 15-minute city standards. J. Bus. Res. 2022, 151, 651–667. [Google Scholar] [CrossRef]
- Huovila, A.; Bosch, P.; Airaksinen, M. Comparative analysis of standardized indicators for smart sustainable cities: What indicators and standards to use and when? Cities 2019, 89, 141–153. [Google Scholar] [CrossRef]
- Talandier, M. Are there urban contexts that are favourable to decentralised energy management? Cities 2018, 82, 45–57. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, J.; Li, Z.; Ding, Y. Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model. Energy 2022, 249, 123631. [Google Scholar] [CrossRef]
- Chang, I.-S.; Zhao, M.; Chen, Y.; Guo, X.; Zhu, Y.; Wu, J.; Yuan, T. Evaluation on the integrated water resources management in China’s major cities—Based on City Blueprint® Approach. J. Clean. Prod. 2020, 262, 121410. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, L.; Zou, X.; Fujii, M.; Dong, L.; Dou, Y.; Geng, Y.; Wang, F. Towards a zero waste city—An analysis from the perspective of energy recovery and landfill reduction in Beijing. Energy 2021, 223, 120055. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating carbon emissions in urban functional zones using multi-source data: A case study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Fernández, R.Á.; Caraballo, S.C.; López, F.C. A Probabilistic approach for determining the influence of urban traffic management policies on energy consumption and greenhouse gas emissions from a battery electric vehicle. J. Clean. Prod. 2019, 236, 117604. [Google Scholar] [CrossRef]
- Lu, C.-W.; Huang, J.-C.; Chen, C.; Shu, M.-H.; Hsu, C.-W.; Tapas Bapu, B.R. An energy-efficient smart city for sustainable green tourism industry. Sustain. Energy Technol. Assess. 2021, 47, 101494. [Google Scholar] [CrossRef]
- Chaker, M.; Berezowska-Azzag, E.; Perrotti, D. Exploring the performances of urban local symbiosis strategy in Algiers, between a potential of energy use optimization and CO2 emissions mitigation. J. Clean. Prod. 2021, 292, 125850. [Google Scholar] [CrossRef]
- Comino, E.; Dominici, L.; Ambrogio, F.; Rosso, M. Mini-hydro power plant for the improvement of urban water-energy nexus toward sustainability—A case study. J. Clean. Prod. 2020, 249, 119416. [Google Scholar] [CrossRef]
- Gholami, M.; Torreggiani, D.; Tassinari, P.; Barbaresi, A. Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method. Renew. Sustain. Energy Rev. 2021, 148, 111312. [Google Scholar] [CrossRef]
- Lu, H.; Wu, X.; Liu, Q. Energy metering for the urban gas system: A case study in China. Energy Rep. 2019, 5, 1261–1269. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, L.; Pan, S.-Y.; Chiang, P.-C.; Sable, S.S.; Shah, K.J. Integration of green and gray infrastructures for Sponge City: Water and energy nexus. Water-Energy Nexus 2020, 3, 29–40. [Google Scholar] [CrossRef]
- Hunt, J.D.; Nascimento, A.; Zakeri, B.; Jurasz, J.; Dąbek, P.B.; Barbosa, P.S.F.; Brandão, R.; de Castro, N.J.; Leal Filho, W.; Riahi, K. Lift energy storage technology: A solution for decentralized urban energy storage. Energy 2022, 254, 124102. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A. The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two European cities. J. Clean. Prod. 2020, 244, 118490. [Google Scholar] [CrossRef]
- González-Zeas, D.; Rosero-López, D.; Muñoz, T.; Osorio, R.; De Bièvre, B.; Dangles, O. Making thirsty cities sustainable: A nexus approach for water provisioning in Quito, Ecuador. J. Environ. Manag. 2022, 320, 115880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, M.; Bi, J. Urban greenhouse gas emission peaking paths and embedded health co-benefits: A multicases comparison study in China. Appl. Energy 2022, 311, 118740. [Google Scholar] [CrossRef]
- Ouyang, X.; Mao, X.; Sun, C.; Du, K. Industrial energy efficiency and driving forces behind efficiency improvement: Evidence from the Pearl River delta urban agglomeration in China. J. Clean. Prod. 2019, 220, 899–909. [Google Scholar] [CrossRef]
