Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region
Abstract
:1. Introduction
2. Materials and Methods
- i.
- An inclined stand-alone monofacial PV system oriented towards the south;
- ii.
- An inclined bifacial PV system oriented towards the south;
- iii.
- A vertically installed east–west stand-alone bifacial PV system.
2.1. Theoretical Framework
2.1.1. GHI Decomposition into DNI and DHI
2.1.2. Estimation of the Angle of Incidence (AOI) for the Optimally Tilted and Vertically Installed Stand-Alone Bifacial Module
2.2. Optical Collection Model on the Panel
2.2.1. Direct Irradiance
2.2.2. Diffuse Irradiance
2.2.3. Ground Albedo Irradiance
2.3. Power Conversion Efficiency Model
2.4. Field Data
Methodology for Validation of the Model with Field Data
2.5. Simulation Data
3. Results and Discussions
3.1. Estimation of Energy Yield by Different Solar PV Configurations
3.2. Comparison of the Model Energy Output of the Two Bifacial PV Systems
3.3. Inclined Bifacial Energy Gain over the Monofacial System (Bifacial Gain)
3.4. Stand-Alone Vertically Mounted Bifacial Energy Loss over Monofacial PV System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Global Horizontal Irradiance | |
Zenith Angle of the Sun | |
Direct Normal Irradiance | |
Diffuse Horizontal Irradiance | |
Diffuse Fraction | |
Clearness Index | |
Angle of Incidence | |
Total Incident Irradiance at the Front of the Module | |
Total Incident Irradiance at the Rear Side of the Module | |
Angular Losses | |
Ground View Factor | |
Electrical Power Output from the Incident Irradiance | |
Efficiency | |
Potential Energy Yield | |
Shaded Area | |
Non-Shaded Area | |
Bifacial Gain |
References
- Lamers, M.; Özkalay, E.; Gali, R.; Janssen, G.; Weeber, A.; Romijn, I.; Van Aken, B. Temperature effects of bifacial modules: Hotter or cooler? Sol. Energy Mater. Sol. Cells 2018, 185, 192–197. [Google Scholar] [CrossRef]
- Leonardi, M.; Corso, R.; Milazzo, R.G.; Connelli, C.; Foti, M.; Gerardi, C.; Bizzarri, F.; Privitera, S.M.S.; Lombardo, S.A. The Effects of Module Temperature on the Energy Yield of Bifacial Photovoltaics: Data and Model. Energies 2021, 15, 22. [Google Scholar] [CrossRef]
- Berrian, D.; Libal, J.; Klenk, M.; Nussbaumer, H.; Kopecek, R. Performance of Bifacial PV Arrays With Fixed Tilt and Horizontal Single-Axis Tracking: Comparison of Simulated and Measured Data. IEEE J. Photovolt. 2019, 9, 1583–1589. [Google Scholar] [CrossRef]
- Jang, J.; Lee, K. Practical Performance Analysis of a Bifacial PV Module and System. Energies 2020, 13, 4389. [Google Scholar] [CrossRef]
- Mesquita, D.D.B.; Silva, J.L.D.S.; Moreira, H.S.; Kitayama, M.; Villalva, M.G. A review and analysis of technologies applied in PV modules. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019. [Google Scholar] [CrossRef]
- Appelbaum, J. Bifacial photovoltaic panels field. Renew. Energy 2016, 85, 338–343. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, C.; Liu, S.; Shen, C.; Zhao, W.; Chen, Z.; Chen, L.; Wang, J.; Wang, L.; Zhang, S.; et al. A model to evaluate the effect of shading objects on the energy yield gain of bifacial modules. Sol. Energy 2019, 179, 24–29. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y.; Zhou, J.; Li, C.; Ma, L. Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method. Energies 2022, 15, 1262. [Google Scholar] [CrossRef]
- Tillmann, P.; Jäger, K.; Becker, C. Minimising the levelised cost of electricity for bifacial solar panel arrays using Bayesian optimisation. Sustain. Energy Fuels 2019, 4, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.T.; Khan, M.R.; Sun, X.; Alam, M.A. A worldwide cost-based design and optimization of tilted bifacial solar farms. Appl. Energy 2019, 247, 467–479. [Google Scholar] [CrossRef]
