A Promising Energy Storage System Based on High-Capacity Metal Hydrides
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Accumulation of Hydrogen in Electrodes by Electrochemical Method
3.2. Accumulation of Metal-Hydrides in Electrodes
4. Discussion
4.1. Analysis of Electrodes Hydrogenation by Electrochemical Method
4.2. Dehydrogenation of Metal Hydrides
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Michaelides, E.E. Energy, the Environment, and Sustainability; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. ES for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions from Fuel Combustion—Overview; IEA-Chirat: Paris, France, 2019. [Google Scholar]
- International Energy Agency. Key World Statistics; IEA-Chirat: Paris, France, 2020. [Google Scholar]
- Michaelides, E.E. Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review. Energies 2021, 14, 6121. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Saktisahdan, T.J.; Jannifar, A.; Hasan, M.H.; Matseelar, H.S.C. A review of available methods and development on ES; Technology update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. [Google Scholar] [CrossRef]
- Michaelides, E.E. Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation. Energies 2022, 15, 5896. [Google Scholar] [CrossRef]
- Nikkhah, S.; Allahham, A.; Bialek, J.W.; Walker, S.L.; Giaouris, D.; Papadopoulou, S. Active Participation of Buildings in the Energy Networks: Dynamic/Operational Models and Control Challenges. Energies 2021, 14, 7220. [Google Scholar] [CrossRef]
- He, W.; Mo, O.; Remøy, A.; Valøen, L.O.; Såtendal, H.; Howie, A.; Vie, P.J.S. Accelerating Efficient Installation and Optimization of Battery Energy Storage System Operations Onboard Vessels. Energies 2022, 15, 4908. [Google Scholar] [CrossRef]
- Broom, D.P. Hydrogen Storage Materials: The Characterisation of Their Storage Properties; Springer: London, UK, 2011. [Google Scholar]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrog. Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Andreasen, K.P.; Sovacool, B.K. Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark. Renew. Sustain. Energy Rev. 2014, 39, 891–897. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The Survey of Key Technologies in Hydrogen Energy Storage. Int. J. Hydrog. Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Hydrogen, Fuel Cells & Infrastructure Technologies Program. Multi-year research, development and demonstration plan. In Planned Program Activities for 2005–2015; U.S. Department of Energy, Energy Efficiency and Renewable Energy: New York, NY, USA, 2009. [Google Scholar]
- Alefeld, G.; Volkl, J. (Eds.) Hydrogen in Metals: Basic Properties; Springer: Berlin, Germany, 1978; Volume 1. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Study of thermal runaway electrochemical reactions in alkaline batteries. J. Electrochem. Soc. 2015, 162, A2044–A2050. [Google Scholar] [CrossRef] [Green Version]
- Galushkin, D.N.; Yazvinskaya, N.N.; Galushkin, N.E. Investigation of the process of thermal runaway in nickel-cadmium accumulators. J. Power Sources 2008, 177, 610–616. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Thermal Runaway in Sealed Alkaline Batteries. Int. J. Electrochem. Sci. 2014, 9, 3022–3028. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N.; Galushkina, I.A. Causes analysis of thermal runaway in nickel-cadmium accumulators. J. Electrochem. Soc. 2014, 161, A1360–A1363. [Google Scholar] [CrossRef] [Green Version]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. The mechanism of thermal runaway in alkaline batteries. J. Electrochem. Soc. 2015, 162, A749–A753. [Google Scholar] [CrossRef] [Green Version]
- Yazvinskaya, N.N.; Lipkin, M.S.; Galushkin, N.E.; Galushkin, D.N. Research of Nanomaterials as Electrodes for Electrochemical Energy Storage. Molecules 2022, 27, 837. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Thermal runaway as a new high-performance method of desorption of hydrogen from hydrides. Int. J. Hydrog. Energy 2016, 41, 14813–14819. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Analytical model of thermal runaway in alkaline batteries. Int. J. Electrochem. Sci. 2018, 13, 1275–1282. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Nickel-cadmium batteries with pocket electrodes as hydrogen energy storage units of high-capacity. J. Energy Storage 2021, 39, 102597. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N.; Galushkina, I.A. Analysis of thermal runaway aftereffects in nickel-cadmium batteries. Int. J. Electrochem. Sci. 2016, 11, 10287–10295. [Google Scholar]
