Multi-Parameter Optimization Design of Axial-Flow Pump Based on Orthogonal Method
Abstract
:1. Introduction
2. Experimental Platform
3. Computational Domain and Numerical Method
3.1. Computational Domain
3.2. Computational Mesh
3.3. Mesh Independence Test
3.4. Numerical Method
4. Orthogonal Optimization
4.1. Parameters Setting
4.2. Orthogonal Table
5. Results and Discussion
5.1. Orthogonal Analysis
5.2. Orthogonal Optimization
5.3. Flow Pattern Analysis
6. Conclusions
- (1)
- According to the range analysis of orthogonal method, the influence level of optimization parameters on the pump head is sorted by C > B > D > A > E, and the influence level on pump efficiency is sorted by C > D > B > E > A;
- (2)
- The energy performance of the optimal pump improves in comparison of the baseline pump. At a design point of flow rate 70 kg/s, the efficiencies of the baseline pump and the optimal pump are 84.24% and 86.29%, respectively, improving by 2.05%;
- (3)
- The flow pattern in the optimal pump greatly improves. The pressure gradient of the optimal pump from blade inlet to outlet becomes more fluent than that of the baseline pump. The low-velocity region of the optimal pump at the blade head shrinks compared to that of the baseline pump.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guan, X.F. Modern Pumps Theory and Design; China Astronautic Publishing House: Beijing, China, 2011; pp. 2–6. [Google Scholar]
- Cao, S.L.; Liang, L.; Zhu, B.S.; Lu, L. Design method for impeller of high specific speed mixed flow pump. J. Jiangsu Univ. Nat. Sci. 2005, 26, 185–188. [Google Scholar]
- Bing, H.; Cao, S.L.; Tan, L.; Lu, L. Parameterization of velocity moment distribution and its effects on performance of mixed flow pump. Trans. Chin. Soc. Agric. Mach. 2012, 28, 100–105. [Google Scholar]
- Liu, M.; Tan, L.; Cao, S.L. Design method of diffuser in rotodynamic multiphase pump based on fourth-order distribution of velocity moment. J. Mech. Eng. 2022, 58, 280–288. [Google Scholar]
- Han, Y.D.; Tan, L.; Liu, Y.B. Mixed flow pump impeller design based on the controllable blade load distribution. J. Tsinghua Univ. Sci. Technol. 2022, 62, 1930–1937. [Google Scholar] [CrossRef]
- Zangeneh, M.; Goto, A.; Takemura, T. Suppression of Secondary Flows in a Mixed-Flow Pump Impeller by Application of Three-Dimensional Inverse Design Method: Part 1-Design and Numerical Validation. J. Turbomach. 1996, 118, 536–543. [Google Scholar] [CrossRef]
- Goto, A.; Takemura, T.; Zangeneh, M. Suppression of Secondary flows in a mixed flow pump impeller by application of three dimensional inverse design method: Part 2- Experimental Validation. J. Turbomach. 1994, 33, 544–551. [Google Scholar] [CrossRef]
- Goto, A.; Nohmi, M.; Sakurai, T.; Sogawa, Y. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method. J. Fluids Eng. 2002, 124, 329–335. [Google Scholar] [CrossRef]
- Bonaiuti, D.; Zangeneh, M.; Aartojarvi, R.; Eriksson, J. Parametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analyses. J. Fluids Eng. 2010, 13, 31104–31115. [Google Scholar] [CrossRef]
