Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries
Abstract
:1. Introduction
1.1. Water and Energy Challenges
1.2. Future Perspectives of Renewable Energy Policies
1.3. Background of BWRO Desalination in the MENA Region
1.4. Potential of PV-BWRO Desalination in Jordan
1.5. Generated Brine Quantities and Disposal Methods
1.6. Study Scope and Main Objectives
2. Materials and Methods
2.1. The Surveyed BWRO Desalination Plants
2.2. Water and Energy Assessment
3. Results and Discussion
3.1. Water and Energy Assessment
3.1.1. Water Assessment
Water Consumption and Safe Extraction Yield Comparison
Water Quality
Brine Disposal Management
3.1.2. Energy and Economic Assessment
3.2. Photovoltaic Solar Energy for the BWRO Desalination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brückner, F.; Bahls, R.; Alqadi, M.; Lindenmaier, F.; Hamdan, I.; Alhiyari, M.; Atieh, A. Causes and consequences of long-term groundwater overabstraction in Jordan. Hydrogeol. J. 2021, 29, 2789–2802. [Google Scholar]
- International Union for Conservation of Nature—Regional Office for West Asia (IUCN-ROWA). (n.d.). The National Biodiversity Strategy and Action Plan 2015–2020. Available online: https://www.cbd.int/doc/world/jo/jo-nbsap-v2-en.pdf (accessed on 9 January 2022).
- Ministry of Water and Irrigation Jordan. Water Budget 2019; MWI: Amman, Jordan, 2020. [Google Scholar]
- Ministry of Environment. A National Green Growth Plan for Jordan, Amman, Hashemite Kingdom of Jordan. 2017. Available online: https://www.greengrowthknowledge.org/sites/default/files/A%20National%20Green%20Growth%20Plan%20for%20Jordan.pdf (accessed on 22 March 2022).
- Al-Kharabsheh, A. Challenges to Sustainable Water Management in Jordan. JJEES 2020, 11, 38. [Google Scholar]
- Al-Obaidi, M.A.; Alsarayreh, A.A.; Al-Hroub, A.M.; Alsadaie, S.; Mujtaba, I.M. Performance Analysis of a Medium-Sized Industrial Reverse Osmosis Brackish Water Desalination Plant. Desalination 2018, 443, 272–284. [Google Scholar]
- Ministry of Water and Irrigation. Water Year Book, Hydrological Year 2016–2017; MWI: Amman, Jordan, 2018. [Google Scholar]
- UNICEF. UNICEF and Ministry of Water and Irrigation Launch “Clean Water and Sanitation for All” Monitoring Framework. 2021. Available online: https://www.unicef.org/jordan/press-releases/unicef-and-ministry-water-and-irrigation-launch-clean-water-and-sanitation-all (accessed on 17 February 2022).
- Alsarayreh, A. Overview of Brackish Water Desalination in the Jordan Valley. In Proceedings of the Solutions to Water Challenges in MENA Region, Regional Workshop, Cairo, Egypt, 25–30 April 2017; Cuvillier Verlag: Göttingen, Germany, 2017. [Google Scholar]
- Katz, D.; Shafran, A. Water Energy Nexus. A Prefeasibility Study for Mid-East Water-Renewable Energy Exchanges; EcoPeace Middle East: Amman, Jordan; Konrad-Adenauer-Stiftung: Oldenburg, Germany, 2017. [Google Scholar]
- Everett, D.L. The Future Horizon for a Prophetic Tradition: A Missiological, Hermeneutical, and Leadership Approach to Education and Black Church Civic Engagement; Wipf and Stock Publishers: Eugene, OR, USA, 2017. [Google Scholar]
- Kool, J. Sustainable Development in the Jordan Valley: Final Report of the Regional NGO Master Plan; Springer Nature: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sandri, S.; Hussein, H.; Alshyab, N. Sustainability of the Energy Sector in Jordan: Challenges and Opportunities. Sustainability 2020, 12, 10465. [Google Scholar]
- Minister of Energy and Mineral Resources. Annual Report 2020; MEMR: Amman, Jordan, 2020. [Google Scholar]
- NEPCO. Electricity Tariff in Jordan. 2022. Available online: https://www.nepco.com.jo/en/electricity_tariff_en.aspx (accessed on 26 May 2022).
