Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells
Abstract
1. Introduction
1.1. Characterization of the Electrodes and Supercapacitors’ Performances
1.2. Characterization of the Catalysts and Fuel Cells’ Performances
2. Metal Sulfides in Supercapacitors
Elemental Map
No. | Electrode | Sulfurization Method | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Cyclic Stability | Specific Surface Area | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | NiCoS/CC | Ion exchange process | 2 M KOH | 1653 F g−1 | 1 A g−1 | 0–0.6 V | 84% (3000 cycles) | - | [41] |
2 | NiCo2S4 | Ion exchange process (TAA as sulfurizing agent) | 6 M KOH | 939 C g−1 | 1 A g−1 | From −0.1 to 0.6 V | 92.8% (5000 cycles) | 79.3 m2 g−1 | [49] |
3 | CoS2 (Anode) | Ion exchange process (TAA as sulfurizing agent) followed by annealing in N2 at 350 °C | 6 M KOH | 343.5 C g−1 | 1 A g−1 | From −1 to 0 V | - | - | [49] |
4 | Ni(OH)2@ZnCoS-NSs | Hydrothermal anion-exchange reaction | 2 M KOH | 2730 F g−1 (8.1 F cm−2) | 3 mA cm−2 | From 0 to 0.45 V | 87% (10,000 cycles) | - | [42] |
5 | VN@ZnCoS-NS (Anode) | Hydrothermal anion-exchange reaction | 2 M KOH | 1.35 F cm−2 | 3 mA cm−2 | From −1.2 to −0.2 V | 80% (10,000 cycles) | - | [42] |
6 | CC/CNWAs@Ni@Co-Ni2S4 | Electrochemical co-deposition | 1 M KOH | 3163 F g−1 | 1 A g−1 | From −0.2 to 0.6 V | 93.0% (10,000 cycles) | - | [44] |
7 | CC@CoO@S-Co3O4 | Hydrothermal reaction with thioacetamide | 2 M KOH | 1013 mF cm−2 | 1 mA cm−2 | From 0 to 0.5 V | ∼67.7% (5000 cycles) | 24.7 m2 g−1 | [53] |
8 | CuCo2S4 NS | Ion-exchange process. | 2 M KOH | ~409.2 mA h g−1 | 3 mA cm−2 | From −0.2 to 0.7 V | ~94.2% (10,000 cycles) | ~132.92 m2 g−1 | [45] |
9 | CoSx/C-2 | Solvothermal method | 1 M KOH | 618.4 F g−1 | 2 A g−1 | From 0 to 0.5 V | ca. 100% (10,000 cycles) | - | [46] |
10 | Cu7S4/C | Calcining-hydrothermal process | 1 M H2SO4 | 229.6 F g−1 (57.4 mAh g−1) | 1 A g−1 | From −0.2 to 0.7 V | 78.1% (3000 cycles) | - | [54] |
11 | NiCo2S4@C | Simultaneous carbonization and sulfurization of the MOF in the presence of sulfur source under inert atmosphere at relatively high temperatures | 1 M KOH | 948.9 C g−1 | 1 A g−1 | From 0 to 0.6 V | 71.4% (3000 cycles) | - | [47] |
12 | PPy/Cu9S8@C-CC | Calcination–vulcanization method | 1M KCL | 270.72 F g−1 | 10 mV/s | From −0.4 to 0.5 V | 80.36% (3000 cycles) | - | [43] |
13 | rGO/Co9S8 | Hydrothermal method | 1 M KOH | 575.9 F g−1 | 2 A g−1 | From 0 to 0.45 V | 92.0% (9000 cycles) | - | [48] |
14 | NixSy@CoS | Obtained by adding TAA at mild room temperature without further thermal-treatment | 6 M KOH | 2291 F g−1 | 1 A g−1 | From −0.1 to 0.25 V | 85.2% (2000 cycles) | 180.7 m2 g−1 | [55] |
15 | Co9S8@N−C@MoS2 | Hydrothermal method | 3 M KOH | 410.0 F g−1 | 10 A g−1 | From 0 to 0.6 V | 101.7% (20,000 cycles) | - | [50] |
16 | NiCoMn-S | Hydrothermal method | 1 M KOH | 2098.2 F g−1 | 1 A g−1 | From 0 to 0.7 V | 71.6% (4000 cycles) | 94.9 m2 g−1 | [52] |
No. | Positive Electrode Material | Negative Electrode Material | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Energy Density | Power Density | Cyclic Stability | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | NiCoS/CC | Activated carbon | 2 M KOH | 128 F g−1 | 0.5 A g−1 | From 0 to 1.5 V | 40 Wh kg−1 | 379 W kg−1 | 84% (7000 cycles) | [41] |
