Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER)
Abstract
:1. Introduction
- A simple and easily understood model for use as an alternative to the traditional nonlinear equations approach based on NR nodal formulation.
- Representation of modern distribution system with PV buses and loops by a quadratic loss minimization function subjected to linear network flow constraints.
- Optimization of DER systems with voltage control.
- Allows analyses of optimization scenarios through APIs in a cloud environment.
2. Optimal Power Flow Formulation
2.1. Standard Form of OPF Method
2.2. Optimal Current Flow (OCF) by Network Flow Method
2.3. Flexibility of Optimal Current Flow (OCF) Formulation
2.3.1. Direct Current Optimal Flow (DCOF)
2.3.2. Optimal Alternate Current Flow (OACF)
2.3.3. Alternate Current Optimal Flow with Internal and External Loops
2.4. Alternate Current Optimal Flow (ACOF) 5 Bus—Example
2.4.1. Capacity Constraint Equations
- Branch capacity constraint;
- Voltage limit;
2.4.2. ZIP Load Model
- Load as constant impedance: the load is represented as a constant impedance connected to the bus; that is, the active and reactive current is calculated from the voltage;
- Load as constant current: the current does not change with the voltage;
- Load as a constant power: the values of the active and reactive powers remain constant regardless of the voltage variations. This model is valid for long time scales;
2.5. Alternate Current Optimal Flow (ACOF) 5 Bus—Matrix Representation
3. Computational Environments for Analyzing DER Systems
3.1. OCF API Interface
3.2. OCF Algorithm
4. IEEE 34-Bus Test Case
4.1. IEEE-34 without DER
4.2. IEEE-34 with DERs and Voltage Control
5. Discussion
6. Conclusions
- It is adherent to the formulations of a great amount of DCOF and ACOF approaches;
- Analysis of the use of DER systems in balanced, unbalanced distribution networks, modern topologies, and minimization of technical losses in the distribution network;
- Voltage control analysis on all buses;
- It considers the capacity constraints of the network components (generation, transmission lines, transformers, etc.)
Author Contributions
Funding
Conflicts of Interest
References
- Alonso, A.M.S.; Arenas, L.D.O.; Brandao, D.I.; Tedeschi, E.; Machado, R.Q.; Marafão, F.P. Current-Based Coordination of Distributed Energy Resources in a Grid-Connected Low-Voltage Microgrid: An Experimental Validation of Adverse Operational Scenarios. Energies 2022, 15, 6407. [Google Scholar] [CrossRef]
- Fragkos, G.; Johnson, J.; Tsiropoulou, E.E. Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations. Energies 2022, 15, 6375. [Google Scholar] [CrossRef]
- Serban, A.C.; Lytras, M.D. Artificial Intelligent for Renewable Energy Sector in Europe-Smart Energy Infrastructure for Next Generation Smart Cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Wiser, R.; Bollinger, M.; Barbose, G.; Belyeu, K.; Hand, M.; Heimiller, D.; Subin, Z. Annual Report on US Wind Power Installation, Cost, and Performance Trends; U.S. Department of Energy: Washington, DC, USA, 2006.
- Blengini, A.; Iano, Y.; Oliveira, G.G.; Caomo, G.; Podeleski, F.S.; de Paula Kolecha, H.; Carvalho, M.F.H. The BFS Method in a Cloud Environment for Analyzing Distributed Energy Resource Management Systems. In Proceedings of the 7th Brazilian Technology Symposium (BTSym’21), BTSym 2021, Smart Innovation, Systems and Technologies. Campinas, SP, Brazil, 8–10 November 2021; Iano, Y., Saotome, O., Kemper Vásquez, G.L., Cotrim Pezzuto, C., Arthur, R., Gomes de Oliveira, G., Eds.; Springer: Cham, Switzerland, 2022; Volume 207. [Google Scholar]
- Nowak, S.; Tehrani, N.; Metcalfe, M.S.; Eberle, W.; Wang, L. Cloud-Based DERMS Test Platform Using Real Time Power System Simulation. In Proceedings of the IEEE Power Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Nayak, S.K.; Pand, S.K.; Das, S.; Pande, S.K. A Renewable Energy-Based Task Consolidation Algorithm for Cloud Computing. Control Appl. Mod. Power Syst. 2020, 710, 453–463. [Google Scholar]
- Jianhui, W.; Chen, C.; Xiaonan, L. Guidelines for Implementing Advanced Distribution Management Systems-Requirements for DMS Integration with DERM Sand Microgrid; U.S. Department of Energy Office of Scientific and Technical Information: Argonne, IL, USA, 2015; pp. 10–25.