- Manzolli, J.A.; Trovão, J.P.; Antunes, C.H. A review of electric bus vehicles research topics—Methods and trends. Renew. Sustain. Energy Rev. 2022, 159, 112211. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Torrens, A.; Buttiglieri, G.; Monclús, H.; Arias, C.A.; Carvalho, P.N.; Galvao, A.; Comas, J. Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. J. Clean. Prod. 2022, 340, 130660. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, K.; Hong, B.; Xu, X.; Chen, J.; Wang, W. A data-driven framework for abnormally high building energy demand detection with weather and block morphology at community scale. J. Clean. Prod. 2022, 354, 131602. [Google Scholar] [CrossRef]
- Li, W.; Yigitcanlar, T.; Liu, A.; Erol, I. Mapping two decades of smart home research: A systematic scientometric analysis. Technol. Forecast. Soc. Change 2022, 179, 121676. [Google Scholar] [CrossRef]
- Joensuu, T.; Edelman, H.; Saari, A. Circular economy practices in the built environment. J. Clean. Prod. 2020, 276, 124215. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Shen, J.; Mo, Z.; Peng, Y. Smart city with Chinese Characteristics against the background of big data: Idea, action and risk. J. Clean. Prod. 2018, 173, 60–66. [Google Scholar] [CrossRef]
- Sun, L.; Fujii, M.; Li, Z.; Dong, H.; Geng, Y.; Liu, Z.; Fujita, T.; Yu, X.; Zhang, Y. Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city. Technol. Forecast. Soc. Chang. 2020, 151, 119853. [Google Scholar] [CrossRef]
- Ferla, G.; Caputo, P.; Colaninno, N.; Morello, E. Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan. Renew. Energy 2020, 160, 185–195. [Google Scholar] [CrossRef]
- Aparisi-Cerdá, I.; Ribó-Pérez, D.; Cuesta-Fernandez, I.; Gómez-Navarro, T. Planning positive energy districts in urban water fronts: Approach to La Marina de València, Spain. Energy Convers. Manag. 2022, 265, 115795. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Li, X.; Wang, H.; Yan, J.; Wang, X.; Wu, J.; Li, F. Understanding the water-energy nexus in urban water supply systems with city features. Energy Procedia 2018, 152, 265–270. [Google Scholar] [CrossRef]
- Epting, J.; Böttcher, F.; Mueller, M.H.; García-Gil, A.; Zosseder, K.; Huggenberger, P. City-scale solutions for the energy use of shallow urban subsurface resources—Bridging the gap between theoretical and technical potentials. Renew. Energy 2020, 147, 751–763. [Google Scholar] [CrossRef]
- Epting, J.; Müller, M.H.; Genske, D.; Huggenberger, P. Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management. Appl. Energy 2018, 228, 1499–1505. [Google Scholar] [CrossRef]
- Bevilacqua, P. The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results. Renew. Sustain. Energy Rev. 2021, 151, 111523. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Yang, X.; He, Y.; Hu, Z.; Xu, T.; Jiang, Z.; Yao, L. Thermal and energy performance of two distinct green roofs: Temporal pattern and underlying factors in a subtropical climate. Energy Build. 2019, 185, 247–258. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Song, J.; Wang, S.; Liu, X. Uncovering regional energy and environmental benefits of urban waste utilization: A physical input-output analysis for a city case. J. Clean. Prod. 2018, 189, 922–932. [Google Scholar] [CrossRef]
- Padilha, J.L.; Mesquita, A.L.A. Waste-to-energy effect in municipal solid waste treatment for small cities in Brazil. Energy Convers. Manag. 2022, 265, 115743. [Google Scholar] [CrossRef]
- Pasimeni, M.R.; Valente, D.; Zurlini, G.; Petrosillo, I. The interplay between urban mitigation and adaptation strategies to face climate change in two European countries. Environ. Sci. Policy 2019, 95, 20–27. [Google Scholar] [CrossRef]
- Artur, C.; Neves, D.; Cuamba, B.C.; Leão, A.J. Domestic hot water technology transition for solar thermal systems: An assessment for the urban areas of Maputo City, Mozambique. J. Clean. Prod. 2020, 260, 121043. [Google Scholar] [CrossRef]
- Voca, N.; Ribic, B. Biofuel production and utilization through smart and sustainable biowaste management. J. Clean. Prod. 2020, 259, 120742. [Google Scholar] [CrossRef]
- Kuznetsova, E.; Cardin, M.-A.; Diao, M.; Zhang, S. Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renew. Sustain. Energy Rev. 2019, 103, 477–500. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, Y.; Yang, H.; Wu, H. Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Appl. Energy 2022, 321, 119312. [Google Scholar] [CrossRef]
