Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants
Abstract
:1. Introduction
1.1. The Problem under Study and Its Relevance
1.2. Evolution of the Refrigerants
1.3. Substitution Strategies
- It establishes rules on the containment, use, recovery, and destruction of fluorinated greenhouse gases and on related ancillary measures;
- It imposes conditions on the placing on the market of specific products and equipment containing, or whose functioning relies upon, fluorinated greenhouse gases;
- It imposes conditions on the specific uses of fluorinated greenhouse gases;
- It establishes quantitative limits on the placing on the market of hydrofluorocarbons.
1.4. Properties of Alternative Refrigerants
2. Materials and Methods
2.1. Materials
- R-1234ze (hydrofluorophelines);
- R-170 (Ethane);
- R-290 (Propane);
- R-600a (Isobutane);
- R-717 (Ammonia);
- R-744 (Carbon Dioxide);
- R-1150 (Ethylene);
- R-1270 (Propylene).
- Availability;
- Cost-benefit;
- Quality;
- Safety.
2.2. Methods
- Do you use any of these old refrigerants?
- Regarding the operating temperature, what do you want?
- Which lubricating oil do you use?
- How concerned are you about the cost/benefit of replacing the refrigerant?
- What is your concern regarding the quality of operation when replacing the refrigerant?
- What is your concern regarding the safety of refrigerant replacement?
- What is your concern regarding availability of refrigerant replacement?
- What is your concern regarding the environmental impact of refrigerant replacement?
- C’s—coefficients;
- X’s—refrigerant properties;
- Y’s—constraints of the refrigerants.
2.2.1. Coefficients
2.2.2. Refrigerant Properties
- Cost of both the refrigerant and the installations;
- Refrigeration quality, analyzing its efficiency and capacity;
- Safety;
- Availability of human and material resources;
- Environmental impact addressing the GWP (100 years).
2.2.3. Restriction of the Refrigerants
- Possibility of directly replacing the refrigerant;
- Temperature conditions used in the refrigeration process;
- Type of lubricant.
- R-22 => R-290, R-600a, R-717, R-744;
- R-134a => R-1234ze, R-600a, R-717, R-744;
- R-13 => R-170, R-1150;
- R-503 => R-170, R-1150;
- R-502 => R-1270;
- R-143a => R-1270;
- R-404a => R-744;
- R-12 => R-600a;
- None => R-1234ze, R-170, R-290, R-600a, R-717, R-744, R-1150, R-1270.
- Very Low => R-170, R-1150;
- Low => R-290, R-717, R-744, R-1270;
- Medium => R-1234ze, R-290, R-600a, R-717, R-744, R-1270;
- High => R-1234ze, R-290, R-600a, R-717, R-744, R-1270.
- Mineral => R-170, R-290, R-600a, R-717, R-1150, R-1270;
- AB => R-170, R-290, R-600a, R-1150, R-1270;
- POE => R-1234ze, R-170, R-290, R-600a, R-744, R-1150, R-1270.
3. Case Studies
3.1. Case Study One
- Cost/Benefit;
- Quality of Operation;
- Safety;
- Availability;
- Environmental Impact.
3.2. Case Study Two
3.3. Case Study Three
4. Discussion
5. Conclusions
5.1. General Conclusions
5.2. Specific Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaspar, P.; Aguiar, L. Refrigerantes Naturais: Tendências do Mercado, políticas e tecnologias na indústria agroalimentar portuguesa. In Proceedings of the X Congresso Ibérico-VIII Congresso Iberoamericano de las Ciencias y Técnicas del Frío (CYTEF), Pamplona, Spain, 1–3 July 2020. [Google Scholar]
- Gupta, A.; Anand, Y.; Tyagi, S.; Anand, S. Economic and thermodynamic study of different cooling options: A review. Renew. Sustain. Energy Rev. 2016, 62, 164–194. [Google Scholar] [CrossRef]
- Verde, M.; Harby, K.; de Boer, R.; Corberán, J.M. Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part Imodeling and experimental validation. Energy 2016, 116, 526–538. [Google Scholar] [CrossRef]
- Harby, K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 2017, 73, 1247–1264. [Google Scholar] [CrossRef]
- Norman, J. Rowland & Molina Suggest that CFCs Deplete the Ozone Layer. 2022. Available online: https://www.historyofinformation.com/detail.php?id=2721 (accessed on 5 March 2022).