- Komendantova, N.; Marashdeh, L.; Ekenberg, L.; Danielson, M.; Dettner, F.; Hilpert, S.; Wingenbach, C.; Hassouneh, K.; Al-Salaymeh, A. Water–Energy Nexus: Addressing Stakeholder Preferences in Jordan. Sustainability 2020, 12, 6168. [Google Scholar]
- Belda Gonzalez, A. The Water-Energy-Agriculture Nexus in Jordan: A Case Study on As-Samra Wastewater Treatment Plant in the Lower Jordan River Basin; Diva: Uppsala, Sweden, 2018. [Google Scholar]
- Al Jarida Al Rasmiyya. Law No. 13 Of 2012 concerning Renewable Energy and Energy Efficiency Law; 2012-04-16, No. 5153; ILO: Geneva, Switzerland, 2016; pp. 1610–1618. [Google Scholar]
- Abu-Dalo, M.; Al-Mallahi, J.; Shahrouri, Y.; Qdais, H.A. Water desalination as an option to balance the water demand and supply equation of Jordan. Desalination Water Treat. 2019, 162, 1–3. [Google Scholar]
- ESCWA. United Nations Development Account Project on Promoting Renewable Energy Investments for Climate Change Mitigation and Sustainable Development: Case Study on Policy Reforms to Promote Renewable Energy in Jordan. 2018. Available online: https://www.unescwa.org/sites/default/files/pubs/pdf/policy-reforms-promote-renewable-energy-jordan-english.pdf (accessed on 5 May 2022).
- Abu Ali, H.; Baronian, M.; Burlace, L.; Davies, P.A.; Halasah, S.; Hind, M.; Hossain, A.; Lipchin, C.; Majali, A.; Mark, M.; et al. Off-grid desalination for irrigation in the Jordan Valley. Desalination Water Treat. 2019, 168, 143–154. [Google Scholar]
- Sayed, E.T.; Olabi, A.; Elsaid, K.; Al Radi, M.; Alqadi, R.; Abdelkareem, M.A. Recent Progress in Renewable Energy Based-Desalination in the Middle East and North Africa MENA Region. J. Adv. Res. 2022. [Google Scholar] [CrossRef]
- Subiela-Ortín, V.J.; Peñate-Suárez, B.; de la Fuente-Bencomo, J.A. Main Technical and Economic Guidelines to Implement Wind/Solar-Powered Reverse-Osmosis Desalination Systems. Processes 2022, 10, 653. [Google Scholar] [CrossRef]
- García-Rodríguez, L.; Delgado-Torres, A.M. Renewable Energy-Driven Desalination: New Trends and Future Prospects of Small Capacity Systems. Processes 2022, 10, 745. [Google Scholar] [CrossRef]
- Saidam, M.; Ibrahim, M. Institutional and Policy Framework. Analysis of Water Sector Jordan; Policy Paper; Royal Scientific Society: Amman, Jordan, 2006. [Google Scholar]
- Gorjian, S.; Ghobadian, B.; Jamshidian, F.J.; Sharon, H.; Saadi, S. Performance evaluation and economics of a locally-made stand-alone hybrid photovoltaic-thermal brackish water reverse osmosis unit. Clean. Eng. Technol. 2021, 2, 100078. [Google Scholar]
- Ibrahim, M.N. Effluent Quality Assessment of Selected Wastewater Treatment Plant in Jordan for Irrigation Purposes: Water Quality Index Approach. J. Ecol. Eng. 2019, 20, 206–216. [Google Scholar]
- Pearson, J.L.; Michael, P.R.; Ghaffour, N.; Missimer, T.M. Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality. Membranes 2021, 11, 616. [Google Scholar]
- Goode, D.; Senior, L.A.; Subah, A.; Jaber, A. Groundwater-Level Trends and Forecasts, and Salinity Trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa Groundwater Basins, Jordan; US Geological Survey; US Department of the Interior: Washington, DC, USA, 2013. [Google Scholar]
