Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Equipment
2.3. Experimental Procedure and Observations
2.4. Experimental Uncertainty
3. Performance Analysis
3.1. The Efficiency of Proposed Solar-Still System Coupled with Flat-Plate Collector
3.2. Economic & Exergy Analysis
4. Result and Discussion
4.1. Experimentation Data Analysis
4.2. Exergy Analysis
4.3. Cost Analysis
4.4. Validation
5. Conclusions
- (i).
- Thermal efficiency of solar still coupled with FPC at a water depth of 3 cm is 51.31%, which is the highest.
- (ii).
- Thermal efficiency of solar still without FPC at a water depth of 9 cm is 17.02%, which is 66.82% lower than 3 cm.
- (iii).
- The overall thermal efficiency of a solar still coupled with FPC is 42.065%, while for a solar still without FPC, it is 13.955%.
- (iv).
- The cost of the proposed solar still is 8847INR; hence the payback period of the proposed system is found as 1.46 years, which is comparatively lower than the traditional solar still.
- (v).
- Relative humidity varies inversely with ambient temperature.
- (vi).
- The solar still yield is maximum at the peak point of solar radiation.
- (vii).
- Whenever there is an increase in the wind velocity, the yield will be reduced due to heat loss on the surface of glass and this can be clearly observed in the case of 9 cm water depth.
- (viii).
- Highest ᶯ is obtained for the proposed system at the 3 cm basin depth and lowest at 12 water depth.
- (ix).
- The proposed modified solar still can be used anywhere in the world with a small modification.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Annualized salvage value | |
Aglass | Glass cover area in ‘m2′ |
PCM | Phase Change Materials |
VRW | Vertical Rotating Wick |
FRP | Fibre Reinforced Plastic |
Ig(Inc) | Global Radiation on inclined surface (W/m2) |
Id(Inc) | Diffuse Radiation on inclined surface (W/m2) |
m | Mass flow rate of fluid flow, (Kg/s) |
mew | Distillate Output (Yield), mL/h. |
hew | Evaporative coefficient |
Tv | Temperature of vapor in ‘°C’ |
Tgi | Temperature of glass (inside) in ‘°C’ |
Tgo | Temperature of glass in ‘°C’ |
SSF | Sinking Fund Factor |
Ti | Solar collector inlet fluid temperature in ‘°C’ |
To | Solar collector outlet fluid temperature in ‘°C’ |
Tw | Water Temperature in ‘°C’ |
Ta | Ambient Temperature ‘°C’ |
Lv | Latent heat of vaporization (J/kg) |
vg | Wind Velocity, m/s |
γa | Relative Humidity, % |
ε | Absorptivity |
ατ | Absorptance–transmittance product |
References
- Elashmawy, M. Experimental study on water extraction from atmospheric air using tubular solar still. J. Clean. Prod. 2020, 249, 119322. [Google Scholar] [CrossRef]
- Prakash, O.; Ahmad, A.; Kumar, A.; Hasnain, S.M.; Kumar, G. Comprehensive analysis of design software application in solar distillation units. Mater. Sci. Energy Technol. 2022, 5, 171–180. [Google Scholar] [CrossRef]
- Durkaieswaran, P.; Murugavel, K.K. Various special designs of single basin passive solar still—A review. Renew. Sustain. Energy Rev. 2015, 49, 1048–1060. [Google Scholar] [CrossRef]