2 | NiCo2S4 | CoS2 | 2 M KOH | 287 C g−1 | 1 A g−1 | From 0 to 1.4 V | 55.8 Wh kg−1 | 695.2 W kg−1 | 91.9% (5000 cycles) | [49] |
3 | Ni(OH)2@ZnCoS-NSs | VN@ZnCoS-NS | PVA/KOH | 210.7 F g−1 | 0.5 A g−1 | From 0 to 1.6 V | 75 W h kg−1 | 0.4 kW kg−1 | 82% (10,000 cycles) | [42] |
4 | CC/CNWAs@Ni@Co-Ni2S4 | Activated carbon | 1 M KOH | 151.3 F g−1 | 1 A g−1 | From 0 to 1.6 V | 53.8 Wh kg−1 | 801 W kg−1 | 90.1% (10,000 cycles) | [44] |
5 | CC@CoO@S-Co3O4 | MOF-derived carbon | PVA/KOH | 1.99 F cm−3 | 2 mA cm−2 | From 0 to 1.5 V | 0.71 mW h cm−3 | 21.3 mW cm−3 | 87.9% (5000 cycles) | [53] |
6 | CuCo2S4 NS | Fe2O3/NG | PVA/KOH | ~2.1 mA h cm−3 | 3 mA cm−2 | From 0 to 1.6 V | ~89.6 Wh kg−1 | ~663 W kg−1 | ~91.5% (10,000 cycles) | [45] |
7 | NiCo2S4@C | Activated carbon | 1 M KOH | 123.3 F g−1 | 1 A g−1 | From 0 to 1.6 V | 43.8 Wh kg−1 | 799.1 W kg−1 | 81.9% (5000 cycles) | [47] |
8 | NiCoMn-S | Activated carbon | 1 M KOH | 124.5 F g−1 | 1 A g−11 | From 0 to 1.7 V | 50.0 Wh kg−1 | 850.0 W kg−1 | 73.6% (6000 cycles) | [52] |
3. Metal Selenides in Supercapacitors
No. | Electrode | Selenization Method | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Cyclic Stability | Specific Surface Area | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | CoSe2/NC-400 | Annealing at high temperature in the presence of Se powder | 6 M KOH | 120.2 mA h g−1 | 1 A g−1 | From 0 to 0.4 V | 92% (10,000 cycles) | 74.6 m2 g−1 | [79] |
2 | CoSe2/CNT | Hydrothermal method | 3 M KOH | - | - | From −0.2 to 0.3 V | - | 58.3 m2 g−1 | [58] |
3 | (CuCo)Se/NC-0.5 | Direct selenization in the presence of Se powder under inert atmosphere at high temperature | 2 M KOH | 121.4 C g−1 | 1 A g−1 | From −0.1 to 0.6 V | 130% (1200 cycles) | - | [67] |
4 | Co–Mo–Se | Hydrothermal process | 6 M KOH | 221.7 mAh g−1 | 1 A g−1 | From 0 to 0.6 V | 95% (8000 cycles) | 64.5 m2 g−1 | [69] |
5 | MNSe@NF | Hydrothermal method | 6 M KOH | 325.6 mA h g−1 (1172.16 C g−1) | 2 A g−1 | From 0 to 0.7 V | 96.8% (15,000 cycles) | ∼101.8 m2 g−1 | [72] |
6 | (Ni0.33Co0.67)Se2 | Hydrothermal selenization method | 3 M KOH | 827.9 F g−1 | 1 A g−1 | From 0 to 0.6 V | Calculated 113.6% (2000 cycles) | 23.82 m2 g−1 | [68] |
7 | H-Ni-Co-Se | Hydrothermal selenization | - | 175 F g−1 | 1 A g−1 | From −0.2 to 0.6 V | 89.3% (2000 cycles) | 20.77 m2 g−1 | [57] |
8 | Zn–Ni–Se/Ni(OH)2 | Hydrothermal selenization | 6 M KOH | 1632.8 F g−1 | 2 A g−1 | From 0 to 0.6 V | 85.4% (2000 cycles) | - | [73] |
9 | Mo-doped LDHs@MOF-Se | Selenization treatment of the MOF arrays in a Se atmosphere | KOH | 5.16 C cm−2 | 2 mA cm−2 | From 0 to 0.6 V | 81.4% (3000 cycles) | - | [74] |
10 | Se0.6@CPNA-ACFT | Selenium infiltration (at high temperature in the presence of Se powder. | 3 M KOH | 302 mAh g−1 (∼0.602 mAh cm−2) | 1 mA cm−2 | From −0.1 to 0.6 V | ∼93.8% (10,000 cycles) | 51.7 m2 g−1 | [78] |
No. | Positive Electrode Material | Negative Electrode Material | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Energy Density | Power Density | Cyclic Stability | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | CoSe2/NC-400 | Activated carbon | 6 M KOH | 58.4 mA h g−1 | 1 A g−1 | From 0 to 1.4 V | 40.9 Wh kg−1 | 980 W kg | 90.2% (10,000 cycles) | [79] |
2 | CoSe2/CNT | FeSe2/CNT | - | - | - | From 0 to 1.8 V | 0.25 mWh cm−2 | 53.06 mW cm−2 | ~85.29% (4000 cycles) | [58] |