- Tan, L.; Cao, S.L. Centrifugal pump impeller design by using direct inverse problem iteration. Trans. Chin. Soc. Agric. Mach. 2010, 41, 30–35. [Google Scholar]
- Tan, L.; Cao, S.; Wang, Y.; Zhu, B. Direct and inverse iterative design method for centrifugal pump impellers. Proc. Inst. Mech. Eng. Part A J. Mech. Eng. 2012, 226, 764–775. [Google Scholar] [CrossRef]
- Chakraborty, S.; Choudhuri, K.; Dutta, P.; Debbarma, B. Performance prediction of Centrifugal Pumps with variations of blade number. J. Sci. Ind. Res. 2013, 72, 373–378. [Google Scholar]
- Tan, L.; Zhu, B.S.; Cao, S.L.; Bing, H.; Wang, Y.M. Influence of blade wrap angle on centrifugal pump performance by numerical and experimental study. Chin. J. Mech. Eng. 2014, 27, 171–177. [Google Scholar] [CrossRef]
- Bing, H.; Tan, L.; Cao, S.L. Effects of blade number and thickness on performance of mixed-flow pumps. J. Hydraul. 2013, 32, 250–255. [Google Scholar]
- Zhao, B.J.; Han, L.Y.; Liu, Y.L.; Liao, W.Y.; Fu, Y.X.; Huang, Z.F. Effects of blade placement angle on internal vortex structure and impeller–guide vane adaptability of mixed-flow pump. J. Drain. Irrig. Mach. Eng. 2022, 40, 109–114. [Google Scholar]
- Shi, L.J.; Tang, F.P.; Zhou, H.L.; Tu, L.L.; Xie, R.S. Axial-flow pump hydraulic analysis and experiment under different swept-angles of guide vane. Trans. Chin. Soc. Agric. Mach. 2015, 31, 90–95. [Google Scholar]
- Liu, Y.B.; Tan, L.; Hao, Y.; Xu, Y. Energy performance and flow patterns of a mixed-flow pump with different tip clearance size. Energies 2017, 10, 191. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, L.; Liu, Y.B.; Cao, S.L. Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition. Adv. Mech. Eng. 2017, 9, 1687814017696227. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.L.; Xi, G.; Qi, D.T. Blade Optimization of Mixed-Flow Pump Using Inverse Design Method and Neural Network. J. Xi’an Jiaotong Univ. 2004, 03, 308–312. [Google Scholar]
- Zhang, J.F.; Yuan, Y.; Yuan, S.Q.; Lu, W.G.; Yuan, J.P. Experimental Studies on the Optimization Design of a Low Specific Speed Centrifugal Pump. Iop Conf. 2012, 15, 062055. [Google Scholar] [CrossRef]
- Wang, C.L.; Ye, J.; Zeng, C.; Xia, Y.; Luo, B. Multi-objective optimum design of high specific speed mixed-flow pump based on NSGA-Ⅱgenetic algorithm. Trans. Chin. Soc. Agric. Mach. 2015, 31, 100–106. [Google Scholar]
- Wang, X.H.; Zhu, B.S.; Cao, S.L.; Tan, L. Optimal design of reversible pump-turbine runner. Trans. Chin. Soc. Agric. Mach. 2014, 30, 78–85. [Google Scholar]
- Jiang, D.H.; Zhou, P.J.; Wang, L.; Wu, D.H.; Mou, J.G. Study on optimization method of two-blade sewage pump impellers based on response surface model. J. Hydraul. 2021, 40, 72–82. [Google Scholar]
- Kim, J.H.; Choi, J.H.; Husain, A.; Kim, K.Y. Performance enhancement of axial fan blade through multi-objective optimization techniques. J. Mech. Sci. Technol. 2010, 24, 2059–2066. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.L.; Yuan, S.Q.; Wu, X.F.; Wang, Y. Optimization method for hydraulic performance of centrifugal pump at multi-operation points. J. Drain. Irrig. Mach. Eng. 2012, 30, 20–24. [Google Scholar]