- Ayalew, M.; Khan, B.; Giday, I.; Mahela, O.P.; Khosravy, M.; Gupta, N.; Senjyu, T. Integration of Renewable Based Distributed Generation for Distribution Network. Expans. Plan. Energies 2022, 15, 1378. [Google Scholar] [CrossRef]
- Chun, S.L.; Locatelli, G.; Pimm, A.; Wu, X.; Lai, L.L. A review on long-term electrical power system modeling with energy storage. J. Clean. Prod. 2021, 280, 124298. [Google Scholar]
- Blengini, A.; Podeleski, F.S.; Mota, L.; Carvalho, M.F.H. Optimal current flow technique for distribution systems with renewable energy generation. Energy Syst. 2020, 13, 725–747. [Google Scholar]
- Ghatak, U.; Mukherjee, V. An improved load flow technique based on load current injection for modern distribution system. Int. J. Electr. Power Energy Syst. 2017, 84, 168–181. [Google Scholar] [CrossRef]
- Yang, N.C.; Chen, H.C. Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands. Int. J. Electr. Power Energy Syst. 2018, 96, 473–483. [Google Scholar] [CrossRef]
- Chen, T.H.; Yang, N.C. Loop frame of reference based three-phase power flow for unbalanced radial distribution systems. Electr. Power Syst. 2010, 80, 799–800. [Google Scholar] [CrossRef]
- Carpentier, J. Contribution to the economic dispatch problem. Bull. Soc. Fr. Des Electr. 1962, 8, 431–447. [Google Scholar]
- Khan, B.; Singh, P. Selecting a Meta-Heuristic Technique for Smart Micro-Grid Optimization Problem: A Comprehensive Analysis. IEEE Access 2017, 5, 13951–13977. [Google Scholar] [CrossRef]
- Frank, S.; Steponavice, I.; Rebennack, S. Optimal power flow: A bibliographic survey I. Energy Syst. 2012, 3, 221–258. [Google Scholar] [CrossRef]
- Tinney, W.G.; Hart, C.E. Power flow solutions by Newton’s method. IEEE Trans. Power Appar. Syst. 1967, 80, 1449–1460. [Google Scholar] [CrossRef]
- Zhang, W.; Li, F.; Tolbert, L. Review of reactive power planning: Objectives, constraints, and algorithms. IEEE Trans. Power Syst. 2007, 22, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Niharika, S.; Mukherjee, V. Transmission expansion planning: A review. In Proceedings of the International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016; pp. 350–355. [Google Scholar]
- Garver, L.L.; Wirgau, K.A. Transmission network estimation using linear programming. IEEE Trans. Power Appar. Syst. 1970, 7, 1688–1697. [Google Scholar] [CrossRef]
- Garver, L.L.; Wirgau, K.A. Load supplying capability of generation-transmission networks. IEEE Trans. Power Appar. Syst. 1979, 3, 957–962. [Google Scholar] [CrossRef]
- Stott, B.; Jardin, J.; Alsac, O. DC power flow revisited. IEEE Trans. Power Syst. 2009, 24, 1290–1300. [Google Scholar] [CrossRef]
- Zhu, J. Optimization of Power System Operation; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Lee, T.H.; Thorne, D.H.; Hill, E.F. A transportation method for economic dispatching—Applications and comparison. EEE Trans. Power Appar. Syst. 1980, 89, 2373–2385. [Google Scholar] [CrossRef]
- Carvalho, M.F.H.; Soares, S.; Ohishi, T. Optimal active power dispatch by network flow approach. IEEE Trans. Power Syst. 1988, 3, 1640–1647. [Google Scholar] [CrossRef]
- Hobson, E.; Fletcher, D.L.; Stadlin, W.O. Network flow linear programming and their application to fuel scheduling and contingency analysis. IEEE Trans. Power Appar. Syst. 1984, 109, 1681–1691. [Google Scholar]
- Luo, J.S.; Hill, E.F.; Lee, T.H. Power system economic dispatch via network approach. IEEE Trans. Power Appar. Syst. 1984, 101, 1242–1248. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Song, Y. Mixed-integer linear model for transmission expansion planning with line losses and energy storage systems. IET Gener. Transm. Distrib. 2013, 7, 919–928. [Google Scholar] [CrossRef]
- Casacio, L.; Lyra, C.; Oliveira, A.R.L. Interior point methods for power flow optimization with security constraints. Int. Trans. Oper. Res. 2019, 26, 364–378. [Google Scholar] [CrossRef]
- Carvalho, S.M.S.; Oliveira, A.R.L.; Lyra, C. Predispatch of hydroelectric power systems with modifications in network topologies. Ann. Oper. Res. 2017, 261, 135–153. [Google Scholar] [CrossRef]
- Franco, P.; Carvalho, M.F.H.; Soares, S. A network flow model for short-term hydro-dominated scheduling problem. IEEE Trans. Power Syst. 1994, 9, 1016–1021. [Google Scholar] [CrossRef]
- Oliveira, A.R.L.; Soares, S.; Nepomuceno, L. Optimal active power dispatch combining network flow and interior point approaches. IEEE Trans. Power Syst. 2003, 18, 1235–1240. [Google Scholar] [CrossRef]
- Nepomuceno, L.; Soares, S.; Ohishi, T. A Hydrothermal Optimal Power Flow Problem Solved by Lagrangian Relaxation Approach. Int. J. Comput. Res. 2003, 10, 89–99. [Google Scholar]
- Azevedo, A.; Oliveira, A.; Rider, M.J.; Soares, S. How to efficiently incorporate facts devices in optimal active power flow model. J. Ind. Manag. Optim. 2010, 6, 315–331. [Google Scholar] [CrossRef]
- Blengini, A.; Carvalho, M.F.H.; Mota, L.; Pezzuto, C. Object-Oriented Load Flow Modeling and Implementation for Distribution Power Systems. IEEE Lat. Am. Trans. 2017, 15, 439–444. [Google Scholar] [CrossRef]
- Jha, B.K.; Kumar, A.; Dheer, D.K.; Singh, D.; Misra, R.K. A modified current injection load flow method under different load model of EV for distribution system. Int. Trans. Electr. Energy Syst. 2019, 30, e12284. [Google Scholar] [CrossRef]
- Alliance, S. Sunspec Information Model Specification; SunSpec Alliance: San Jose, CA, USA, 2015; Volume 19, pp. 1–21. [Google Scholar]
- FOSSEE Toolbox. Available online: http://www.scilab.in/fossee-scilab-toolbox (accessed on 5 August 2022).