3 | (CuCo)Se/NC-0.5 | Activated carbon | - | - | - | From 0 to 1.6 V | ~16.3 Wh kg−1 | 155.3 W kg−1 | 96% (5000 cycles) | [67] |
4 | Co–Mo–Se | Activated carbon | KOH/PVP | 57.7 mAh g−1 | - | From 0 to 1.6 V | 44.7 Wh kg−1 | 1094 W kg−1 | 90.7% (8000 cycles) | [69] |
5 | MNSe@NF | Activated carbon | cellulose paper/6 M KOH | 62.4 mA h g−1 224.65 C g−1 | 1 A g−1 | From 0 to 1.7 V | 66.1 Wh kg−1 | 858.45 W kg−1 | 94.1% (15,000 cycles) | [72] |
6 | (Ni0.33Co0.67)Se2 | Active carbon | - | 81.9 F g−1 | 1 A g−1 | From 0 to 1.6 V | 29.1 Wh kg−1 | 800 W kg−1 | - | [68] |
7 | Mo-doped LDHs@MOF-Se | Activated carbon | KOH | 132.0 F g−1 | 1 A g−1 | From 0 to 1.5 V | 41.3 Wh kg−1 | 750.0 W kg−1 | 94% (10,000 cycles) | [74] |
8 | Se0.6@CPNA-ACFT | FeS2@rGO-ECFT | PVA/KOH | ∼88 mAh g−1 ∼1.81 mAh cm−3 | 2 mA cm−2 | From 0 to 1.6 V | ∼70.6 Wh kg−1 | 335 W kg−1 | 92.4% (10,000 cycles) | [78] |
4. Sulfur-Doped MOF-Derived Catalysts for Fuel Cells Application
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Abo-Khalil, A.G.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy 2022, 254, 123987. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sánchez, B.M.; Dobson, P.J.; Grant, P.S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Bahaa, A.; Abdelkareem, M.A.; Al Naqbi, H.; Mohamed, A.Y.; Yousef, B.A.A.; Sayed, E.T.; Chae, K.-J.; Al-Asheh, S.; Olabi, A.G. Structural engineering and surface modification of nickel double hydroxide nanosheets for all-solid-state asymmetric supercapacitors. J. Energy Storage 2022, 45, 103720. [Google Scholar] [CrossRef]
- Bahaa, A.; Abdelkareem, M.A.; Al Naqbi, H.; Yousef Mohamed, A.; Shinde, P.A.; Yousef, B.A.A.; Sayed, E.T.; Alawadhi, H.; Chae, K.-J.; Al-Asheh, S.; et al. High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. J. Colloid Interface Sci. 2022, 608, 711–719. [Google Scholar] [CrossRef]
- Choi, K.M.; Jeong, H.M.; Park, J.H.; Zhang, Y.-B.; Kang, J.K.; Yaghi, O.M. Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 2014, 8, 7451–7457. [Google Scholar] [CrossRef]
- Sun, L.; Campbell, M.G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, J.; Horn, M.; Motta, N.; Hu, M.; Li, Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci. China Mater. 2018, 61, 159–184. [Google Scholar] [CrossRef]
- Xu, T.; Li, G.; Zhao, L. Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors. Chem. Eng. J. 2018, 336, 602–611. [Google Scholar] [CrossRef]
- Shinde, P.A.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Olabi, A.-G. Metal Organic Frameworks (MOFs) in Supercapacitors. In Encyclopedia of Smart Materials; Olabi, A.-G., Ed.; Elsevier: Oxford, UK, 2022; pp. 414–423. [Google Scholar]
- Abdelkareem, M.A.; Abbas, Q.; Mouselly, M.; Alawadhi, H.; Olabi, A.G. High-performance effective metal–organic frameworks for electrochemical applications. J. Sci. Adv. Mater. Devices 2022, 7, 100465. [Google Scholar] [CrossRef]
- Wang, D.-G.; Liang, Z.; Gao, S.; Qu, C.; Zou, R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 2020, 404, 213093. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, H.; Mei, H.; Sun, D. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 2020, 420, 213438. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259. [Google Scholar] [CrossRef]