- Hao, Z.R.; Li, C.; Ren, W.L.; Wang, Y.; Hua, Z.L.; Liu, G. Optimization design of water jet propulsion pump blade based on improved PSO algorithm. J. Drain. Irrig. Mach. Eng. 2020, 38, 566–570. [Google Scholar]
- Xu, Y.; Tan, L.; Cao, S.L.; Qu, W.S. Multiparameter and multiobjective optimization design of centrifugal pump based on orthogonal method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 2569–2579. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S.L. Design method of controllable blade angle and orthogonal optimization of pressure rise for a multiphase pump. Energies 2018, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.G.; Zhang, J.S.; Zhang, W.; Liu, B. Multiparameter and multiobjective optimization design based on orthogonal method for mixed flow fan. Energies 2020, 13, 2819. [Google Scholar] [CrossRef]
- Yuan, J.P.; Fan, M.; Giovanni, P.; Lu, R.; Li, Y.J.; Fu, Y.X. Orthogonal optimum design method for high specific-speed axial- flow pumps. J. Vib. Shock 2018, 37, 115–121. [Google Scholar]
- Zheng, Y.; Sun, A.R.; Yang, C.X.; Jiang, W.Q.; Zhou, C.H.; Chen, Y.J. Multi-objective optimization design and test of axial-flow pump. Trans. Chin. Soc. Agric. Mach. 2017, 48, 129–136. [Google Scholar]
- Gao, X.F.; Shi, W.D.; Zhang, D.S.; Zhang, Q.H.; Fang, B. Optimization design and test of vortex pump based on CFD orthogonal test. Trans. Chin. Soc. Agric. Mach. 2014, 45, 101–106. [Google Scholar]
- Zhou, L.; Shi, W.D.; Su, Q.W. Performance optimization in a centrifugal pump impeller by orthogonal experiment and numerical simulation. Adv. Mech. Eng. 2013, 5, 385807–385809. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Dong, W.; Xiao, Y.X.; Wang, C.P.; Wang, D.; Wang, S.H. Orthogonal test optimization of impeller and diffuser of high specific speed axial flow pumps. J. Hydraul. 2022, 41, 92–100. [Google Scholar]
- Shi, W.D.; Wang, C.; Lu, W.G.; Zhou, L.; Zhang, L. Optimization Design of Stainless Steel Stamping Multistage Pump Based on Orthogonal Test. Int. J. Fluid Mach. Syst. 2010, 3, 309–314. [Google Scholar]
- Shi, L.J.; Tang, F.P.; Xie, R.S.; Zhang, W.P. Numerical and experimental investigation of tank-type axial-flow pump device. Adv. Mech. Eng. 2017, 9, 1687814017695681. [Google Scholar] [CrossRef]
Number | Mesh1 | Mesh2 | Mesh3 | Mesh4 | Mesh5 |
---|---|---|---|---|---|
Inlet pipe | 154,440 | 154,440 | 154,440 | 154,440 | 154,440 |
Impeller | 502,355 | 725,580 | 995,450 | 1,268,745 | 1,501,830 |
Guide vane | 664,818 | 664,818 | 664,818 | 664,818 | 664,818 |
Outlet pipe | 254,100 | 254,100 | 254,100 | 254,100 | 254,100 |
Total mesh | 1,575,713 | 1,798,938 | 2,068,808 | 2,342,103 | 2,575,188 |
Relative head | 1 | 0.995797 | 0.992838 | 0.990733 | 0.990468 |
Relative efficiency | 1 | 0.996977 | 0.993128 | 0.992751 | 0.991628 |