- Fathy, M.; Hassan, H.; Ahmed, M.S. Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Sol. Energy 2018, 163, 54–61. [Google Scholar] [CrossRef]
- Kumar, S.; Dubey, A.; Tiwari, G. A solar still augmented with an evacuated tube collector in forced mode. Desalination 2014, 347, 15–24. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Omara, Z. Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination 2014, 349, 1–9. [Google Scholar] [CrossRef]
- Sheeba, K.N.; Prakash, P.; Jaisankar, S. Performance Evaluation of a Flat Plate Collector Coupled Solar Still System. Energy Sources Part A Recover. Util. Environ. Eff. 2015, 37, 291–298. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Arjunan, T.V.; Senthilkumar, P. The Experimental Investigation of a Solar Still Coupled with an Evacuated Tube Collector. Energy Sources Part A Recover. Util. Environ. Eff. 2013, 35, 261–270. [Google Scholar] [CrossRef]
- Prakash, O.; Bhushan, B.; Kumar, A.; Ahmed, A. Thermal analysis of domestic type single Slope–Basin solar still under two different water depths. Mater. Today Proc. 2021, 46, 5482–5489. [Google Scholar] [CrossRef]
- Deshmukh, H.S.; Thombre, S.B. Solar distillation with single basin solar still using sensible heat storage materials. Desalination 2017, 410, 91–98. [Google Scholar] [CrossRef]
- Yousef, M.S.; Hassan, H. Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy Convers. Manag. 2019, 179, 349–361. [Google Scholar] [CrossRef]
- Panchal, H.; Sathyamurthy, R. Experimental analysis of single-basin solar still with porous fins. Int. J. Ambient Energy 2020, 41, 563–569. [Google Scholar] [CrossRef]
- Panchal, H.; Sathyamurthy, R.; Pandey, A.K.; Kumar, M.; Arunkumar, T.; Patel, D.K. Annual performance analysis of a single-basin passive solar still coupled with evacuated tubes: Comprehensive study in climate conditions of Mahesana, Gujarat. Int. J. Ambient Energy 2019, 40, 229–242. [Google Scholar] [CrossRef]
- Rabhi, K.; Nciri, R.; Nasri, F.; Ali, C.; Ben Bacha, H. Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser. Desalination 2017, 416, 86–93. [Google Scholar] [CrossRef]
- Dashtban, M.; Tabrizi, F.F. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination 2011, 279, 415–422. [Google Scholar] [CrossRef]
- Ansari, O.; Asbik, M.; Bah, A.; Arbaoui, A.; Khmou, A. Desalination of the brackish water using a passive solar still with a heat energy storage system. Desalination 2013, 324, 10–20. [Google Scholar] [CrossRef]
- Kumar, A.; Denkenberger, D.; Ahsan, A.; Jayaprakash, R. The augmentation of distillate yield by using concen-trator coupled solar still with phase change material. Desalination 2013, 314, 189–192. [Google Scholar]
- El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, A.S. Thermal performance of a single basin solar still with PCM as a storage medium. Appl. Energy 2009, 86, 1187–1195. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination 2016, 383, 22–28. [Google Scholar] [CrossRef]
- Haddad, Z.; Chaker, A.; Rahmani, A. Improving the basin type solar still performances using a vertical rotating wick. Desalination 2017, 418, 71–78. [Google Scholar] [CrossRef]