- Rodríguez-Gallegos, C.D.; Bieri, M.; Gandhi, O.; Singh, J.P.; Reindl, T.; Panda, S. Monofacial vs bifacial Si-based PV modules: Which one is more cost-effective? Sol. Energy 2018, 176, 412–438. [Google Scholar] [CrossRef]
- Shoukry, I.; Libal, J.; Kopecek, R.; Wefringhaus, E.; Werner, J. Modelling of Bifacial Gain for Stand-alone and in-field Installed Bifacial PV Modules. Energy Procedia 2016, 92, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wilkie, O.; Lam, J.; Steeman, R.; Zhang, W.; Khoo, K.S.; Siong, S.C.; Rostan, H. Bifacial Photovoltaic Systems Energy Yield Modelling. Energy Procedia 2015, 77, 428–433. [Google Scholar] [CrossRef] [Green Version]
- ITRPV-VDMA. International Technology Roadmap for Photovoltaic (ITRPV) 2021 Results; VDMA: Frankfurt, Germany, 2022. [Google Scholar]
- Samer, R.A.B.; Bin Ismail, B.; Abdullah, A.Z.; Ali, I. Simulation analysis of a 3.37 MW PV system using bifacial modules in desert environment. J. Phys. Conf. Ser. 2021, 1878, 012026. [Google Scholar] [CrossRef]
- Ledesma, J.; Almeida, R.; Martinez-Moreno, F.; Rossa, C.; Martín-Rueda, J.; Narvarte, L.; Lorenzo, E. A simulation model of the irradiation and energy yield of large bifacial photovoltaic plants. Sol. Energy 2020, 206, 522–538. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Li, M.; Shen, L.; Zhang, Y. A coupled optical-electrical-thermal model of the bifacial photovoltaic module. Appl. Energy 2019, 258, 114075. [Google Scholar] [CrossRef]
- Yusufoglu, U.A.; Pletzer, T.M.; Koduvelikulathu, L.J.; Comparotto, C.; Kopecek, R.; Kurz, H. Analysis of the Annual Performance of Bifacial Modules and Optimization Methods. IEEE J. Photovolt. 2015, 5, 320–328. [Google Scholar] [CrossRef]
- Castillo-Aguilella, J.E.; Hauser, P.S. Multi-Variable Bifacial Photovoltaic Module Test Results and Best-Fit Annual Bifacial Energy Yield Model. IEEE Access 2016, 4, 498–506. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Toor, F.; Bourne, B.; Anoma, M.A.; Hoffman, A.; Chaudhari, C.; Bapat, S.; Perkins, R.; Cohen, D.; Kimball, G.M.; et al. A Benchmark and Validation of Bifacial PV Irradiance Models. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 3281–3287. [Google Scholar] [CrossRef]
- Pelaez, S.A.; Deline, C.; MacAlpine, S.M.; Marion, B.; Stein, J.S.; Kostuk, R.K. Comparison of Bifacial Solar Irradiance Model Predictions With Field Validation. IEEE J. Photovolt. 2019, 9, 82–88. [Google Scholar] [CrossRef]
- Guo, S.; Walsh, T.M.; Peters, M. Vertically mounted bifacial photovoltaic modules: A global analysis. Energy 2013, 61, 447–454. [Google Scholar] [CrossRef]
- Lloyd, M.A.; Bishop, D.; McCandless, B.E.; Birkmire, R. Zinc Selenide Surface Passivation Layer for Single-Crystalline CZTSe Solar Cells. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 726–729. [Google Scholar] [CrossRef]
- Varga, N.; Mayer, M.J. Model-based analysis of shading losses in ground-mounted photovoltaic power plants. Sol. Energy 2021, 216, 428–438. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Yu, S.; Quan, P.; Zhang, Z. The Study on Micromismatch Losses of the Bifacial PV Modules Due to the Irradiance Nonuniformity on Its Backside Surface. IEEE J. Photovolt. 2019, 10, 135–143. [Google Scholar] [CrossRef]
- Ayala Pelaez, S.; Deline, C.; MacAlpine, S.; Olalla, C. Bifacial PV System Mismatch Loss Estimation. 6th BifiPV Work. Amsterdam, NL, no. October, p. 1. 2019. Available online: https://www.nrel.gov/docs/fy19osti/74831.pdf (accessed on 25 March 2022).