- Yuan, H.; Kong, L.; Li, T.; Zhang, Q. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin. Chem. Lett. 2017, 28, 2180–2194. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Durai, G.; Rana, A.U.H.S.; Arunachalam, P.; Sangeetha, K.; Kuppusami, P.; Kim, H.-S. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: A brief review. Nanomaterials 2018, 8, 256. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, C.; Luo, J.; Zeng, Z.; Guan, C.; Ng, C.F.; Zhang, H.; Fan, H.J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766–773. [Google Scholar] [CrossRef]
- Huang, Y.; Quan, L.; Liu, T.; Chen, Q.; Cai, D.; Zhan, H. Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density. Nanoscale 2018, 10, 14171–14181. [Google Scholar] [CrossRef]
- Tao, K.; Han, X.; Cheng, Q.; Yang, Y.; Yang, Z.; Ma, Q.; Han, L. A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal–organic frameworks for high-performance supercapacitors. Chem.–A Eur. J. 2018, 24, 12584–12591. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhu, C.; Song, J.; Du, D.; Lin, Y. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363. [Google Scholar] [CrossRef]
- Alnaqbi, H.; Sayed, E.T.; Al-Asheh, S.; Bahaa, A.; Alawadhi, H.; Abdelkareem, M.A. Current progression in graphene-based membranes for low temperature fuel cells. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Nakagawa, N. Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells. Energy 2020, 209, 118492. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Allagui, A.; Sayed, E.T.; El Haj Assad, M.; Said, Z.; Elsaid, K. Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells. Renew. Energy 2019, 131, 563–584. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Alawadhi, H.; Alami, A.H. Synthesis and testing of cobalt leaf-like nanomaterials as an active catalyst for ethanol oxidation. Int. J. Hydrogen Energy 2020, 45, 17311–17319. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Bahaa, A.; Eisa, T.; Alawadhi, H.; Al-Asheh, S.; Chae, K.-J.; Olabi, A.G. Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells. Renew. Sustain. Energy Rev. 2021, 150, 111470. [Google Scholar] [CrossRef]
- Sayed, E.T.; Alawadhi, H.; Elsaid, K.; Olabi, A.G.; Adel Almakrani, M.; Bin Tamim, S.T.; Alafranji, G.H.M.; Abdelkareem, M.A. A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. Sustainability 2020, 12, 6538. [Google Scholar] [CrossRef]
- Wilberforce, T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G.; Sayed, E.T. Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy 2022, 240, 122478. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Abdelghani, E.A.; Olabi, A. Transition metal carbides and nitrides as oxygen reduction reaction catalyst or catalyst support in proton exchange membrane fuel cells (PEMFCs). Int. J. Hydrogen Energy 2021, 46, 23529–23547. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M.; Abdelkareem, M.A.; Rezk, H.; Alhumade, H.; Nassef, A.M.; Olabi, A.G. Co-decorated reduced graphene/titanium nitride composite as an active oxygen reduction reaction catalyst with superior stability. Int. J. Energy Res. 2021, 45, 1587–1598. [Google Scholar] [CrossRef]
- Liew, K.B.; Daud, W.R.W.; Ghasemi, M.; Leong, J.X.; Lim, S.S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrog. Energy 2014, 39, 4870–4883. [Google Scholar] [CrossRef]