- García-Chávez, R.; De México, U.N.A.; Chávez-Ramirez, A.; Villafán-Vidales, H.; Velázquez-Fernández, J.B.; Rosales, I.H. Thermal study of a solar distiller using computational fluid dynamics (CFD). Rev. Mex. De Ing. 2019, 19, 677–689. [Google Scholar] [CrossRef]
- Boopalan, N.; Kalidasan, B.; Ranjith, K.; Dhanush, B.; Anbarasu, S.; Selvam, S.P. Experimental Study and Performance Analysis of Phase Change Material Integrated Stepped Slope Solar Still. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1059, 012002. [Google Scholar] [CrossRef]
- Pathak, A.K.; Tyagi, V.V.; Anand, S.; Pandey, A.K.; Kothari, R. Advancement in solar still integration with phase change materials-based TES systems and nanofluid for water and wastewater treatment applications. J. Therm. Anal. 2022, 147, 9181–9227. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Sharshir, S.W.; Kabeel, A.E.; Elkadeem, M.R.; Ma, Z.; Manokar, A.M.; Arıcı, M.; Pandey, A.K.; Saidur, R. Performance analysis of a modified solar still using reduced graphene oxide coated absorber plate with activated carbon pellet. Sustain. Energy Technol. Assess. 2021, 45, 101046. [Google Scholar] [CrossRef]
- Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Yadav, S.; Brahmbhatt, S. Performance analysis of evacuated tubes coupled solar still with double basin solar still and solid fins. Int. J. Ambient Energy 2020, 41, 1031–1037. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O. Thermal analysis of north wall insulated greenhouse dryer at different bed conditions operating under natural convection mode. Environ. Prog. Sustain. Energy 2019, 38, e13257. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O. Performance Evaluation of a Solar Greenhouse Dryer at Different Bed Conditions Under Passive Mode. J. Sol. Energy Eng. 2020, 142, 011006. [Google Scholar] [CrossRef]
- Subramanian, R.S.; Kumaresan, G.; Ajith, R.; Sabarivasan, U.; Gowthamaan, K.; Anudeep, S. Performance analysis of modified solar still integrated with flat plate collector. Mater. Today Proc. 2020, 45, 1382–1387. [Google Scholar] [CrossRef]
- Gómez-Paredes, M.D.; Hernández-Rodríguez, L.; López-Ortega, J.; González-Blanco, G.; Beristain-Cardoso, R.; México, U.A.D.E.D. Industrial wastewater treatment by anaerobic digestion using a solar heater as renewable energy for temperature-control. Rev. Mex. De Ing. 2020, 19, 9–16. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O.; Kumar, A. Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer. Environ. Sci. Pollut. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Quan, Q.; Gao, S.; Shang, Y.; Wang, B. Assessment of the sustainability of Gymnocypris eckloni habitat under river damming in the source region of the Yellow River. Sci. Total Environ. 2021, 778, 146312. [Google Scholar] [CrossRef]
- Fang, X.; Wang, Q.; Wang, J.; Xiang, Y.; Wu, Y.; Zhang, Y. Employing extreme value theory to establish nutrient criteria in bay waters: A case study of Xiangshan Bay. J. Hydrol. 2021, 603, 127146. [Google Scholar] [CrossRef]