- Asgharzadeh, A.; Marion, B.; Deline, C.; Hansen, C.; Stein, J.S.; Toor, F. A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays. IEEE J. Photovolt. 2018, 8, 798–805. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Lubenow, T.; Sink, J.; Marion, B.; Deline, C.; Hansen, C.; Stein, J.; Toor, F. Analysis of the Impact of Installation Parameters and System Size on Bifacial Gain and Energy Yield of PV Systems. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 3333–3338. [Google Scholar] [CrossRef]
- Al-Shabi, M.; Ghenai, C.; Bettayeb, M.; Ahmad, F.F.; Assad, M.E.H. Estimating PV models using multi-group salp swarm algorithm. IAES Int. J. Artif. Intell. 2021, 10, 398–406. [Google Scholar] [CrossRef]
- AlShabi, M.; Ghenai, C.; Bettayeb, M.; Ahmad, F.F.; Assad, M.E.H. Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model. J. Therm. Anal. 2020, 144, 1655–1670. [Google Scholar] [CrossRef]
- Khan, M.R.; Hanna, A.; Sun, X.; Alam, M.A. Vertical bifacial solar farms: Physics, design, and global optimization. Appl. Energy 2017, 206, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Khan, M.R.; Deline, C.; Alam, M.A. Optimization and performance of bifacial solar modules: A global perspective. Appl. Energy 2018, 212, 1601–1610. [Google Scholar] [CrossRef]
- Pike, C.; Whitney, E.; Wilber, M.; Stein, J. Field Performance of South-Facing and East-West Facing Bifacial Modules in the Arctic. Energies 2021, 14, 1210. [Google Scholar] [CrossRef]
- Yu, B.; Song, D.; Sun, Z.; Liu, K.; Zhang, Y.; Rong, D.; Liu, L. A study on electrical performance of N-type bifacial PV modules. Sol. Energy 2016, 137, 129–133. [Google Scholar] [CrossRef]
- Wei, Q.; Wu, C.; Liu, X.; Zhang, S.; Qian, F.; Lu, J.; Lian, W.; Ni, P. The Glass-glass Module Using n-type Bifacial Solar Cell with PERT Structure and its Performance. Energy Procedia 2016, 92, 750–754. [Google Scholar] [CrossRef] [Green Version]
- Deline, C.; MacAlpine, S.; Marion, B.; Toor, F.; Asgharzadeh, A.; Stein, J.S. Evaluation and field assessment of bifacial photovoltaic module power rating methodologies. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Kopecek, R.; Libal, J. Bifacial Photovoltaics 2021: Status, Opportunities and Challenges. Energies 2021, 14, 2076. [Google Scholar] [CrossRef]
- Olczak, P.; Olek, M.; Matuszewska, D.; Dyczko, A.; Mania, T. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland. Energies 2021, 14, 499. [Google Scholar] [CrossRef]
- Ishikawa, N.; Nishiyama, S. World First Large Scale 1. 25MW Bifacial PV Power Plant on Snowy Area in Japan. In Proceedings of the 3rd bifi PV workshop, Miyazaki, Japan 2016, Miyazaki, Japan, 29–30 September 2016; pp. 1–23. [Google Scholar]
- Reno, M.J.; Hansen, C. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis. Sandia Rep., No. January. 2014. Available online: http://www.osti.gov/servlets/purl/1039404/ (accessed on 15 February 2022).