- Ascenção, P.O. COMPETE 2020 Alavancou 113 Milhões de Euros de Investimento no Setor Agro-Alimentar, o 2.º Maior Empregador em Portugal. 2016. Available online: https://www.compete2020.gov.pt/destaques/detalhe/Setor_agroalimentar_COMPETE2020 (accessed on 23 May 2022).
- Cardoso, B.J.; Lamas, F.B.; Gaspar, A.R.; Ribeiro, J.B. Refrigerants used in the Portuguese food industry: Current status. Int. J. Refrig. 2017, 83, 60–74. [Google Scholar] [CrossRef]
- Rocha, R. Análise de Desempenho Termodinâmico de Ciclos de Refrigeração Cascata para Temperaturas Ultrabaixas. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2022. [Google Scholar]
- UNEP. Handbook for the International Treaties for the Protection of the Ozone Layer. Ozone Secretariat United Nations Environment Programme. Sixth Edition. 2003. Available online: http://www.unep.org/ozonoe (accessed on 1 September 2022).
- Lopes, P. Válvulas de Expansão: Comparação da Aplicação de Válvulas de Expansão Eletrônica e Termostática em Sistemas Frigoríficos; Engenharia Mecânica; Centro Universitário do Sul de Minas: Minas Gerais, Brazil, 2019. [Google Scholar]
- Singh, K.K.; Kumar, R.; Singh, A. Thermo-economic optimization of environment-friendly refrigerants for cascade refrigeration. Arab. J. Sci. Eng. 2021, 46, 12235–12252. [Google Scholar] [CrossRef]
- Roy, R.; Mandal, B. Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations: A comparative study. J. Therm. Anal. Calorim. 2020, 139, 3247–3261. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.; Campos, R.M.; Girão, I.; Monteiro, J.; Lopes, C.M. A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sens. 2022, 14, 638. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Zinkernagel, J.; Maestre-Valero, J.F.; Seresti, S.Y.; Intrigliolo, D.S. New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric. Water Manag. 2020, 242, 106404. [Google Scholar] [CrossRef]
- Alibabaei, K.; Lima, T.M.; Gaspar, P.D. Modeling evapotranspiration using Encoder-Decoder Model. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Applications (DASA’20), Sakheer, Bahrain, 8–9 November 2020; Volume 2020, pp. 132–136. [Google Scholar] [CrossRef]
- Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; deVoil, P.; Rodriguez, D. Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agric. Water Manag. 2021, 257, 107161. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T. Modeling soil water content and reference evapotranspiration from climate data using Deep Learning methods. Appl. Sci. 2021, 11, 5029. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T. Irrigation with a deep reinforcement learning model—Case study on a site in Portugal. Agric. Water Manag. 2022, 263, 107480. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M.; Soares, V.N.G.J.; Caldeira, J.M.L.P. Comparison of on-policy deep reinforcement learning A2C with off-policy DQN in irrigation optimization: A case study at a site in Portugal. Computers 2022, 11, 104. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.M. Crop yield estimation using deep learning based on climate big data and irrigation scheduling. Energies 2021, 14, 3004. [Google Scholar] [CrossRef]
- Assunção, E.; Diniz, C.; Gaspar, P.D.; Mesquita, R.; Proença, H. Decision-making support system for fruit diseases classification using Deep Learning. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Applications (DASA’20), Sakheer, Bahrain, 8–9 November 2020; Volume 2020, pp. 652–656. [Google Scholar] [CrossRef]
- Nunes, J.; Neves, D.; Gaspar, P.D.; Silva, P.D.; Andrade, L.P. Predictive tool of energy performance of cold storage in agrifood industries: The Portuguese case study. Energy Convers. Manag. 2014, 88, 758–767. [Google Scholar] [CrossRef]
- Silva, P.D.; Gaspar, P.D.; Nunes, J.; Andrade, L.P. Specific electrical energy consumption and CO2 emissions assessment of agrifood industries in the central region of Portugal. Appl. Mech. Mater. 2014, 675–677, 1880–1886. Available online: http://hdl.handle.net/10400.6/7270 (accessed on 5 September 2022). [CrossRef] [Green Version]