- Quan, Q.; Liang, W.; Yan, D.; Lei, J. Influences of joint action of natural and social factors on atmospheric process of hydrological cycle in Inner Mongolia, China. Urban Clim. 2022, 41, 101043. [Google Scholar] [CrossRef]
- Ren, L.; Kong, F.; Wang, X.; Song, Y.; Li, X.; Zhang, F.; Sun, N.; An, H.; Jiang, Z.; Wang, J. Triggering ambient polymer-based Li-O2 battery via photo-electro-thermal synergy. Nano Energy 2022, 98, 107248. [Google Scholar] [CrossRef]
- Farid, M.; Hamad, F. Performance of a single-basin solar still. Renew. Energy 1993, 3, 75–83. [Google Scholar] [CrossRef]
Authors | Major Findings | Uniqueness of the Current Investigation |
---|---|---|
Boopalan et al. [22] | Three-stepped solar stills were used, one without a phase-change substance, one with paraffin wax as a phase-change material, and one with Ca(NO)3 as a phase-change material. By storing solar energy in the form of latent heat, which is released throughout the night to enable solar still distillation, phase change materials are integrated into solar stills to boost the productivity of clean drinking water. When compared to solar stills with paraffin as the phase change material, those with Ca(NO)3 as the phase change material produced 8.17% more clean drinking water. | The impact of single-slope solar stills with and without a flat-plate collector was evaluated experimentally and numerically in the geographical location of Bhopal (23.2599° N, 77.4126° E), India. Experimental analysis was calculated for four different water depths (3, 6, 9, and 12 cm) in on-sunshine hours between 11 AM and 5 PM. The overall results obtained in the analysis state that solar still performs effectively when coupled with a flat-plate solar collector. |
Pathak et al. [23] | The efficiency and productivity of solar stills are greatly enhanced by the use of phase change and nanomaterials, making them ideal for industrial applications. The system that includes nanomaterials has a higher heat transfer rate and is more thermally active. | |
Thakur et al. [24] | Reduced graphene oxide (RGO)-coated absorber plates in sun stills and RGO-coated absorber plates combined with activated carbon pellets as a sensible thermal energy storage medium were used by the authors to increase the performance of single-basin solar stills. The use of activated carbon pellets and absorber plates covered with RGO increased the water yield by 58.15% and the full-day average energy efficiency by 64.44%, according to the results, respectively. | |
Panchal et al. [25] | The single-basin passive solar still with vacuum tubes was found to be a more productive attachment when compared to solar ponds, parabolic collectors, flat-plate collectors, and flat-plate collectors. The energy payback time of a single-basin passive solar still is 176 days, and the yearly cost of drinkable water is 0.723 INR. |
(a) | |||
S. No. | Solar Still Basin Dimensions | Glass Cover Dimensions | |
1. | Area—50.80 cm × 50.80 cm | Thickness—5 mm | |
2. | Basin material—FRP of 4 mm thickness | Inclination— (23.2599° N, 77.4126° E) | |
3. | Lower height of basin—20.32 cm Higher height of basin—48.26 cm | Breadth—50.8 cm | |
4. | Length—50.792 cm Width—50.792 cm | Length—58.42 cm | |