- Guo, Y. Thermal runaway. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 4, p. 241. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Ni-Cd batteries as hydrogen storage units of high-capacity. ECS Electrochem. Lett. 2013, 2, A1–A2. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N.; Galushkina, I.A. Oxide-nickel electrodes as hydrogen storage units of high-capacity. Int. J. Hydrog. Energy 2014, 39, 18962–18965. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Pocket electrodes as hydrogen storage units of high-capacity. J. Electrochem. Soc. 2017, 164, A2555–A2558. [Google Scholar] [CrossRef] [Green Version]
- Kojima, Y.; Kawai, Y.; Haga, T. Magnesium-based nanocomposite materials for hydrogen storage. J. Alloys Compd. 2006, 424, 294–298. [Google Scholar] [CrossRef]
- Shang, C.X.; Bououdina, M.; Song, Y.; Guo, Z.X. Mechanical alloying and electronic simulations of (MgH2+ M) systems (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 2004, 29, 73–80. [Google Scholar] [CrossRef]
- Borgschulte, A.; Lohstroh, W.; Westerwaal, R.J.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Combinatorial method for the development of a catalyst promoting hydrogen uptake. J. Alloys Compd. 2005, 404–406, 699–705. [Google Scholar] [CrossRef]
- Veziroglu, T.N.; Yajie, Z.; Deyou, B. (Eds.) Hydrogen Systems; Pergamon Press: Oxford, UK, 1986; Volume 1, pp. 550–553. [Google Scholar]
- Cabria, I.; Lopez, M.J.; Alonso, J.A. Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int. J. Hydrog. Energy 2011, 36, 10748–10759. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Portet, C.; Osswald, S.; Simmons, J.M.; Yildirim, T.; Laudisio, G.; Fischer, J.E. Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrog. Energy 2009, 34, 6314–6319. [Google Scholar] [CrossRef]
- de la Casa-Lillo, M.A.; Lamari-Darkrim, F.; Cazorla-Amoro’s, D.; Linares-Solano, A. Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 2002, 106, 10930–10934. [Google Scholar] [CrossRef]
- Denisov, E.A.; Kompaniets, T.N. Interaction of graphite with atomic hydrogen. Tech. Phys. 2001, 46, 240–244. [Google Scholar] [CrossRef]
- Tazhibaeva, I.L.; Klepikov, A.K.; Shestakov, V.P.; Romanenko, O.G.; Chikhray, E.V.; Kenzhin, E.A.; Cherepnin, Y.S.; Tikhomirov, L.N.; Zverev, V.A. Hydrogen release of reactor irradiated RGT-graphite. J. Nucl. Mater. 1996, 233–237, 1198–1201. [Google Scholar] [CrossRef]
- Kanashenko, S.L.; Gorodetsky, A.E.; Chernikov, V.N.; Markin, A.V.; Zakharov, A.P.; Doyle, B.L.; Wampler, W.R. Hydrogen adsorption on and solubility in graphites. J. Nucl. Mater. 1996, 233–237, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Oelerich, W.; Klassen, T.; Bormann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 2001, 315, 237–242. [Google Scholar] [CrossRef]
- Polanski, M.; Bystrzycki, J. Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. J. Alloys Compd. 2009, 486, 697–701. [Google Scholar] [CrossRef]
- Alvin, J.S.; Joseph, C.D. The thermal runaway condition in nickel-cadmium cells and performance characteristics of sealed light weight cells. J. Electrochem. Soc. 1962, 109, 360–364. [Google Scholar]
No. of the Battery | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Period of operation (years) | New | 1 | 1.7 | 3.2 | 4.1 | 5 | 6 | 7 |
Amount of gas released (Ni) (L) | 0 | 12.0 | 17.0 | 25.8 | 30.1 | 31.8 | 31.7 | 31.7 |
Amount of gas released (Cd) (L) | 0 | 10.3 | 13.0 | 15.9 | 18.5 | 19.8 | 19.8 | 19.9 |
No. of the Battery | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Period of operation (years) | New | 1 | 1.9 | 3.1 | 4.6 | 5 | 6 | 7 |
Amount of gas released (Ni) (L) | 0 | 13.1 | 20.0 | 27.0 | 33.1 | 36.1 | 36.0 | 36.1 |
Amount of gas released (Cd) (L) | 0 | 11.1 | 14.0 | 16.1 | 18.1 | 20.2 | 20.1 | 20.2 |
No. of the Electrode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Initial mass, g | 24.10 | 23.95 | 24.00 | 23.95 | 23.95 | 23.95 | 24.10 | 24.00 |
Final mass, g | 16.00 | 15.85 | 16.00 | 15.85 | 15.85 | 15.85 | 16.00 | 15.90 |
Mass loss, g | 8.1 | 8.1 | 8 | 8.1 | 8.1 | 8.1 | 8.1 | 8.1 |
Mass loss, % | 33.6 | 33.8 | 33.3 | 33.8 | 33.8 | 33.8 | 33.6 | 33.7 |
Amount of hydrogen, mL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. A Promising Energy Storage System Based on High-Capacity Metal Hydrides. Energies 2022, 15, 7871. https://doi.org/10.3390/en15217871
Galushkin NE, Yazvinskaya NN, Galushkin DN. A Promising Energy Storage System Based on High-Capacity Metal Hydrides. Energies. 2022; 15(21):7871. https://doi.org/10.3390/en15217871
Chicago/Turabian StyleGalushkin, Nikolay E., Nataliya N. Yazvinskaya, and Dmitriy N. Galushkin. 2022. "A Promising Energy Storage System Based on High-Capacity Metal Hydrides" Energies 15, no. 21: 7871. https://doi.org/10.3390/en15217871
APA StyleGalushkin, N. E., Yazvinskaya, N. N., & Galushkin, D. N. (2022). A Promising Energy Storage System Based on High-Capacity Metal Hydrides. Energies, 15(21), 7871. https://doi.org/10.3390/en15217871