- Mabasa, B.; Lysko, M.; Tazvinga, H.; Zwane, N.; Moloi, S. The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. Energies 2021, 14, 2583. [Google Scholar] [CrossRef]
- Lave, M.; Hayes, W.; Pohl, A.; Hansen, C.W. Evaluation of Global Horizontal Irradiance to Plane-of-Array Irradiance Models at Locations Across the United States. IEEE J. Photovolt. 2015, 5, 597–606. [Google Scholar] [CrossRef]
- Lopez, T.C. PV Performance Modeling Collaborative|Piecewise Decomposition Models. 9 August 2014. Available online: https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/irradiance-and-insolation-2/direct-normal-irradiance/piecewise_decomp-models/ (accessed on 30 March 2022).
- Lopez, T.C. PV Performance Modeling Collaborative|Hay and Davies Sky Diffuse Model. 9 August 2014. Available online: https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poa-irradiance/calculating-poa-irradiance/poa-sky-diffuse/hay-sky-diffuse-model/ (accessed on 30 March 2022).
- Yang, D. Solar radiation on inclined surfaces: Corrections and benchmarks. Sol. Energy 2016, 136, 288–302. [Google Scholar] [CrossRef]
- Duffie, A.J.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 3. [Google Scholar]
- Martín, N.; Ruiz, J.M. Annual angular reflection losses in PV modules. Prog. Photovolt. Res. Appl. 2005, 13, 75–84. [Google Scholar] [CrossRef]
- Xie, J.; Sengupta, M. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces. Eur. PV Sol. Conf. Exhib. (EU PVSEC) 2016, 18302, 66573. [Google Scholar]
- Marion, B.; Macalpine, S.; Deline, C.; Riley, D.; Stein, J.; Hansen, C. A Practical Irradiance Model for Bifacial PV Modules. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017. [Google Scholar]
- Yusufoglu, U.A.; Lee, T.H.; Pletzer, T.M.; Halm, A.; Koduvelikulathu, L.J.; Comparotto, C.; Kopecek, R.; Kurz, H. Simulation of Energy Production by Bifacial Modules with Revision of Ground Reflection. Energy Procedia 2014, 55, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Appelbaum, J. The role of view factors in solar photovoltaic fields. Renew. Sustain. Energy Rev. 2017, 81, 161–171. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Ahmed, S.; Zhang, Y.; Peng, J. A comprehensive review and outlook of bifacial photovoltaic (bPV) technology. Energy Convers. Manag. 2020, 223, 113283. [Google Scholar] [CrossRef]
- Baumann, T.; Nussbaumer, H.; Klenk, M.; Dreisiebner, A.; Carigiet, F.; Baumgartner, F. Photovoltaic systems with vertically mounted bifacial PV modules in combination with green roofs. Sol. Energy 2020, 190, 139–146. [Google Scholar] [CrossRef]
- Jouttijärvi, S.; Lobaccaro, G.; Kamppinen, A.; Miettunen, K. Benefits of bifacial solar cells combined with low voltage power grids at high latitudes. Renew. Sustain. Energy Rev. 2022, 161, 112354. [Google Scholar] [CrossRef]
- Baumann, T.; Fabian, C.; Raphael, K.; Markus, K.; Andreas, D.; Hartmut, N. Performance Analysis of Vertically Mounted Bifacial PV Modules on Green Roof System. In Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Brussels, Belgium, 24–27 September 2018. [Google Scholar]
- Meyer, C. Vertical bifacial: Grid-friendly and competitive agrophotovoltaic concept: New project of Dirmingen. Agrovoltaics Fr. Ger., No. October, 2018. Available online: https://energie-fr-de.eu/fr/manifestations/lecteur/seminaire-sur-lagrivoltaisme-en-france-et-en-allemagne.html (accessed on 16 April 2022).
