Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Mechanization Systems
- -
- A 129 kW crawler excavator with a maximum outreach of 9.3 m equipped with a felling head with a hydraulic shear;
- -
- A 136 kW power “Forwarder” articulated load-bearing tractor with 8 driving wheels coupled in rocker axles and with hydrostatic transmission equipped with a telescopic articulated hydraulic arm with a maximum outreach of 7.2 m;
- -
- A towed drum chipper with a dedicated arm connected to the PTO of a 350 kW tractor.
2.2. The Potential of Biomass from Branches and Tops
2.3. Technology Performance
- volume (m3)—volume of the tree;
- cycle time (min)—moving, felling and bunching (Table 1);
- exPMH0—productive time of the excavator with a shear.
- Lcycle—load for each work cycle (green tons);
- t—time in minutes (empty travel, loading, loaded travel, unloading);
- fwPMH0—operative time of the forwarder excluding delays.
- Ltruck—load of the truck (tons);
- t—time in minutes (empty travel, loading, loaded travel, unloading);
- chPMH0—operative time of the chipper excluding delays.
2.4. The Biomass Quality Assessment
3. Results
3.1. Site Characterization
3.2. Residual Biomass Potential of Tree Branches and Tops
3.3. Performance of the Technology
3.4. Biomass Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suardi, A.; Bergonzoli, S.; Alfano, V.; Scarfone, A.; Pari, L. Economic distance to gather agricultural residues from the field to the integrated biomass logistic centre: A Spanish case-study. Energies 2019, 12, 3086. [Google Scholar] [CrossRef] [Green Version]
- Mairota, P.; Manetti, M.C.; Amorini, E.; Pelleri, F.; Terradura, M.; Frattegiani, M.; Savini, P.; Grohmann, F.; Mori, P.; Terzuolo, P.G.; et al. Opportunities for coppice management at the landscape level: The Italian experience. iForest 2016, 9, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Pari, L.; Aminti, G.; Magagnotti, N.; Giovannelli, A. Mortality, re-sprouting vigor and physiology of coppice stumps after mechanized cutting. Ann. For. Sci. 2017, 74, 5. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, A.; Jelonek, T.; Grzywiński, W. Pozyskiwanie Drewna Pilarką. Techniczne, Ergonomiczne i Organizacyjne Aspekty Pracy drwala. Oficyna Wydawnicza G&P; Original text in Polish: Poznań, Poland, 2012; p. 240. [Google Scholar]
- Dudek, T.; Dominik, J. The Productivity and the Costs Forwarding Wood of a Farm Tractor with a Trailer in Late Thinning and Cutting in Gaps of Forests. Forests 2022, 13, 1309. [Google Scholar] [CrossRef]
- Mederski, P.S.; Karaszewski, Z.; Rosińska, M.; Bembenek, M. Dynamics of harvester fleet change in Poland and factors determining machine occurrence. Sylwan 2016, 160, 795–804. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries. A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- LeDoux, C.B. Mechanized system for harvesting eastern hardwoods. General Technical Report NRS-69. USDA For. Serv. 2010, 69, 18. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Picchi, G. Annual use, economic life and residual value of cut-to-length harvesting machines. J. For. Econ. 2011, 17, 378–387. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Visser, R.; Harrill, H.; Russo, D.; Zimbalatti, G. Factors affecting forwarder productivity. Eur. J. For. Res. 2018, 137, 143–151. [Google Scholar] [CrossRef]
- Mologni, O.; Grigolato, S.; Cavalli, R. Harvesting systems for steep terrain in the Italian Alps: State of the art and future prospects. Contemp. Eng. Sci. 2016, 9, 1229–1242. [Google Scholar] [CrossRef]
- Cosola, G.; Grigolato, S.; Ackerman, P.; Monterotti, S.; Cavalli, R. Carbon footprint of forest operations under different management regimes. Croat. J. For. Eng. 2016, 37, 201–217. [Google Scholar]
- Proto, A.R.; Zimbalatti, G. Firewood cable extraction in the southern Mediterranean area of Italy. For. Sci. Technol. 2016, 12, 16–23. [Google Scholar] [CrossRef]