Level | Hub Control Point (A) | Hub Stagger Angle/° (B) | Shroud Stagger Angle/° (C) | Camber Angle/° (D) | Centroid Position/mm (E) |
---|---|---|---|---|---|
1 | 0.2 | 51 | 15 | 7.5 | 66 |
2 | 0.4 | 53 | 18 | 8.3 | 67 |
3 | 0.6 | 55 | 21 | 9.1 | 68 |
4 | 0.8 | 57 | 24 | 9.9 | 69 |
Individual No. | Factor | ||||
---|---|---|---|---|---|
A | B/° | C/° | D/° | E/mm | |
1 | 0.2 | 51 | 15 | 7.5 | 66 |
2 | 0.2 | 53 | 18 | 8.3 | 67 |
3 | 0.2 | 55 | 21 | 9.1 | 68 |
4 | 0.2 | 57 | 24 | 9.9 | 69 |
5 | 0.4 | 51 | 18 | 9.1 | 69 |
6 | 0.4 | 53 | 15 | 9.9 | 68 |
7 | 0.4 | 55 | 24 | 7.5 | 67 |
8 | 0.4 | 57 | 21 | 8.3 | 66 |
9 | 0.6 | 51 | 21 | 9.9 | 67 |
10 | 0.6 | 53 | 24 | 9.1 | 66 |
11 | 0.6 | 55 | 15 | 8.3 | 69 |
12 | 0.6 | 57 | 18 | 7.5 | 68 |
13 | 0.8 | 51 | 24 | 8.3 | 68 |
14 | 0.8 | 53 | 21 | 7.5 | 69 |
15 | 0.8 | 55 | 18 | 9.9 | 66 |
16 | 0.8 | 57 | 15 | 9.1 | 67 |
Individual No. | Head/m | Efficiency/% |
---|---|---|
1 | 3.23 | 84.13 |
2 | 3.94 | 85.28 |
3 | 4.37 | 80.96 |
4 | 4.45 | 75.66 |
5 | 3.92 | 85.78 |
6 | 3.64 | 85.80 |
7 | 4.09 | 74.04 |
8 | 4.38 | 79.96 |
9 | 4.2 | 81.78 |
10 | 4.37 | 76.23 |
11 | 3.74 | 86.06 |
12 | 4.15 | 83.02 |
13 | 4.37 | 77.66 |
14 | 4.25 | 81.27 |
15 | 4.26 | 84.38 |
16 | 3.98 | 85.01 |
Head/m | Factor | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
3.997 | 3.93 | 3.647 | 3.93 | 4.06 | |
4.008 | 4.05 | 4.067 | 4.107 | 4.053 | |
4.115 | 4.115 | 4.3 | 4.16 | 4.133 | |
4.215 | 4.24 | 4.32 | 4.137 | 4.09 | |
R | 0.218 | 0.31 | 0.673 | 0.23 | 0.08 |
Efficiency/% | Factor | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
81.51 | 82.34 | 85.25 | 80.61 | 81.17 | |
81.39 | 82.14 | 84.61 | 82.24 | 81.53 | |
81.77 | 81.36 | 80.99 | 82.00 | 81.86 | |
82.08 | 80.91 | 75.9 | 81.91 | 82.19 | |
R | 0.69 | 1.43 | 9.35 | 1.63 | 1.02 |
Pump | Levels of Five Parameters | ||||
---|---|---|---|---|---|
A | B/° | C/° | D/° | E/mm | |
Baseline pump | 0.4 | 45 | 20 | 6.7 | 67 |
Optimal pump | 0.6 | 55 | 15 | 9.1 | 69 |
Pump | Q (kg/s) | H (m) | η (%) | Inlet Pipe Loss (%) | Impeller Loss (%) | Guide Vane Loss (%) | Outlet Pipe Loss (%) |
---|---|---|---|---|---|---|---|
Baseline pump | 70 | 3.67 | 84.24 | 0.26 | 8.90 | 3.20 | 3.39 |
Optimal pump | 70 | 3.80 | 86.29 | 0.26 | 7.49 | 2.99 | 2.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Tan, L.; Han, B.; Han, S. Multi-Parameter Optimization Design of Axial-Flow Pump Based on Orthogonal Method. Energies 2022, 15, 9379. https://doi.org/10.3390/en15249379
Dai Z, Tan L, Han B, Han S. Multi-Parameter Optimization Design of Axial-Flow Pump Based on Orthogonal Method. Energies. 2022; 15(24):9379. https://doi.org/10.3390/en15249379
Chicago/Turabian StyleDai, Zhenxing, Lei Tan, Bingfu Han, and Suyang Han. 2022. "Multi-Parameter Optimization Design of Axial-Flow Pump Based on Orthogonal Method" Energies 15, no. 24: 9379. https://doi.org/10.3390/en15249379
APA StyleDai, Z., Tan, L., Han, B., & Han, S. (2022). Multi-Parameter Optimization Design of Axial-Flow Pump Based on Orthogonal Method. Energies, 15(24), 9379. https://doi.org/10.3390/en15249379