- Al-Harahsheh, S.; Al-Adamat, R.; Abdullah, S. The Impact of Za’atari Refugee Camp on the Water Quality in Amman-Zarqa Basin. J. Environ. Prot. 2015, 6, 16–24. [Google Scholar]
- Al-Jayyousi, O. Capacity building for desalination in Jordan: Necessary conditions for sustainable water management. Desalination 2001, 141, 169–179. [Google Scholar]
- Katal, R.; Shen, T.Y.; Jafari, I.; Masudy-Panah, S.; Farahani, M.H. An overview on the treatment and management of the desalination brine solution. In Desalination—Challenges and Opportunities; IntechOpen: London, UK, 2020. [Google Scholar]
- JSMO. Water—Reclaimed Domestic Wastewater; JSMO: Amman, Jordan, 2016. [Google Scholar]
- McMordie Stoughton, K.; Duan, X.; Wendel, E.M. Reverse Osmosis Optimization; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2013. [Google Scholar]
- EPA USA. Strategies for Saving Energy at Public Water Systems; EPA: Washington, DC, USA, 2013. [Google Scholar]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar]
- Al Zyoud, A.; Othman, A.; Manasrah, A.; Abdelhafez, E.A. Investment Analysis of a Solar Water Pumping System in Rural Areas in Jordan. Int. J. Energy Clean Environ. 2020, 21, 3. [Google Scholar]
- Abu-Rumman, G.; Khdair, A.I.; Khdair, S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar]
- Soliman, A.M.; Alharbi, A.G.; Eldean, M.A.S. Techno-Economic Optimization of a Solar–Wind Hybrid System to Power a Large-Scale Reverse Osmosis Desalination Plant. Sustainability 2021, 13, 11508. [Google Scholar] [CrossRef]
Station | Location | Plant Size | Groundwater Basin | Sector |
---|---|---|---|---|
Al-Jawasra BWRO plant | Balqaa govern | Large | Dead sea basin | Agricultural |
Al-Kafrain (Banana) BWRO plant | Balqaa govern | Small | Dead sea basin | Agricultural |
Al-Kafrain (Banana and Vegetables) BWRO plant | Balqaa govern | Small | Dead sea basin | Agricultural |
Mudawwara border BWRO plant | Mudawwara borders, south Jordan | Small | Disi and Mudawarah | Domestic |
Meshtal Fasial BWRO plant | Jerash, northern Jordan | Large | Amman-Zarqa Basin | Domestic |
Abu Zeighan BWRO plant | Zarqa Governorate, northeast Jordan | Very Large | Amman-Zarqa Basin | Domestic |
Aquaduva BWRO plant | Aljeeza, Amman, Jordan | Small | Amman-Zarqa Basin | Industrial |
Arab Potash BWRO plant | Karak governorate, southeast Jordan | Small | Dead sea basin | Industrial |
Zarqa Power BWRO plant | Zarqa, northeast of the capital (Amman) | Small | Amman-Zarqa Basin | Industrial |
Plant Size | Production Capacity (m3/d) |
---|---|
Very small | 10–100 |
Small | 100–1000 |
Large | 1000–10,000 |
Very large | 10,000–100,000 |
Super large | ≥100,000 |
Station | Feed (m3/h) | Permeate (m3/h) | Brine (m3/h) | Delta P (bar) | Water Unit Cost (USD/m3) | Operational Costs (USD/year) | Feed TDS (ppm) | Permeate TDS (ppm) | Brine TDS (ppm) |
---|---|---|---|---|---|---|---|---|---|
Al-Jawasra BWRO plant | 83 | 52 | 31 | 1.8 | 0.32 | 150,921 | 4000–5000 | 300 | 10,206 |
Al-Kafrain (Banana) BWRO plant | 33 | 20 | 13 | 1.2 | 0.21 | 37,729 | 4000 | 300–500 | 9384 |
Al-Kafrain (Banana and Vegetables) BWRO plant | 35 | 27 | 8 | 1 | 0.18 | 43,099 | 2500–4600 | <600 | 8912 |
Mudawwara border BWRO plant | 45–48 | 34–36 | 12–13 | 2.6 | 0.37 | 114,598 | 256 | 63–94 | 684 |
Meshtal Fasial BWRO plant | 58 | 49 | 8.7 | 2.5 | 0.32 | 164,585 | 3053 | 177 | 19,356 |