- Ferrari, E.; Spinelli, R.; Cavallo, E.; Magagnotti, N. Attitudes towards mechanized cut-to-length technology among logging contractors in Northern Italy. Scand. J. For. Res. 2012, 27, 800–806. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrı, G.; Bernardini, V.; Russo, D.; Zimbalatti, G. Acoustic evaluation of wood quality with a non-destructive method in standing trees: A first survey in Italy. Iforest Biogeosci. For. 2017, 10, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Cacot, E.; Mihelic, M.; Nestorovski, L.; Mederski, P.; Tolosana, E. Techniques and productivity of coppice harvesting operations in Europe: A meta-analysis of available data. Ann. For. Sci. 2016, 73, 1125–1139. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.J.; Seixas, F.; Stape, J.L. Technical and economical evaluation of a harvester, working under different spacing and planting arrangement conditions in eucalypts plantations. Sci. For. 2009, 83, 253–263. [Google Scholar]
- Bell, J.L. Changes in logging injury rates associated with use of feller bunchers in West Virginia. J. Saf. Res. 2002, 33, 463–471. [Google Scholar] [CrossRef]
- Han, H.-S.; Lee, H.W.; Johnson, L.R. Economic feasibility of an integrated harvesting system for small-diameter trees in southwest Idaho. For. Prod. J. 2004, 54, 21–27. [Google Scholar]
- Han, S.-K.; Han, H.-S. Productivity and cost of whole-tree and tree-length harvesting in fuel reduction thinning treatments using cable yarding systems. For. Sci. Technol. 2020, 16, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Hakkila, P. Developing Technology for Large Scale Production of Forest Chips: Wood Energy Technology Programme 1999–2003; TEKES National Technology Agency: Helsinki, Finland, 2003; p. 54. [Google Scholar]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Alam, M.; Acuna, M.; Brown, M. Self-Levelling Feller-Buncher Productivity Based on Lidar-Derived Slope. Croat. J. For. Eng. 2013, 34, 273–281. [Google Scholar]
- Garcìa, S.S.; Canga, E.; Tolosana, E.; Maiada, J. Analysis of productivity and cost of forwarding bundles of Eucalyptus logging residues on steep terrain. Croat. J. For. Eng. 2016, 37, 241–249. [Google Scholar]
- Emer, B.; Grigolato, S.; Lubello, D.; Cavalli, R. Comparison of biomass feedstock supply and demand in Northeast Italy. Biomass Bioenergy 2011, 35, 3309–3317. [Google Scholar] [CrossRef]
- Brand, M.A.; Bolzon de Műniz, C.I.; Ferreira Quirino, W.; Brito, J.O. Storage as a tool to improve wood fuel quality. Biomass Bioenergy 2011, 35, 2531–2588. [Google Scholar] [CrossRef]
- Filibeck, G.; Scoppola, A. Two Mediterranean landscape types and their interface as a case study for “landscape red-listing”. Fitosociologia 2011, 48, 119–125. [Google Scholar]
- Manetti, M.C.; Becagli, C.; Bertini, G.; Cantiani, P.; Marchi, M.; Pelleri, F.; Sansone, D.; Fabbio, G. The conversion into high forest of Turkey oak coppice stands: Methods, silviculture and perspectives. iForest 2020, 13, 309–317. [Google Scholar] [CrossRef]
- Ozdemir, E.; Makineci, E.; Yilmaz, E.; Kumbasli, M.; Caliskan, S.; Beskardes, V.; Keten, A.; Zengin, H.; Yılmaz, H. Biomass estimation of individual trees for coppice-originated oak forests. Eur. J. For. Res. 2019, 138, 623–637. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Hazlett, P.W.; Gunn, J.M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environ. Rev. 2008, 16, 157–179. [Google Scholar] [CrossRef]
- Elliott, K.J.; Knoepp, J.D. The effects of three regeneration harvest methods on plant diversity and soil characteristics in the southern appalachians. For. Ecol. Manag. 2005, 211, 296–317. [Google Scholar] [CrossRef]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfì, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated forest management to prevent wildfires under Mediterranean environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar]
- Tolosana, E.; Spinelli, R.; Aminti, G.; Laina, R.; Lòpez, I. Productivity, Efficiency and Environmental Effects of Whole-Tree Harvesting in Spanish Coppice Stands Using a Drive-to-Tree Disc Saw Feller-Buncher. Croat. J. For. Eng. 2018, 39, 163–172. [Google Scholar]