- Ding, K.J.; Gilligan, J.M.; Yang, Y.C.E.; Wolski, P.; Hornberger, G.M. Assessing food–energy–water resources management strategies at city scale: An agent-based modeling approach for Cape Town, South Africa. Resour. Conserv. Recycl. 2021, 170, 105573. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Meng, F.; He, P.; Seto, K.C. Understanding and conceptualizing how urban green and blue infrastructure affects the food, water, and energy nexus: A synthesis of the literature. J. Clean. Prod. 2021, 289, 125825. [Google Scholar] [CrossRef]
- Nishimwe, A.M.R.; Reiter, S. Building heat consumption and heat demand assessment, characterization, and mapping on a regional scale: A case study of the walloon building stock in Belgium. Renew. Sustain. Energy Rev. 2021, 135, 110170. [Google Scholar] [CrossRef]
- Shah, K.J.; Pan, S.-Y.; Lee, I.; Kim, H.; You, Z.; Zheng, J.-M.; Chiang, P.-C. Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. J. Clean. Prod. 2021, 326, 129392. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, S.; Zhang, J.; Bao, S.; Wu, X.; Yang, D.; Wu, Y. Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data. Appl. Energy 2020, 260, 114357. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, H.; Dong, L.; Park, H.-S.; Zhang, Y.; Xu, Y. Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China. Technol. Forecast. Soc. Change 2019, 144, 103–117. [Google Scholar] [CrossRef]
- Braga, I.F.B.; Ferreira, F.A.F.; Ferreira, J.J.M.; Correia, R.J.C.; Pereira, L.F.; Falcão, P.F. A DEMATEL analysis of smart city determinants. Technol. Soc. 2021, 66, 101687. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-Energy-Water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recycl. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Rostampour, V.; Jaxa-Rozen, M.; Bloemendal, M.; Kwakkel, J.; Keviczky, T. Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution. Appl. Energy 2019, 242, 624–639. [Google Scholar] [CrossRef]
- Lim, H.; Zhai, Z. Estimating unknown parameters of a building stock using a stochastic-deterministic-coupled approach. Energy Build. 2022, 255, 111673. [Google Scholar] [CrossRef]
- Kang, H.; Jung, S.; Lee, M.; Hong, T. How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city. Renew. Sustain. Energy Rev. 2022, 157, 112113. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C. Developing a high-resolution emission inventory tool for low-carbon city management using hybrid method—A pilot test in high-density Hong Kong. Energy Build. 2020, 226, 110376. [Google Scholar] [CrossRef]
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in Cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Bai, M.; Krumdieck, S. Transition engineering of transport in megacities with case study on commuting in Beijing. Cities 2020, 96, 102452. [Google Scholar] [CrossRef]
- Slovic, A.D.; Ribeiro, H. Policy instruments surrounding urban air quality: The cases of São Paulo, New York City and Paris. Environ. Sci. Policy 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Nhamo, L.; Rwizi, L.; Mpandeli, S.; Botai, J.; Magidi, J.; Tazvinga, H.; Sobratee, N.; Liphadzi, S.; Naidoo, D.; Modi, A.T.; et al. Urban nexus and transformative pathways towards a resilient Gauteng City-Region, South Africa. Cities 2021, 116, 103266. [Google Scholar] [CrossRef]
- Vogel, R.K.; Savitch, H.V.; Xu, J.; Yeh, A.G.O.; Wu, W.; Sancton, A.; Kantor, P.; Newman, P.; Tsukamoto, T.; Cheung, P.T.Y.; et al. Governing global city regions in China and the West. Prog. Plan. 2010, 73, 1–75. [Google Scholar] [CrossRef]
- Weber, G.; Cabras, I.; Frahm, L.-G. De-privatisation and remunicipalisation of urban services through the pendulum swing: Evidence from Germany. J. Clean. Prod. 2019, 236, 117555. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.; Wang, T.; Dai, X.; Baninla, Y.; Nakatani, J.; Moriguchi, Y. Urbanization impacts on Greenhouse Gas (GHG) emissions of the water infrastructure in China: Trade-offs among Sustainable Development Goals (SDGs). J. Clean. Prod. 2019, 232, 474–486. [Google Scholar] [CrossRef]