- Karim, N.; Kamarudin, S. An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl. Energy 2013, 103, 212–220. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Ramadan, M.; Allam, N.K. Recent advances on zeolitic imidazolate-67 metal-organic framework-derived electrode materials for electrochemical supercapacitors. J. Energy Storage 2021, 34, 102195. [Google Scholar] [CrossRef]
- Ratha, S.; Samantara, A.K. Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Li, W.; Zhang, B.; Lin, R.; Ho-Kimura, S.; He, G.; Zhou, X.; Hu, J.; Parkin, I.P. A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 2018, 28, 1705937. [Google Scholar] [CrossRef]
- Xin, L.; Li, R.; Lu, Z.; Liu, Q.; Chen, R.; Li, J.; Liu, J.; Wang, J. Hierarchical metal-organic framework derived nitrogen-doped porous carbon by controllable synthesis for high performance supercapacitors. J. Electroanal. Chem. 2018, 813, 200–207. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 2020, 47, 113–121. [Google Scholar] [CrossRef]
- Sun, W.; Du, Y.; Wu, G.; Gao, G.; Zhu, H.; Shen, J.; Zhang, K.; Cao, G. Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J. Mater. Chem. A 2019, 7, 7138–7150. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Qi, X.-H.; Li, L.; Zhang, S.-H.; Bi, T. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor. Ceram. Int. 2019, 45, 17216–17223. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Xiao, Y.; Peng, Z.; Yuan, K.; Tan, L.; Chen, Y. Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon 2019, 147, 146–153. [Google Scholar] [CrossRef]
- Bahaa, A.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8620–8632. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, P.; Li, C.; Huang, Q.; Wang, J.; Zhu, Y.; Fu, L.; Chen, Y.; Wu, Y. CoS x/C hierarchical hollow nanocages from a metal–organic framework as a positive electrode with enhancing performance for aqueous supercapacitors. RSC Adv. 2019, 9, 11253–11262. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Liu, Y.; Xu, F.; Xia, Q.; Du, G.; Fan, Z.; Chen, N. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim. Acta 2021, 385, 138433. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Wang, W.; Wang, J.; Zhu, Y.; Wu, Y. Hollow Co9S8 from metal organic framework supported on rGO as electrode material for highly stable supercapacitors. Chin. Chem. Lett. 2018, 29, 612–615. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Tan, L.; Ma, H.; Pang, H.; Wang, X.; Zhang, L. Metal–organic framework template-directed fabrication of well-aligned pentagon-like hollow transition-metal sulfides as the anode and cathode for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 42621–42629. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Y.; Dong, Q.; Hong, Y.; Liu, Y.; Wang, W.; Shao, J.; Si, W.; Dong, X. Metal organic framework derived core–shell structured Co9S8@ N–C@ MoS2 nanocubes for supercapacitor. ACS Appl. Energy Mater. 2018, 1, 3513–3520. [Google Scholar] [CrossRef]
- Bissett, M.A.; Kinloch, I.A.; Dryfe, R.A. Characterization of MoS2–graphene composites for high-performance coin cell supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 17388–17398. [Google Scholar] [CrossRef]
- Kang, C.; Ma, L.; Chen, Y.; Fu, L.; Hu, Q.; Zhou, C.; Liu, Q. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors. Chem. Eng. J. 2022, 427, 131003. [Google Scholar] [CrossRef]