- Zocca, R.; Gaspar, P.D.; Silva, P.D.; Santos, F.C.; Andrade, L.P.; Nunes, J. Decision-making computationally aided in the management of energy sources used in agrifood industries. Energy Procedia 2019, 161, 100–107. [Google Scholar] [CrossRef]
- Zocca, R.; Lima, T.M.; Gaspar, P.D.; Charrua-Santos, F. Computational tool to foster systematic thinking and sustainable environmental conscience in the selection of energy sources systems in agrifood companies. In Proceedings of the 48th International Conference on Computers and Industrial Engineering (CIE 48), Auckland, New Zealand, 2–5 December 2018. [Google Scholar]
- Mendes, A.; Cruz, J.; Saraiva, T.; Lima, T.M.; Gaspar, P.D. Logistics strategy (FIFO, FEFO or LSFO) decision support system for perishable food products. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Applications (DASA’20), Sakheer, Bahrain, 8–9 November 2020; pp. 173–178. [Google Scholar] [CrossRef]
- Gomes, D.E.; Iglésias, M.I.D.; Proença, A.P.; Lima, T.M.; Gaspar, P.D. Applying a genetic algorithm to an m-TSP: Case study of a decision support system for optimizing a beverage logistics vehicles routing problem. Electronics 2021, 10, 2298. [Google Scholar] [CrossRef]
- Ananias, E.; Gaspar, P.D.; Soares, V.N.G.J.; Caldeira, J.M.L.P. Artificial intelligence decision support system based on artificial neural networks to predict the commercialization time by the evolution of peach quality. Electronic 2021, 10, 2394. [Google Scholar] [CrossRef]
- Maciel, V.; Matos, C.; Lima, T.M.; Gaspar, P.D. Decision support system to assign price rebates of fresh horticultural products on the basis of quality decay, Chapter 23. In Computational Management: Applications of Computational Intelligence in Business Management; Patnaik, S., Tajeddini, K., Jain, V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 487–497. ISBN 978-3-030-72928-8. [Google Scholar] [CrossRef]
- Pina, M.; Gaspar, P.D.; Lima, T.M. Decision support system for dynamic pricing of horticultural products based on the quality decline due to microbial growth. Appl. Syst. Innov. 2021, 4, 80. [Google Scholar] [CrossRef]
- Ramos, A. A Investigação e a Inovação na Fabricação de Equipamentos de frio Industrial em Portugal. Master’s Thesis, Instituto Superior de Engenharia de Lisboa (ISEL), Lisbon, Portugal, 2016. [Google Scholar]
- ATM Revolution. Earth The Power of the Planet. Camadas da Atmosfera Terrestre. 2009. Available online: https://atm-revolution.blogs.sapo.pt/3418.html (accessed on 15 May 2021).
- Saldanha, P. Dimensionamento de um Circuito Frigorífico a CO2 com Evaporadores Inundados. Master’s Thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2019. [Google Scholar]
- Paul, S.; Sarkar, A.; Mandal, B.K. Environmental Impacts of Halogenated Refrigerants and Their Alternatives: Recent Developments. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 400–409. [Google Scholar]
- UE. Regulamento (CE) N.º 842/2006 do Parlamento Europeu e do Conselho Relativo a Determinados Gases Fluorados com Efeito de Estufa; A. M. Guerra, “Apontamentos de Produção de Frio e Refrigeração”; Instituto Superior de Engenharia de Lisboa (ISEL): Lisbon, Portugal, 2014. [Google Scholar]
- UE. Regulamento (CE) N.º 1005/2009 do Parlamento Europeu e do Conselho Relativo às Substâncias que Empobrecem a Camada de Ozono; Jornal Oficial da União Europeia: Porto, Portugal, 2009. [Google Scholar]
- UE. Regulamento (EU) N.º 517/2014 do Parlamento Europeu e do Conselho Relativo aos Gases Fluorados com Efeito de Estufa e que Revoga o Regulamento (CE) n.o 842/2006; Jornal Oficial da União Europeia: Porto, Portugal, 2014. [Google Scholar]
- Agência Portuguesa do Ambiente. Políticas de Mitigação. 2021. Available online: http://www.apambiente.pt/index.php?ref=16&subref=81&sub2ref=117 (accessed on 13 November 2021).