(b) | |||
S. No. | Heating-Pipes | Box | Absorber Plate |
1. | = 0.8 | Area ofglasscoverBox 55.88 × 106.68 cm2 | Sheet thickness = 5 mm |
2. | Length = 91.44 cm, Total no of pipes = 5, Diameter 1.905 cm. Length = 50.8 cm, Total no of pipes = 2, Diameter 2.54 cm. | Glass Cover Thickness of box = 5 mm | Material of absorber plate = M.S Sheet |
3. | Material of heating pipes: M.S pipes | Material: FRP Sheet Dimensions: 106.68 × 55.88 × 12.7 cm3 | Length of absorber plate = 106.68 cm; Thickness of absorber plate = 5 mm Breadth = 55.88 cm |
4. | Distance of tube (Centre to Centre)—7.62 cm |
S. No. | Instrument | Accuracy | Range | Uses |
---|---|---|---|---|
1 | Thermometer | ±1 °C | 0–100 °C | Measuring Temperature |
2 | Thermocouple | ±1 °C | 0–100 °C | Measuring Temperature |
3 | Pyranometer | 0–1000 W/m2 | ±1 W/m2 | Measuring Solar Radiation |
4 | Anemometer | 0–25 m/s | ±0.1 m/s | Measuring Wind velocity |
5 | Measuring beaker | 0–500 mL | ±2 mL | Measuring Distillate water |
(a) | |||||||||||
S. No. | Time | γa | Ta | Id(Inc) | vg | Tw | Ig(Inc) | Tv | Tgi1 | Tgo1 | mew1 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 35.6 | 36.8 | 164 | 0.16 | 18 | 998 | 14 | 15 | 15 | 0 |
2 | 12:00 | 35.1 | 36.8 | 171 | 0.14 | 15 | 1018 | 11 | 13 | 13 | 46 |
3 | 13:00 | 32.2 | 37.5 | 158 | 0.22 | 16 | 1000 | 12 | 15 | 18 | 76 |
4 | 14:00 | 30.4 | 37.9 | 900 | 0.12 | 15 | 912 | 11 | 15 | 16 | 125 |
5 | 15:00 | 26.1 | 38.3 | 708 | 0.08 | 26 | 637 | 16 | 28 | 30 | 194 |
6 | 16:00 | 24.6 | 39.4 | 552 | 0.24 | 25 | 570 | 15 | 27 | 29 | 220 |
7 | 17:00 | 24.6 | 35.6 | 303 | 0.16 | 21 | 321 | 14 | 22 | 24 | 260 |
(b) | |||||||||||
S. No. | Time | γa | Ta | Id2(Inc) | vg | Tw | Ig2(Inc) | Tv | Tgi2 | Tgo2 | Mew2 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 23.4 | 38 | 140 | 0.04 | 28 | 1017 | 24 | 18 | 18 | 0 |
2 | 12:00 | 21.9 | 38.6 | 135 | 0.07 | 27 | 1023 | 25 | 18 | 17 | 55 |
3 | 13:00 | 20.6 | 39.6 | 106 | 0.36 | 19 | 1037 | 11 | 14 | 15 | 99 |
4 | 14:00 | 20.9 | 39.6 | 910 | 0.08 | 20 | 650 | 14 | 10 | 11 | 160 |
5 | 15:00 | 19.9 | 39.7 | 743 | 0.06 | 23 | 663 | 13 | 17 | 18 | 485 |
6 | 16:00 | 18.3 | 40.7 | 592 | 0.16 | 22 | 584 | 12 | 21 | 22 | 500 |
7 | 17:00 | 17.8 | 40.5 | 116 | 0.18 | 21 | 318 | 17 | 25 | 27 | 525 |
(a) | ||||||||||||
S. No. | Time | γa | Ta | Id(Inc) | vg | Tw | Ig(Inc) | Tv | Tgi1 | Tgo1 | Mew1 | |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | ||
1 | 11:00 | 38.1 | 36.2 | 154 | 0.08 | 24 | 410 | 22 | 20 | 20 | 0 | |
2 | 12:00 | 35.7 | 37.27 | 138 | 0.01 | 27 | 1015 | 23 | 18 | 17 | 21 | |
3 | 13:00 | 31.1 | 38.22 | 144 | 0.04 | 18 | 1048 | 18 | 16 | 18 | 61 | |
4 | 14:00 | 26.8 | 38.22 | 145 | 0.03 | 17 | 934 | 14 | 15 | 18 | 104 | |
5 | 15:00 | 27.7 | 37.88 | 102.3 | 0.11 | 18 | 140.2 | 19 | 20 | 22 | 120 | |
6 | 16:00 | 27.7 | 37.61 | 32 | 0.01 | 24 | 58 | 22 | 23 | 23 | 180 | |
7 | 17:00 | 27.7 | 37.33 | 15 | 0.02 | 27 | 18 | 21 | 22 | 23 | 210 | |
(b) | ||||||||||||
S. No. | Time | γa | Ta | Id2(Inc) | vg | Tw | Ig2(Inc) | Tw | Tv | Tgi2 | Tgo2 | Mew2 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 31.2 | 37.1 | 107 | 0.26 | 25 | 955 | 25 | 21 | 17 | 18 | 0 |