- Dai, S.; Yuan, Y.; Yu, J.; Tang, J.; Zhou, J.; Tang, W. Metal–organic framework-templated synthesis of sulfur-doped core–sheath nanoarrays and nanoporous carbon for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2018, 10, 15454–15461. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Han, Y.; Qi, X.; Li, X.; Fan, H.; Meng, L. Metal-organic framework-derived carbon coated copper sulfide nanocomposites as a battery-type electrode for electrochemical capacitors. Mater. Lett. 2019, 236, 131–134. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Soyekwo, F.; Lin, C.; Lv, R.; Qu, Y.; Chen, M.; Zhu, A.; Liu, Q. Novel amorphous nickel sulfide@ CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim. Acta 2017, 237, 94–101. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Zhu, Y.; Pan, X.; Wang, H.; Xu, J. Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim. Acta 2020, 353, 136532. [Google Scholar] [CrossRef]
- Tan, L.; Guo, D.; Chu, D.; Yu, J.; Zhang, L.; Yu, J.; Wang, J. Metal organic frameworks template-directed fabrication of hollow nickel cobalt selenides with pentagonal structure for high-performance supercapacitors. J. Electroanal. Chem. 2019, 851, 113469. [Google Scholar] [CrossRef]
- Wang, Q.; Ran, X.; Shao, W.; Miao, M.; Zhang, D. High performance flexible supercapacitor based on metal-organic-framework derived CoSe2 nanosheets on carbon nanotube film. J. Power Sources 2021, 490, 229517. [Google Scholar] [CrossRef]
- Banerjee, A.; Bhatnagar, S.; Upadhyay, K.K.; Yadav, P.; Ogale, S. Hollow Co0. 85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 2014, 6, 18844–18852. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Lu, T.; Yao, Y.; Pan, L. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Angaiah, S. Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 2017, 7, 5853–5862. [Google Scholar] [CrossRef]
- Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Wen, J.; Gui, P.; Fang, G. Metal–organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 2017, 9, 35927–35935. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, J. Enhanced electrochemical performance of hollow Cu-Co selenide for hybrid supercapacitor applications. Ionics 2020, 26, 2011–2020. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Sun, S.; Wu, X. Facile synthesis of nickel-cobalt selenide nanoparticles as battery-type electrode for all-solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 2019, 549, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Zhang, J.; Li, T.; Wang, N.; Guo, Z. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, J.; Huang, J.; Wang, L.; Wang, P.; Cai, C.; Lu, M.; Yao, Z.; Yang, Y. Bimetallic MOF-derived (CuCo) Se nanoparticles embedded in nitrogen-doped carbon framework with boosted electrochemical performance for hybrid supercapacitor. Mater. Res. Bull. 2021, 137, 111196. [Google Scholar] [CrossRef]
- Quan, L.; Liu, T.; Yi, M.; Chen, Q.; Cai, D.; Zhan, H. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance. Electrochim. Acta 2018, 281, 109–116. [Google Scholar] [CrossRef]
- Miao, C.; Zhou, C.; Wang, H.-E.; Zhu, K.; Ye, K.; Wang, Q.; Yan, J.; Cao, D.; Li, N.; Wang, G. Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors. J. Power Sources 2021, 490, 229532. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.; Wang, R. CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. 2019, 364, 320–327. [Google Scholar] [CrossRef]