- Fernández, E.F.; Pérez-Higueras, P.; Almonacid, F.; Ruiz-Arias, J.; Rodrigo, P.; Fernandez, J.; Luque-Heredia, I. Model for estimating the energy yield of a high concentrator photovoltaic system. Energy 2015, 87, 77–85. [Google Scholar] [CrossRef]
- Mahachi, T. Energy yield analysis and evaluation of solar irradiance models for a utility scale solar PV plant in South Africa. Master Eng. (Electrical Electron. Fac. Eng. Stellenbosch Univ., vol. 1, no. 12, 2016. Available online: https://scholar.sun.ac.za (accessed on 31 January 2022).
- Caballero, P.; Srinivasan, G. How to Calculate P90 (or Other Pxx) PV Energy Yield Estimates|Solargis. 2018. Available online: https://solargis.com/blog/best-practices/how-to-calculate-p90-or-other-pxx-pv-energy-yield-estimates (accessed on 26 May 2022).
Electrical Parameters at STC | Monofacial (Panel A) | Bifacial (Panel B) | Bifacial (Panel C) |
---|---|---|---|
Peak Power [W] | 385 | 335 | 335 |
Open Circuit Voltage, Voc [V] | 49.04 | 40.7 | 40.7 |
Max, Power Voltage, Vmp [V] | 39.9 | 34.1 | 34.1 |
Short Circuit Current, Isc [A] | 10.17 | 10.34 | 10.34 |
Max. Power Current, Imp [A] | 9.65 | 9.83 | 9.83 |
Module Efficiency, STC [%] | 19.3 | 19.6 | 19.6 |
Pmax Bifaciality coefficient [%] | - | 70 ± 5 | 70 ± 5 |
Pmax temp coefficient [%/°C] | −0.37 | −0.36 | −0.36 |
Fill Factor | 0.7720 | 0.7970 | 0.7970 |
[mm] | 1979 × 996 × 40 | 1686 × 1016 × 40 | 1686 × 1016 × 40 |
PV cells Type | Monocrystalline/n-type | Monocrystalline/n-type | Monocrystalline/n-type |
Parameters | Values |
---|---|
Albedo | 0.25 |
Tilt Angle | |
Module elevation | 1.04 m |
Front efficiency | 19.60% |
Rear efficiency | 13.72% |
Monofacial PV Module | Bifacial PV Module | |
---|---|---|
Peak Power [W] | 334.0 | 334.37 |
Open Circuit Voltage, Voc [V] | 40.46 | 41.24 |
Max, Power Voltage, Vmp [V] | 33.40 | 34.40 |
Short Circuit Current, Isc [A] | 10.34 | 10.23 |
Max. Power Current, Imp [A] | 10.00 | 9.72 |
Fill Factor | 0.79 | 0.79 |
Bifaciality [%] | 70 | |
[mm] | 1704 × 1008 × 35 | 1704 × 1008 × 30 |
Tilted Monofacial (Wh) | Tilted Bifacial (Wh) | Vertical Bifacial (Wh) | |
---|---|---|---|
Modelled (March) | 6440.2 | 7948.9 | 6818.0 |
Measured (March) | 5920.7 | 7239.4 | 6191.6 |
Modelled (June) | 6902.4 | 8475.8 | 6685.0 |
Measured (June) | 6089.4 | 7268.2 | 5385.4 |
Modelled (December) | 5742.2 | 6960.0 | 5687.6 |
Measured (December) | 5633.0 | 7001.0 | 5271.7 |
Months | Deviation (%) Modelled/Measured (Inclined Monofacial) | Deviation (%) PVsyst/Modelled/Measured (Inclined Monofacial) | Deviation (%) Modelled/Measured (Inclined Bifacial) | Deviation (%) PVsyst/Modelled/Measured (Inclined Bifacial) | Deviation (%) Modelled/Measured (Vertical Bifacial) | Deviation (%) PVsyst/Modelled/Measured (Vertical Bifacial) | Deviation (%) PVsyst/Modelled (Vertical Bifacial) |