2 | 12:00 | 27.9 | 37.9 | 94 | 0.25 | 23 | 448 | 23 | 19 | 18 | 18 | 16 |
3 | 13:00 | 24 | 38.7 | 114 | 0.11 | 22 | 978 | 22 | 9 | 15 | 15 | 49 |
4 | 14:00 | 20.3 | 40.7 | 903 | 0.24 | 20 | 898 | 20 | 3 | 14 | 15 | 89 |
5 | 15:00 | 20.7 | 39.7 | 108 | 0.12 | 15 | 733 | 15 | 5 | 20 | 20 | 154 |
6 | 16:00 | 22.2 | 39.5 | 116 | 0.16 | 18 | 574 | 18 | 16 | 24 | 25 | 182 |
7 | 17:00 | 21.4 | 39.4 | 74 | 0.12 | 17 | 308 | 17 | 16 | 27 | 27 | 240 |
(a) | |||||||||||
S.No | Time | γa | Ta | Id(Inc) | vg | Tw | Ig(Inc) | Tv | Tgi1 | Tgo1 | Mew1 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 32.8 | 34.27 | 102 | 0.18 | 28 | 233 | 22 | 23 | 24 | 0 |
2 | 12:00 | 30 | 35.11 | 200 | 0.01 | 27 | 435 | 22 | 22 | 23 | 3 |
3 | 13:00 | 29.3 | 35.5 | 140 | 0.28 | 24 | 255 | 13 | 23 | 25 | 14 |
4 | 14:00 | 27.9 | 35.88 | 237 | 0.06 | 22 | 411 | 5 | 23 | 25 | 40 |
5 | 15:00 | 30.2 | 35.7 | 604 | 0.08 | 22 | 702 | 2 | 20 | 20 | 74 |
6 | 16:00 | 33.1 | 36.61 | 151 | 0.12 | 21 | 212 | 19 | 23 | 25 | 112 |
7 | 17:00 | 35.4 | 36.72 | 92 | 0.14 | 22 | 290 | 12 | 26 | 28 | 140 |
(b) | |||||||||||
S. No. | Time | γa | Ta | Id2(Inc) | vg | Tw | Ig2(Inc) | Tv | Tgi2 | Tgo2 | Mew2 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 42.3 | 35.4 | 147 | 0.11 | 25 | 956 | 24 | 15 | 16 | 0 |
2 | 12:00 | 39.2 | 36.2 | 178 | 0.13 | 26 | 1050 | 23 | 17 | 16 | 8 |
3 | 13:00 | 31 | 37.5 | 144 | 0.042 | 25 | 1047 | 23 | 26 | 27 | 35 |
4 | 14:00 | 27.3 | 38.5 | 98 | 0.02 | 25 | 930 | 24 | 15 | 16 | 48 |
5 | 15:00 | 25.2 | 39 | 730 | 0.14 | 26 | 754 | 17 | 18 | 18 | 160 |
6 | 16:00 | 23.9 | 38.7 | 550 | 0.09 | 22 | 552 | 23 | 24 | 19 | 187 |
7 | 17:00 | 21.9 | 38.8 | 95 | 0.15 | 25 | 332 | 22 | 24 | 23 | 224 |
(a) | |||||||||||
S. No. | Time | γa | Ta | Id(Inc) | vg | Tw | Ig(Inc) | Tv | Tgi1 | Tgo1 | Mew1 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 31.9 | 37.5 | 134 | 0.22 | 30 | 970 | 23 | 16 | 16 | 0 |
2 | 12:00 | 31.9 | 36.5 | 112 | 0.08 | 28 | 1028 | 22 | 15 | 16 | 10 |
3 | 13:00 | 27.5 | 37.3 | 142 | 0.14 | 28 | 987 | 12 | 15 | 16 | 16 |
4 | 14:00 | 26.8 | 37.8 | 866 | 0.26 | 19 | 815 | 15 | 19 | 26 | 25 |
5 | 15:00 | 34.4 | 36.3 | 856 | 0.14 | 20 | 835 | 19 | 18 | 18 | 33 |
6 | 16:00 | 31.5 | 36.9 | 165 | 0.26 | 26 | 370 | 8 | 20 | 20 | 43 |
7 | 17:00 | 32.4 | 35.9 | 62 | 0.27 | 27 | 90 | 20 | 22 | 22 | 224 |
(b) | |||||||||||
S. No. | Time | γa | Ta | Id2(Inc) | vg | Tw | Ig2(Inc) | Tv | Tgi2 | Tgo2 | Mew2 |
(h) | (%) | (°C) | (W/m2) | (m/s) | (°C) | (W/m2) | (°C) | (°C) | (°C) | (mL/h) | |
1 | 11:00 | 37.7 | 36.5 | 188 | 0.18 | 22 | 1002 | 20 | 19 | 18 | 0 |
2 | 12:00 | 35.1 | 36.4 | 109 | 0.27 | 22 | 229 | 22 | 20 | 19 | 8 |
3 | 13:00 | 32.8 | 37.7 | 204 | 0.15 | 19 | 1100 | 18 | 19 | 18 | 15 |
4 | 14:00 | 53.5 | 31.4 | 19.6 | 0.1 | 15 | 25 | 19 | 22 | 21 | 40 |
5 | 15:00 | 48.3 | 32.3 | 55 | 0.06 | 16 | 103 | 16 | 22 | 21 | 57 |
6 | 16:00 | 44 | 32.7 | 435 | 0.12 | 18 | 419 | 19 | 21 | 20 | 84 |
7 | 17:00 | 36.8 | 35.2 | 92 | 0.12 | 16 | 475 | 19 | 25 | 25 | 105 |