Abu Zeighan BWRO plant | 1800 | 1350 | 450 | 2.5 | 0.37 | 4,430,402 | 3673 | 145–500 | 13,192 |
Aquaduva BWRO plant | 27 | 19.2 | 8.3 | 3.9 | 0.68 | 80,732 | 850 | 125 | 2475 |
Arab Potash BWRO plant | 50 | 33 | 17.2 | 3 | 0.56 | 113,868 | 1098 | 198 | 2811 |
Zarqa Power BWRO plant | 24 | 19.2 | 4.8 | 2.4 | 0.42 | 98,861 | 512 | 230 | 1640 |
Groundwater Basin | Abstraction (MCM) | Safe Yield (MCM) | Balance (MCM) | Safe Yield % | Number of Wells | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Domestic | Livestock Remote Areas | Industrial | Agriculture | Recreation | Total | |||||||
Private | Governmental | Private | Governmental | |||||||||
Disi and Mudawarah | 0 | 116.18 | 0 | 0 | 25.93 | 2.84 | 0 | 144.95 | 125 | −19.95 | 116.0 | 112 |
Dead Sea | 1.2 | 44.94 | 7.33 | 0.56 | 25.14 | 4.57 | 0.25 | 83.99 | 57 | −26.99 | 147.4 | 467 |
Amman Zarqa | 4.79 | 81.83 | 4.22 | 1.05 | 71.65 | 0 | 0.05 | 163.59 | 87.5 | −76.09 | 187.0 | 1022 |
9.27 | 345.41 | 25.41 | 1.96 | 209.38 | 26.27 | 0.33 | 618.03 | 413.5 | −204.53 | 149.5 | 3183 |
Station | Recovery (%) | Production Capacity (m3/day) | SEC (kWh/m3) | Overall Water Unit Cost (USD/m3) | Total Plant Costs (USD/Lifetime) |
---|---|---|---|---|---|
Agricultural Sector | |||||
Al-Jawasra | 62% | 1248 | 2.7 | 0.62 | 5,615,275 |
Alkafrain (banana) | 60% | 480 | 1.7 | 0.21 | 1,415,958 |
Alkafrain (banana and vegetables) | 77% | 648 | 1.5 | 0.18 | 1,204,317 |
Domestic Sector | |||||
Mudawarra | 75% | 840 | 3 | 0.65 | 3,985,632 |
Mashtal Faisal | 85% | 1176 | 2.7 | 0.6 | 5,204,393 |
Abu Zeighan | 75% | 32,400 | 3 | 0.65 | 153,832,995 |
Industrial Sector | |||||
Aquaduva | 70% | 460.8 | 5.6 | 1.18 | 2,976,470 |
Arab Potash | 65% | 787 | 4.5 | 0.95 | 4,111,259 |
Zarqa Power Plant (RO2), | 80% | 576 | 3.6 | 0.8 | 2,497,300 |
Station | SEC (kWh/m3) | Overall Water Unit Cost (USD/m3) | Total Plant Costs (USD/Lifetime) |
---|---|---|---|
Al-Jawasra | 1.3 | 0.32 | 3,007,922 |
Alkafrain (banana) | 1.7 | 0.21 | 1,415,958 |
Alkafrain (banana and vegetables) | 1.5 | 0.18 | 1,204,317 |
Mudawarra | 1.5 | 0.32 | 2,028,165 |
Mashtal Faisal | 1.35 | 0.32 | 2,799,371 |
Abu Zeighan | 1.5 | 0.32 | 78,330,676 |
Aquaduva | 2.47 | 0.61 | 1,532,515 |
Arab Potash | 2.25 | 0.5 | 211,5696 |
Zarqa Power Plant (RO2) | 1.87 | 0.42 | 1,353,124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bdour, A.N.; Al-Sadeq, N.; Gharaibeh, M.; Mendoza-Sammet, A.; Kennedy, M.D.; Salinas-Rodriguez, S.G. Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries. Energies 2022, 15, 8657. https://doi.org/10.3390/en15228657
Bdour AN, Al-Sadeq N, Gharaibeh M, Mendoza-Sammet A, Kennedy MD, Salinas-Rodriguez SG. Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries. Energies. 2022; 15(22):8657. https://doi.org/10.3390/en15228657
Chicago/Turabian StyleBdour, Ahmed N., Noor Al-Sadeq, Muna Gharaibeh, Angeles Mendoza-Sammet, Maria D. Kennedy, and Sergio G. Salinas-Rodriguez. 2022. "Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries" Energies 15, no. 22: 8657. https://doi.org/10.3390/en15228657
APA StyleBdour, A. N., Al-Sadeq, N., Gharaibeh, M., Mendoza-Sammet, A., Kennedy, M. D., & Salinas-Rodriguez, S. G. (2022). Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries. Energies, 15(22), 8657. https://doi.org/10.3390/en15228657