- Hao, J.; Zhu, J.; Zhong, R. The rise of big data on urban studies and planning practices in China: Review and open research issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef] [Green Version]
- Zamorano, M.; Ignacio Pérez Pérez, J.; Aguilar Pavés, I.; Ramos Ridao, Á. Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew. Sustain. Energy Rev. 2007, 11, 909–922. [Google Scholar] [CrossRef]
- Fernández, M.E.; Gentili, J.O.; Campo, A.M. Solar access: Review of the effective legal framework for an average Argentine City. Renew. Sustain. Energy Rev. 2022, 156, 112008. [Google Scholar] [CrossRef]
- Strasser, H.; Kimman, J.; Koch, A.; Mair am Tinkhof, O.; Müller, D.; Schiefelbein, J.; Slotterback, C. IEA EBC Annex 63–Implementation of energy strategies in communities. Energy Build. 2018, 158, 123–134. [Google Scholar] [CrossRef]
Items | Contents |
---|---|
Keyword | ‘urban energy management’ and ‘city energy management’ |
Subject areas | energy, business, management, and accounting |
Language | English |
Document type | review articles, research articles |
Source | Science Direct database |
Time interval | 2018–2022 |
Journals | Count | Rate (%) |
---|---|---|
Journal of Cleaner Production | 63 | 34.1 |
Energy | 13 | 7.0 |
Applied Energy | 13 | 7.0 |
Renewable and Sustainable Energy Reviews | 10 | 5.4 |
Energy and Buildings | 9 | 4.9 |
Renewable Energy | 9 | 4.9 |
Resources, Conservation and Recycling | 9 | 4.9 |
Cities | 6 | 3.2 |
Technological Forecasting and Social Change | 5 | 2.7 |
Journal of Environmental Management | 5 | 2.7 |
Energy Reports | 5 | 2.7 |
Energy Procedia | 4 | 2.2 |
Energy Conversion and Management | 3 | 1.6 |
Environmental Impact Assessment Review | 3 | 1.6 |
Environmental Science & Policy | 3 | 1.6 |
International Journal of Hydrogen Energy | 2 | 1.1 |
Geothermics | 2 | 1.1 |
Sustainable Energy Technologies and Assessments | 2 | 1.1 |
Water-Energy Nexus | 2 | 1.1 |
Chinese Journal of Population, Resources and Environment | 2 | 1.1 |
Journal of Power Sources | 1 | 0.5 |
Building and Environment | 1 | 0.5 |
Journal of Business Research | 1 | 0.5 |
Technology in Society | 1 | 0.5 |
Futures | 1 | 0.5 |
Others | 10 | 5.4 |
Total | 185 | 100.0 |
Year | Total |
---|---|
2022 | 40 |
2021 | 30 |
2020 | 39 |
2019 | 33 |
2018 | 43 |
Total | 185 |
Year | Quantitative | Qualitative | Mixed | Total |
---|---|---|---|---|
2018 | 25 | 4 | 14 | 43 |
2019 | 19 | 1 | 13 | 33 |
2020 | 29 | 2 | 8 | 39 |
2021 | 24 | 2 | 4 | 30 |
2022 | 29 | 4 | 7 | 40 |
Total | 126 | 13 | 46 | 185 |
Year | Interview | Case Study | Survey | Experiment/Model | Literature Study | Total |
---|---|---|---|---|---|---|
2018 | 0 | 28 | 5 | 6 | 4 | 43 |
2019 | 0 | 13 | 6 | 9 | 5 | 33 |
2020 | 0 | 21 | 4 | 11 | 3 | 39 |
2021 | 1 | 16 | 3 | 8 | 2 | 30 |
2022 | 0 | 20 | 6 | 7 | 7 | 40 |
Total | 1 | 98 | 24 | 41 | 21 | 185 |
Year | Exploratory | Descriptive | Explanatory | Total |
---|---|---|---|---|
2018 | 22 | 14 | 7 | 43 |
2019 | 7 | 19 | 7 | 33 |
2020 | 14 | 14 | 11 | 39 |
2021 | 10 | 9 | 11 | 30 |
2022 | 14 | 18 | 8 | 40 |
Total | 67 | 74 | 44 | 185 |
Year | Primary Data | Secondary Data | Total |
---|---|---|---|
2018 | 29 | 14 | 43 |
2019 | 19 | 14 | 33 |
2020 | 29 | 10 | 39 |
2021 | 22 | 8 | 30 |
2022 | 24 | 16 | 40 |
Total | 123 | 62 | 185 |
Year | Basic Research | Applied Research | Evaluated Research | Total |
---|---|---|---|---|
2018 | 25 | 12 | 6 | 43 |
2019 | 18 | 11 | 4 | 33 |
2020 | 20 | 14 | 5 | 39 |
2021 | 16 | 11 | 3 | 30 |
2022 | 15 | 16 | 9 | 40 |
Total | 94 | 64 | 27 | 185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modrzyński, P.; Karaszewski, R. Urban Energy Management—A Systematic Literature Review. Energies 2022, 15, 7848. https://doi.org/10.3390/en15217848
Modrzyński P, Karaszewski R. Urban Energy Management—A Systematic Literature Review. Energies. 2022; 15(21):7848. https://doi.org/10.3390/en15217848
Chicago/Turabian StyleModrzyński, Paweł, and Robert Karaszewski. 2022. "Urban Energy Management—A Systematic Literature Review" Energies 15, no. 21: 7848. https://doi.org/10.3390/en15217848
APA StyleModrzyński, P., & Karaszewski, R. (2022). Urban Energy Management—A Systematic Literature Review. Energies, 15(21), 7848. https://doi.org/10.3390/en15217848