- Agência Portuguesa do Ambiente. Protocolo de Quioto. 2021. Available online: http://www.apambiente.pt/index.php?ref=16&subref=81&sub2ref=119&sub3ref=500 (accessed on 14 May 2021).
- Boa, J. Análise Energética de Equipamentos de uma Fábrica de Lacticínios. Master’s Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2012. [Google Scholar]
- Bandarra, D.E.P. Uso de Fluidos Alternativos em Sistemas de Refrigeração e Ar Condicionado: Artigos Técnicos. Tendências do Uso de Fluidos Refrigerantes Alternativos em Sistema de Ar Condicionado Automotivo; Instituto do Meio Ambiente e dos Recursos Naturais Renováveis, Ministério do Meio Ambiente: Brasília, Brazil, 2011.
- INTARCON. F-Gas or the Prohibition of Fluorinated Gases. 2021. Available online: https://www.intarcon.com/en/f-gas/ (accessed on 16 March 2021).
- Dufrio, R. Fluído Gás Refrigerante: Saiba Como Escolher a Melhor Opção. Dufrio Refrigeração, 29/07/2021. 2021. Available online: https://www.dufrio.com.br/blog/ar-condicionado/fluido-gas-refrigerante-saiba-como-escolher-a-melhor-opcao/ (accessed on 30 June 2022).
- Fonseca, M. Transformação de Variáveis Qualitativas em Quantitativas; Um Estudo de Caso; Dissertação para a obtenção do grau de Químico com atribuições Tecnológicas; Instituto de Química da Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Rosa, D. Instruções If…Else em C Explicadas. 2022. Available online: https://www.freecodecamp.org/portuguese/news/instrucoes-if-else-em-c-explicadas/ (accessed on 12 August 2022).
- Pavkovic, B. Refrigerants—Part 2: Past, present and future perspectives of refrigerants in air-conditioning applications. REHVA Eur. HVAC J. 2013, 50, 28–33. [Google Scholar]
- Aldifrio Gás Refrigerante R-449 (Opteon™ XP40) Substituto R-404A/R-507. 2022. Available online: https://aldifrio.com/index.php/2018/05/01/novo-refrigerante-concebido-substituir-r-404a-r-507/ (accessed on 5 September 2022).
- Tazzetti Fluidos Refrigerantes. R422A. 2022. Available online: https://www.tazzetti.com/pt-pt/products-and-services/fluidos-refrigerantes/R422A (accessed on 5 September 2022).
- ACR. Que Problema con el Refrigerante de los Coches. 2008. Available online: https://www.acrlatinoamerica.com/20080325456/noticias/empresas/ique-problema-con-el-refrigerante-de-los-coches.html (accessed on 5 September 2022).
Year | Event | Measure |
---|---|---|
1985 | Vienna Convention | Recognition of the various consequences of CFC use and demonstration of great concern by major companies |
1987 | Montreal Protocol | Regulation of the production and consumption of “ozone-depleting substances”, focusing particularly on CFC gases, which have a high ozone-depleting potential and, in addition, a high global warming potential |
1990 | London Amendment | Phase-out definition of all CFC, halon and carbon tetrachloride based refrigerant gases in developed and developing countries. |
1992 | UNFCC | Inclusion of HCFCs in the list of “ozone-depleting gases” in a phase-out process, in this case only for developed countries, using commonly used refrigerants such as R22 and R123 |
1997 | Kyoto Protocol | The HCFC phase-out is extended to all countries and the methyl bromide phase-out is scheduled for 2005 and 2015, in developed and developing countries respectively |
1999 | Beijing Amendment | Tighter controls on HCFC production and marketing |
2015 | Paris Agreement | Proposed an early freeze date to reduce the damage caused by refrigerants but this was not accepted by all countries Formulation of a long-term low greenhouse gas emission development strategy (“Long-term Strategy”) |