Time | Depth (3 cm) | Depth (6 cm) | Depth (9 cm) | Depth (12 cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exi | Exo | neff | Exi | Exo | neff | Exi | Exo | neff | Exi | Exo | neff | |
11 | 1170. | 0.35 | 0.029 | 1086. | 0.4 | 0.0392 | 1004.7 | 0.20 | 0.0207 | 1123.9 | 0.20 | 0.01 |
12 | 1221 | 1.24 | 0.101 | 1132 | 1.4 | 0.1264 | 1050.7 | 0.35 | 0.0335 | 1033.4 | 0.12 | 0.01 |
13 | 1258 | 3.30 | 0.262 | 1114 | 1.7 | 0.1581 | 1142.2 | 1.13 | 0.0997 | 1097.0 | 1.70 | 0.15 |
14 | 1002. | 4.79 | 0.478 | 946.44 | 3.5 | 0.36980 | 1022.63 | 1.81 | 0.17767 | 1006.56 | 2.52 | 0.25 |
15 | 801.7 | 7.50 | 0.935 | 828.3 | 4.9 | 0.5992 | 741.37 | 3.46 | 0.4669 | 810.99 | 2.57 | 0.31 |
16 | 708.6 | 8.13 | 1.148 | 726.1 | 6.2 | 0.8603 | 652.16 | 4.38 | 0.6720 | 641.66 | 2.44 | 0.38 |
17 | 606.2 | 10.3 | 1.709 | 558.9 | 6.5 | 1.1794 | 539.84 | 5.2 | 0.9632 | 530.19 | 2.75 | 0.51 |
Components | Amount (INR) |
---|---|
Silicon seal | 645.00 |
Thermocouple wire (K type) | 1100.00 |
Sealant | 260.00 |
Glass cover | 369.00 |
EGT cap | 550.00 |
Thermocol | 230.00 |
GI sheet | 1834.00 |
Fiber reinforced plate | 550.00 |
Collecting tank | 276.00 |
Manufacturing cost | 1194.00 |
Iron stand | 734.00 |
Paint | 276.00 |
Supply tank | 184.00 |
Plywood | 645.00 |
Total cost | 8847.00 |
Details | Value |
---|---|
Total annualized cost | 2260.00 INR |
Average salvage cost | 385.00 INR |
Annualized capital cost | 2645.00 INR |
Annual Maintenance cost | 0 |
Salvage value in future | 2260.00 INR |
Life span of the proposed system | 20 |
Sinking fund | 0.016 |
Interest rate | 10% |
Recovery factor (Capital) | 0.116 |
Number of on-sunshine days | 285 |
Details | Amount |
---|---|
Fabrication cost | 322.95 INR |
Payback period (years) | 1.46 |
Annual output (Kg/day) | 6.17 |
Distillate water | 20 |
Cost of water produced per day | 1.61 INR |
S. No. | System | 3 cm Depth | 6 cm Depth | 9 cm Depth | 12 cm Depth |
---|---|---|---|---|---|
1. | Single-basin solar still [35] | 40% | 38% | - | - |
2. | Proposed System thermal efficiency | 51.31% | 41% | 26.75% | 24.29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, O.; Ahmad, A.; Kumar, A.; Chatterjee, R.; Chattopadhyaya, S.; Sharma, S.; Sharma, A.; Li, C.; Tag Eldin, E.M. Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths. Energies 2022, 15, 8517. https://doi.org/10.3390/en15228517
Prakash O, Ahmad A, Kumar A, Chatterjee R, Chattopadhyaya S, Sharma S, Sharma A, Li C, Tag Eldin EM. Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths. Energies. 2022; 15(22):8517. https://doi.org/10.3390/en15228517
Chicago/Turabian StylePrakash, Om, Asim Ahmad, Anil Kumar, Rajeshwari Chatterjee, Somnath Chattopadhyaya, Shubham Sharma, Aman Sharma, Changhe Li, and Elsayed Mohamed Tag Eldin. 2022. "Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths" Energies 15, no. 22: 8517. https://doi.org/10.3390/en15228517
APA StylePrakash, O., Ahmad, A., Kumar, A., Chatterjee, R., Chattopadhyaya, S., Sharma, S., Sharma, A., Li, C., & Tag Eldin, E. M. (2022). Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths. Energies, 15(22), 8517. https://doi.org/10.3390/en15228517