- Kersting, W.H. Radial Distribution Test Feeders. IEEE Trans. Power Syst. 1991, 6, 975–985. [Google Scholar] [CrossRef]
Feeder | Branch | Source | Destinat. | P[p.u.] | Q[p.u.] | R[p.u.] | X[p.u.] | State | Type |
---|---|---|---|---|---|---|---|---|---|
A | 0 | 0 | 1 | 0.00 | 0.00 | 0.01 | 0.01 | NC | G |
A | 1 | 1 | 2 | 2.50 | 2.70 | 0.07 | 0.10 | NC | L |
A | 2 | 2 | 4 | 3.30 | 0.90 | 0.11 | 0.11 | NC | L |
A | 3 | 4 | 5 | 1.30 | 0.90 | 0.11 | 0.11 | NC | L |
A | 4 | 2 | 3 | 3.35 | 1.55 | 0.08 | 0.11 | NC | L |
DER-3 | 5 | 6 | 3 | 0.00 | 0.00 | 0.04 | 0.04 | NC | G |
DER Type | Bus | Real Upper | Real Lower | Reactive Upper | Reactive Lower |
---|---|---|---|---|---|
Feeder | 01 | 2.0 | 0 | - | - |
Solar | 28 | 0.7 | 0 | - | - |
Wind | 30 | 0.5 | 0 | 0.5 | 0 |
Bus | Real Upper | Real Lower |
---|---|---|
30 | - | 0.93 |
Bus | Real Current | Reactive Current | |Voltage| |
---|---|---|---|
1 | 1.8263 | 0.1398 | 0.9985 |
2 | 1.7176 | 0.0528 | 0.9807 |
7 | 1.7069 | 0.0315 | 0.9462 |
8 | 0.5835 | 0.5178 | 0.9458 |
9 | 0.4729 | 0.2668 | 0.9364 |
11 | 1.1230 | 0,4868 | 0.9439 |
13 | 1.0883 | 0.5710 | 0.9438 |
15 | 1.0670 | 0.5588 | 0.9398 |
18 | 1.0648 | 0.5637 | 0.9330 |
20 | 0.2745 | 0.2499 | 0.9315 |
21 | 0.7486 | 0.8379 | 0.9328 |
23 | 0.6825 | 0.8859 | 0.9328 |
24 | 0.0453 | 2.0422 | 0.9329 |
25 | 0.0140 | 2.0612 | 0.9335 |
26 | −0.4907 | 1.2979 | 0.9351 |
27 | −0.5035 | 1.3277 | 0.9353 |
28 | 0.2004 | 0.9042 | 0.9323 |
29 | −0.2410 | 0.5763 | 0.9322 |
30 | 0.0897 | 0.0822 | 0.9321 |
31 | 0.0950 | 0.0575 | 0.9322 |
Solar DER-28 | 0.7000 | 0.0000 | 1.0 |
Wind DER-30 | 0.5000 | 0.3767 | 1.0 |
Feeder | OCF Algorithm Iteration | 50 TPS CPU Time(s) | 100 TPS CPU Time(s) |
---|---|---|---|
A | 7 | 0.0483 | 0.0653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, A.B.; Barbosa, M.B.; Mota, L.M.; Lavorato, M.; de Carvalho, M.F.H. Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER). Energies 2022, 15, 8507. https://doi.org/10.3390/en15228507
Neto AB, Barbosa MB, Mota LM, Lavorato M, de Carvalho MFH. Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER). Energies. 2022; 15(22):8507. https://doi.org/10.3390/en15228507
Chicago/Turabian StyleNeto, Adolfo Blengini, Maria Beatriz Barbosa, Lia Moreira Mota, Marina Lavorato, and Marcius F. H. de Carvalho. 2022. "Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER)" Energies 15, no. 22: 8507. https://doi.org/10.3390/en15228507
APA StyleNeto, A. B., Barbosa, M. B., Mota, L. M., Lavorato, M., & de Carvalho, M. F. H. (2022). Optimal Power Flow Technique for Distribution System Considering Distributed Energy Resources (DER). Energies, 15(22), 8507. https://doi.org/10.3390/en15228507