- Zong, Q.; Zhu, Y.; Wang, Q.; Yang, H.; Zhang, Q.; Zhan, J.; Du, W. Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor. Chem. Eng. J. 2020, 392, 123664. [Google Scholar] [CrossRef]
- Ameri, B.; Zardkhoshoui, A.M.; Davarani, S.S.H. Metal–organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans. 2021, 50, 8372–8384. [Google Scholar] [CrossRef]
- He, Q.; Yang, T.; Wang, X.; Zhou, P.; Chen, S.; Xiao, F.; He, P.; Jia, L.; Zhang, T.; Yang, D. Metal–organic framework derived hierarchical zinc nickel selenide/nickel hydroxide microflower supported on nickel foam with enhanced electrochemical properties for supercapacitor. J. Mater. Sci. Mater. Electron. 2021, 32, 3649–3660. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, W.; Zhang, Q.; Yang, H.; Zong, Q.; Wang, Q.; Zhou, Z.; Zhan, J. A metal–organic framework template derived hierarchical Mo-doped LDHs@ MOF-Se core–shell array electrode for supercapacitors. Chem. Commun. 2020, 56, 13848–13851. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhong, Q.; Xiong, Y.; Cheng, D.; Zeng, Y.; Bu, Y. Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl. Surf. Sci. 2019, 483, 1158–1165. [Google Scholar] [CrossRef]
- Cao, X.; Cui, L.; Liu, B.; Liu, Y.; Jia, D.; Yang, W.; Razal, J.M.; Liu, J. Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu 2+ 1 O hybrid materials based on a Cu (OH) 2 precursor for high performance supercapacitors. J. Mater. Chem. A 2019, 7, 3815–3827. [Google Scholar] [CrossRef]
- Elshahawy, A.M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S.J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162–171. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Tiwari, A.P.; Mukhiya, T.; Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, T.; Chae, S.-H.; Kim, H.Y. Controlled Selenium Infiltration of Cobalt Phosphide Nanostructure Arrays from a Two-Dimensional Cobalt Metal–Organic Framework: A Self-Supported Electrode for Flexible Quasi-Solid-State Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 4, 404–415. [Google Scholar] [CrossRef]
- Miao, C.; Xiao, X.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G.; Xu, P. Facile synthesis of metal–organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9365–9375. [Google Scholar] [CrossRef]
- Luo, X.; Han, W.; Ren, H.; Zhuang, Q. Metallic organic framework-derived Fe, N, S co-doped carbon as a robust catalyst for the oxygen reduction reaction in microbial fuel cells. Energies 2019, 12, 3846. [Google Scholar] [CrossRef]
- Fei, H.; Yang, Y.; Fan, X.; Wang, G.; Ruan, G.; Tour, J.M. Tungsten-based porous thin-films for electrocatalytic hydrogen generation. J. Mater. Chem. A 2015, 3, 5798–5804. [Google Scholar] [CrossRef]
- Stoerzinger, K.A.; Hong, W.T.; Azimi, G.; Giordano, L.; Lee, Y.-L.; Crumlin, E.J.; Biegalski, M.D.; Bluhm, H.; Varanasi, K.K.; Shao-Horn, Y. Reactivity of perovskites with water: Role of hydroxylation in wetting and implications for oxygen electrocatalysis. J. Phys. Chem. C 2015, 119, 18504–18512. [Google Scholar] [CrossRef]
- Chen, B.; Ma, G.; Zhu, Y.; Wang, J.; Xiong, W.; Xia, Y. Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. J. Power Sources 2016, 334, 112–119. [Google Scholar] [CrossRef]
