Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioreactors
2.2. Substrate and Inoculum
2.3. Operational Conditions
2.4. Analysis Methods
3. Results and Discussion
3.1. Operational Reactor Performance
3.2. Effects of OLR on the Rector Performance
3.2.1. Effects of OLR on Methane Production
3.2.2. Effects of OLR on Organic Removal
3.2.3. Effects of OLR on Fatty Acids Accumulation
3.2.4. Effects of OLR on COD Balance during Anaerobic Digestion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capson-Tojo, G.; Trably, E.; Rouez, M.; Crest, M.; Steyer, J.-P.; Delgenès, J.-P.; Escudié, R. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresour. Technol. 2017, 233, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Thi, N.B.D.; Kumar, G.; Lin, C.-Y. An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manag. 2015, 157, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Ziels, R.M.; Sousa, D.Z.; Stensel, H.D.; Beck, D.A.C. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. ISME J. 2018, 12, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Hu, Y.; Li, S.; Huang, J.; Nie, Q.; Zhao, H.; Tang, J. Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. J. Clean. Prod. 2017, 141, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Schott, A.B.S.; Andersson, T. Food waste minimization from a life-cycle perspective. J. Environ. Manag. 2015, 147, 219–226. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kuramochi, H.; Xu, K.-Q. Variable oil properties and biomethane production of grease trap waste derived from different resources. Int. Biodeterior. Biodegrad. 2017, 119, 273–281. [Google Scholar] [CrossRef]
- Wu, L.-J.; Kobayashi, T.; Kuramochi, H.; Li, Y.-Y.; Xu, K.-Q.; Lv, Y. High loading anaerobic co-digestion of food waste and grease trap waste: Determination of the limit and lipid/long chain fatty acid conversion. Chem. Eng. J. 2018, 338, 422–431. [Google Scholar] [CrossRef]
- Salama, E.-S.; Saha, S.; Kurade, M.B.; Dev, S.; Chang, S.W.; Jeon, B.-H. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Silvestre, G.; Rodríguez-Abalde, A.; Fernández, B.; Flotats, X.; Bonmatí, A. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour. Technol. 2011, 102, 6830–6836. [Google Scholar] [CrossRef]
- Neves, L.; Oliveira, R.; Alves, M. Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water Res. 2009, 43, 5142–5150. [Google Scholar] [CrossRef] [Green Version]
- Amha, Y.M.; Sinha, P.; Lagman, J.; Gregori, M.; Smith, A.L. Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. Water Res. 2017, 123, 227–289. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kobayashi, T.; Zhen, G.; Shi, C.; Xu, K.-Q. Effects of lipid concentration on anaerobic co-digestion of food waste and grease waste in a thermophilic siphon-driven self-agitated anaerobic reactor. Biotechnol. Rep. 2018, 9, e00269. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kuramochi, H.; Xu, K.-Q.; Maeda, K. Simple solvatochromic spectroscopic quantification of long-chain fatty acids for biological toxicity assay in biogas plants. Environ. Sci. Pollut. Res. 2019, 27, 17596–17606. [Google Scholar] [CrossRef] [PubMed]
- Kabouris, J.C.; Tezel, U.; Pavlostathis, S.G.; Engelmann, M.; Todd, A.C.; Gillette, R.A. The Anaerobic Biodegradability of Municipal Sludge and Fat, Oil, and Grease at Mesophilic Conditions. Water Environ. Res. 2008, 80, 212–221. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Chan, P.C.; de Toledo, R.A.; Shim, H. Anaerobic co-digestion of food waste and domestic wastewater—Effect of intermittent feeding on short and long chain fatty acids accumulation. Renew. Energy 2018, 124, 129–135. [Google Scholar] [CrossRef]
- Alves, M.M.; Pereira, M.A.; Sousa, D.Z.; Cavaleiro, A.; Picavet, M.; Smidt, H.; Stams, A. Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2009, 2, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Shakourifar, N.; Krisa, D.; Eskicioglu, C. Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination. Renew. Energy 2020, 154, 117–127. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, L.; Font, X.; Vicent, T. Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochem. Eng. J. 2013, 76, 1–5. [Google Scholar] [CrossRef]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Yusoff, F.M.; Toda, T. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012, 118, 210–218. [Google Scholar] [CrossRef]
- Hu, Y.; Kobayashi, T.; Qi, W.; Oshibe, H.; Xu, K.-Q. Effect of temperature and organic loading rate on siphon-driven self-agitated anaerobic digestion performance for food waste treatment. Waste Manag. 2018, 74, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, Å.; Lövstedt, C.; Jansen, J.L.C.; Gruvberger, C.; Aspegren, H. Co-digestion of grease trap sludge and sewage sludge. Waste Manag. 2008, 28, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Yang, B.; Dong, M.; Zhu, R.; Yin, F.; Zhao, X.; Wang, Y.; Xiao, W.; Wang, Q.; Zhang, W.; et al. The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors. Renew. Energy 2018, 123, 15–25. [Google Scholar] [CrossRef]
- Awe, O.W.; Lu, J.; Wu, S.; Zhao, Y.; Nzihou, A.; Lyczko, N.; Minh, D.P. Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste Biomass-Valorization 2018, 9, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Wilches, C.; Vaske, M.; Hartmann, K.; Nelles, M. Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion. Energies 2019, 12, 1179. [Google Scholar] [CrossRef] [Green Version]
- Lossie, U.; Pütz, P. Targeted Control of Biogas Plants with the Help of FOS/TAC. Pract Rep. Hach-Lange 2008. Available online: https://bg.hach.com/asset-get.download.jsa?id=25593611361 (accessed on 25 October 2022).