---|---|---|---|---|---|---|---|
November 2020 | 0.22 | 5.60 | 0.07 | 6.28 | 4.63 | 3.39 | 1.26 |
December 2020 | 0.38 | 5.77 | 0.47 | 5.32 | 5.76 | 4.17 | 1.76 |
January 2021 | 0.25 | 6.79 | 0.28 | 5.79 | 5.02 | 3.67 | 1.35 |
February 2021 | 0.55 | 5.18 | 0.05 | 4.08 | 6.28 | 4.49 | 3.99 |
March 2021 | 0.68 | 5.57 | 0.25 | 4.55 | 6.42 | 4.55 | 3.53 |
April 2021 | 0.08 | 5.73 | 0.16 | 4.95 | 7.59 | 5.54 | 2.09 |
May 2022 | 1.41 | 3.74 | 2.76 | 4.03 | 9.61 | 6.89 | 3.41 |
June 2021 | 1.41 | 3.36 | 4.06 | 4.06 | 9.61 | 7.08 | 2.37 |
Average | 0.75 | 5.22 | 1.01 | 4.91 | 6.86 | 4.97 | 2.47 |
Measured/Modelled Inc Monofacial PV | Measured/PVsyst Inc Monofacial | PVsyst/ModelledInc Monofacial | Measured/Modelled Inc Bifacial PV | Measured/PVsyst Inclined Bifacial PV | PVsyst/Modelled Bifacial | Measured/Modelled Vertical Bifacial | Measured/PVsyst Vertical Bifacial | PVsyst/Modelled Vertical Bifacial |
---|---|---|---|---|---|---|---|---|
1.49 | 9.27 | 9.02 | 1.88 | 8.55 | 7.97 | 10.03 | 6.62 | 3.76 |
Month | Measured Data Gain (%) | Modelled Data Gain (%) | PVsyst Data Gain (%) |
---|---|---|---|
November | 7.17 | 6.54 | 7.96 |
December | 10.24 | 10.41 | 6.99 |
January | 10.59 | 10.55 | 4.41 |
February | 9.71 | 12.44 | 4.36 |
March | 9.54 | 12.20 | 4.75 |
April | 10.27 | 10.43 | 5.06 |
May | 7.08 | 9.07 | 5.65 |
June | 7.84 | 9.54 | 6.02 |
Average | 9.05 | 10.15 | 5.65 |
Months | Measured | Modelled | PVsyst |
---|---|---|---|
November | −27.92 | −11.27 | −32.84 |
December | −31.10 | −8.84 | −34.27 |
January | −28.41 | −7.84 | −34.85 |
February | −29.23 | −1.29 | −35.78 |
March | −29.64 | −4.43 | −34.43 |
April | −30.85 | −2.28 | −28.87 |
May | −33.79 | −3.82 | −25.19 |
June | −35.51 | −7.15 | −21.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubu, R.O.; Ankoh, M.T.; Mensah, L.D.; Quansah, D.A.; Adaramola, M.S. Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies 2022, 15, 8510. https://doi.org/10.3390/en15228510
Yakubu RO, Ankoh MT, Mensah LD, Quansah DA, Adaramola MS. Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies. 2022; 15(22):8510. https://doi.org/10.3390/en15228510
Chicago/Turabian StyleYakubu, Rahimat O., Maame T. Ankoh, Lena D. Mensah, David A. Quansah, and Muyiwa S. Adaramola. 2022. "Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region" Energies 15, no. 22: 8510. https://doi.org/10.3390/en15228510
APA StyleYakubu, R. O., Ankoh, M. T., Mensah, L. D., Quansah, D. A., & Adaramola, M. S. (2022). Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies, 15(22), 8510. https://doi.org/10.3390/en15228510