- Hu, H.; Han, L.; Yu, M.; Wang, Z.; Lou, X.W. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 2016, 9, 107–111. [Google Scholar] [CrossRef]
- Tsujiguchi, T.; Abdelkareem, M.A.; Kudo, T.; Nakagawa, N.; Shimizu, T.; Matsuda, M. Development of a passive direct methanol fuel cell stack for high methanol concentration. J. Power Sources 2010, 195, 5975–5979. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Morohashi, N.; Nakagawa, N. Factors affecting methanol transport in a passive DMFC employing a porous carbon plate. J. Power Sources 2007, 172, 659–665. [Google Scholar] [CrossRef]
- Guo, F.; Yang, H.; Liu, L.; Han, Y.; Al-Enizi, A.M.; Nafady, A.; Kruger, P.E.; Telfer, S.G.; Ma, S. Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 3624–3631. [Google Scholar] [CrossRef]
- Feng, C.; Li, Z.; Wang, J.; Yan, T.; Dong, H.; Feng, J.; Zhang, Q.; Sui, J.; Yu, L.; Dong, L. Synthesis of metal-organic framework-derived cobalt disulfide with high-performance oxygen reduction reaction catalytic properties. J. Electroanal. Chem. 2019, 840, 27–34. [Google Scholar] [CrossRef]
- Son, S.; Lim, D.; Nam, D.; Kim, J.; Shim, S.E.; Baeck, S.-H. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction. J. Solid State Chem. 2019, 274, 237–242. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Fu, C.; Lin, C.; Hu, H.; Shen, S.; Wei, G.; Zhang, J. Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction. Prog. Nat. Sci. Mater. Int. 2020, 30, 896–904. [Google Scholar] [CrossRef]
- Wang, K.; Chu, Y.; Zhang, X.; Zhao, R.; Tan, X. Facile Method to Synthesize a High-Activity S-Doped Fe/SNC Single-Atom Catalyst by Metal–Organic Frameworks for Oxygen Reduction Reaction in Acidic Medium. Energy Fuels 2021, 35, 20243–20249. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Kang, S.-F.; Chang, H.-M. Coagulation of textile secondary effluents with Fenton’s reagent. Water Sci. Technol. 1997, 36, 215–222. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Kou, X.; Dong, X.; Chi, X.; Ma, H.; Wang, G. High-performance oxygen reduction electrocatalysts derived from bimetal-organic framework and sulfur-doped precursors for use in microbial fuel cells. J. Power Sources 2022, 521, 230944. [Google Scholar] [CrossRef]
- Ao, X.; Gu, Y.; Li, C.; Wu, Y.; Wu, C.; Xun, S.; Nikiforov, A.; Xu, C.; Jia, J.; Cai, W. Sulfurization-Functionalized 2D Metal-Organic Frameworks for High-Performance Urea Fuel Cell. Appl. Catal. B Environ. 2022, 315, 121586. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnaqbi, H.; El-Kadri, O.; Abdelkareem, M.A.; Al-Asheh, S. Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies 2022, 15, 8229. https://doi.org/10.3390/en15218229
Alnaqbi H, El-Kadri O, Abdelkareem MA, Al-Asheh S. Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies. 2022; 15(21):8229. https://doi.org/10.3390/en15218229
Chicago/Turabian StyleAlnaqbi, Halima, Oussama El-Kadri, Mohammad Ali Abdelkareem, and Sameer Al-Asheh. 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells" Energies 15, no. 21: 8229. https://doi.org/10.3390/en15218229
APA StyleAlnaqbi, H., El-Kadri, O., Abdelkareem, M. A., & Al-Asheh, S. (2022). Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies, 15(21), 8229. https://doi.org/10.3390/en15218229