- Raposo, F.; De la Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 1992, 37, 808–812. [Google Scholar] [CrossRef]
- Pereira, M.A.; Pires, O.; Mota, M.; Alves, M. Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol. Bioeng. 2005, 92, 15–23. [Google Scholar] [CrossRef] [PubMed]
Time (Day) | HRT (Day) | VS (g/L) | Lipid (g/L) | Lipid/VS (%) | COD (g/L) | OLR (g COD/L/d) |
---|---|---|---|---|---|---|
1–28 | 123 | 71.48 | 24.23 | 33.90 | 141.24 | 1.15 |
29–91 | 62 | 76.14 | 24.01 | 31.53 | 143.73 | 2.34 |
92–103 | 45 | 76.14 | 24.01 | 31.53 | 143.73 | 3.19 |
104–168 | 30 | 71.81 | 22.41 | 32.37 | 136.37 | 4.55 |
169–258 | 20 | 78.28 | 24.81 | 31.79 | 148.29 | 7.41 |
Reactor | HRT | Methane Production (L/L/d) | COD Removal | VS Removal | VFA (mg/L) | LCFA (mg/L) |
---|---|---|---|---|---|---|
Mesophilic CSTR | 123 | 0.20 ± 0.04 | 84.40 ± 1.37 | 79.35 ± 4.16 | 42.02 ± 44.65 | 212.31 ± 184.21 |
62 | 0.48 ± 0.07 | 85.79 ± 1.51 | 79.16 ± 3.77 | 70.84 ± 56.08 | 608.92 ± 281.39 | |
45 | 0.75 ± 0.07 | 85.44 ± 0.87 | 83.00 ± 0.51 | 134.66 ± 82.82 | 363.29 ± 190.10 | |
30 | 1.10 ± 0.09 | 85.41 ± 1.51 | 81.91 ± 2.10 | 484.42 ± 331.33 | 217.96 ± 86.36 | |
20 | 1.62 ± 0.26 | 82.18 ± 2.71 | 80.06 ± 1.36 | 826.15 ± 644.60 | 116.37 ± 75.64 | |
Thermophilic CSTR | 123 | 0.23 ± 0.03 | 84.16 ± 3.32 | 82.71 ± 3.25 | 121.54 ± 142.23 | 122.80 ± 58.63 |
62 | 0.53 ± 0.08 | 84.10 ± 1.98 | 82.22 ± 1.88 | 108.00 ± 63.70 | 99.69 ± 56.21 | |
45 | 0.79 ± 0.02 | 82.15 ± 2.40 | 81.32 ± 2.33 | 187.66 ± 111.12 | 164.74 ± 73.61 | |
30 | 1.11 ± 0.09 | 78.52 ± 2.98 | 80.03 ± 2.21 | 1913.19 ± 623.44 | 287.78 ± 167.61 | |
20 | 1.84 ± 0.22 | 75.51 ± 3.54 | 77.72 ± 1.26 | 1501.39 ± 909.26 | 205.90 ± 77.26 | |
Thermophilic CSFBR | 62 | 0.61 ± 0.04 | 91.33 ± 2.76 | 91.52 ± 1.40 | 102.99 ± 81.61 | 11.15 ± 2.74 |
45 | 0.83 ± 0.03 | 92.62 ± 0.89 | 90.60 ± 0.37 | 122.23 ± 38.07 | 31.20 ± 4.03 | |
30 | 1.15 ± 0.07 | 88.68 ± 1.47 | 87.20 ± 1.33 | 465.95 ± 272.68 | 43.44 ± 18.18 | |
20 | 1.89 ± 0.21 | 83.96 ± 2.18 | 84.57 ± 1.50 | 573.79 ± 344.29 | 62.61 ± 26.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Ma, H.; Wu, J.; Kobayashi, T.; Xu, K.-Q. Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste. Energies 2022, 15, 8929. https://doi.org/10.3390/en15238929
Hu Y, Ma H, Wu J, Kobayashi T, Xu K-Q. Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste. Energies. 2022; 15(23):8929. https://doi.org/10.3390/en15238929
Chicago/Turabian StyleHu, Yong, Haiyuan Ma, Jiang Wu, Takuro Kobayashi, and Kai-Qin Xu. 2022. "Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste" Energies 15, no. 23: 8929. https://doi.org/10.3390/en15238929
APA StyleHu, Y., Ma, H., Wu, J., Kobayashi, T., & Xu, K. -Q. (2022). Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste. Energies, 15(23), 8929. https://doi.org/10.3390/en15238929