2016 | Kigali Amendment to the Montreal Protocol | Phase-down definition of hydrofluorocarbons (HFCs) due to their high GWP value |
Requirement | Properties |
---|---|
Chemistry | Stable and inert |
Health, Safety and Environment | Non-toxic |
Non-flammable | |
Low GWP | |
Thermal | High latent heat |
Critical point and boiling point appropriate for the application | |
Low specific heat in vapor state | |
Low viscosity | |
High thermal conductivity | |
Others | Reasonable solubility/miscibility with lubricants |
Low melting point | |
Easy leak detection | |
Low cost |
Refrigeration | ||||
---|---|---|---|---|
Refrigerant | Very Low Temperature | Low Temperature | Medium Temperature | High Temperature |
R-1234ze | ✓ | ✓ | ||
R-170 | ✓ | ✓ | ||
R-290 | ✓ | ✓ | ✓ | |
R-600a | ✓ | ✓ | ||
R-717 | ✓ | ✓ | ✓ | |
R-744 | ✓ | ✓ | ✓ | |
R-1150 | ✓ | ✓ | ||
R-1270 | ✓ | ✓ | ✓ |
ODP | GWP | GWP (100) | Boiling Point 1atm (°C) | Critical Temperature (°C) | Critical Pressure (MPa) | Compatible Lubricants | Toxicity | Flammability | Security | Biodegradable | Cost of the Refrigerant | Cost of Installations | Cooling Capacity | Efficiency | Availability | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-1234ze | 0 | 6 | 6 | −19 | 109.4 | 3.60 | POE | No | Yes | A2 | Yes | High | Medium | Medium | Medium | Reduced |
R-170 | 0 | 6 | 6 | −89 | 32.3 | 4.87 | Mineral/AB/POE | No | Yes | A3 | Yes | Reduced | High | Medium | High | High |
R-290 | 0 | 3 | 3 | −42 | 97.0 | 4.30 | Mineral/AB/POE | No | Yes | A3 | Yes | Reduced | High | Medium | High | High |
R-600a | 0 | 3 | 3 | −12 | 135.0 | 3.60 | Mineral/AB/POE | No | Yes | A3 | Yes | Reduced | High | Medium | High | High |
R-717 | 0 | 0 | 0 | −33 | 132.0 | 11.30 | Mineral | Yes | Yes | B2 | Yes | Reduced | Very High | Medium | High | Very High |
R-744 | 0 | 1 | 1 | −57 | 31.0 | 7.40 | POE | No | No | A1 | Yes | Reduced | Very High | Very High | Medium | Very High |
R-1150 | 0 | 4 | 4 | −104 | 9.2 | 50.00 | Mineral/AB/POE | No | Yes | A3 | Yes | Reduced | High | Medium | High | High |
R-1270 | 0 | 2 | 2 | −48 | 91.0 | 46.00 | Mineral/AB/POE | No | Yes | A3 | Yes | Reduced | High | Medium | High | High |
Qualitative Value (User Response) | Quantitative Value (User Response) |
---|---|
None | 0.00 |
Reduced | 0.25 |
Medium | 0.50 |
High | 0.75 |
Very High | 1.00 |
Quantitative Value | Value (Cost) | Value (Quality of Operation) | Value (Safety) | Value (Availability) |
---|---|---|---|---|
Null | 1.00–0.00 = 1.00 | 0.00 | 0.00 | 0.00 |
Reduced | 1.00–0.25 = 0.25 | 0.25 | 0.25 | 0.25 |
Medium | 1.00–0.50 = 0.50 | 0.50 | 0.50 | 0.50 |
High | 1.00–0.75 = 0.75 | 0.75 | 0.75 | 0.75 |
Very High | 1.00–1.00 = 0.00 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, G.; Aguiar, M.L.; Gaspar, P.D. Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants. Energies 2022, 15, 8497. https://doi.org/10.3390/en15228497
Jesus G, Aguiar ML, Gaspar PD. Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants. Energies. 2022; 15(22):8497. https://doi.org/10.3390/en15228497
Chicago/Turabian StyleJesus, Guilherme, Martim L. Aguiar, and Pedro D. Gaspar. 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants" Energies 15, no. 22: 8497. https://doi.org/10.3390/en15228497
APA StyleJesus, G., Aguiar, M. L., & Gaspar, P. D. (2022). Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants. Energies, 15(22), 8497. https://doi.org/10.3390/en15228497