- Suchomel, C.; Spinelli, R.; Magagnotti, N. Productivity of processing hardwood from coppice forests. Croat. J. For. Eng. 2012, 33, 39–47. [Google Scholar]
- Purfürst, F.T.; Erler, J. The Human Influence on Productivity in Harvester Operations. Int. J. For. Eng. 2012, 22, 15–22. [Google Scholar] [CrossRef]
- McEwan, A.; Magagnotti, N.; Spinelli, R. The effects of number of stems per stool on cutting productivity in coppiced eucalyptus plantations. Silva Fenn. 2016, 50, 1448. [Google Scholar] [CrossRef] [Green Version]
- Hiesl, P.; Benjamin, J.G. Multi-stem feller-buncher cycle-time model for partial harvest of small diameter wood stands. Int. J. For. Eng. 2013, 24, 101–108. [Google Scholar] [CrossRef]
- Lileng, J. Harvester and forwarder in steep terrain. In Proceedings of the 3rd Forest Engineering Conference: Sustainable Forest Operations: The Future is Now, Mont-Tremblant, QC, Canada, 1–4 October 2007; Gingras, J.F., Ed.; p. 5. [Google Scholar]
- Strandgard, M.; Mitchell, R.; Acuna, M. Time consumption and productivity of a forwarder operating on a slope in a cut-to-length harvest system in a Pinus radiata D. Don pine plantation. J. For. Sci. 2017, 63, 324–330. [Google Scholar]
- Tiernan, D.; Zeleke, G.; Owende, P.M.O.; Kanali, C.L.; Lyons, J.; Ward, S.M. Effect of working conditions on forwarder productivity in cut-to-length timber harvesting on sensitive forest sites in Ireland. Biosyst. Eng. 2004, 87, 167–177. [Google Scholar] [CrossRef]
- Tervo, K.; Palmroth, L.; Koivo, H. Skill evaluation of human operators in partly automated mobile working machines. IEEE Trans. Autom. Sci. Eng. 2010, 7, 133–142. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Wieczorek, B.; Krawiec, P. Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms. Renew. Energy 2022, 181, 630–639. [Google Scholar] [CrossRef]
- Spinelli, R.; Cavallo, E.; Eliasson, L.; Facello, A. Comparing the efficiency of drum and disc chippers. Silva Fenn. 2013, 47, 930. [Google Scholar] [CrossRef] [Green Version]
- Nati, C.; Eliasson, L.; Spinelli, R. Effect of chipper type, biomass type and blade wear on productivity, fuel consumption and product quality. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2014, 35, 120232. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Impact of number of operators and distance to branch piles on woodchipper operation. Forests 2020, 11, 598. [Google Scholar] [CrossRef]
- Spinelli, R.; Visser, R.J.M. Analyzing and estimating delays in wood chipping operations. Biomass Bioenergy 2009, 33, 429–433. [Google Scholar] [CrossRef]
- McEwan, A.; Brink, M.; Spinelli, R. Efficiency of Different Machine Layouts for Chain Flail Delimbing, Debarking and Chipping. Forests 2019, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Spina, R.; Sirna, A.; Lo Monaco, A.; Civitarese, V.; Del Giudice, A.; Suardi, A.; Pari, L. Characterization of woodchips for energy from forestry and agroforestry production. Energies 2012, 5, 3803–3816. [Google Scholar] [CrossRef]
- Kataki, R.; Konwer, D. Fuelwood characteristics of indigenous tree species of north-east India. Biomass Bioenergy 2002, 22, 433–437. [Google Scholar] [CrossRef]
- Pari, L.; Scarfone, A.; Santangelo, E.; Gallucci, F.; Spinelli, R.; Jirjis, R.; Del Giudice, A.; Barontini, M. Long term storage of poplar chips in Mediterranean environment. Biomass Bioenergy 2017, 107, 1–7. [Google Scholar] [CrossRef]
- Pari, L.; Bergonzoli, S.; Cetera, P.; Mattei, P.; Alfano, V.; Rezaei, N.; Suardi, A.; Toscano, G.; Scarfone, A. Storage of Fine Woodchips from a Medium Rotation Coppice Eucalyptus Plantation in Central Italy. Energies 2020, 13, 2355. [Google Scholar] [CrossRef]
Machines | Unit | Excavator/Shears | Forwarder | Tractor/Chipper |
---|---|---|---|---|
company | Hitachi/Westtech | John Deere | CLAAS/Pezzolato | |
model | ZAXIS 240N/Woodcracker C450 | 1410D eco III | XERION 4500/PTH 1200/1000 | |
Engine | type | Isuzu AR-4HK1X/- | John Deere 6068H | Mercedes-Benz OM 471 LA/- |
Power | kW | 129/- | 136 | 350/- |
Weight | kg | 23,100/2350 | 16,600 | 16,570/18,000 |
Cylinders | n° | 4/- | 6 | 6/- |
Maximum torque | Nm | 670/- | 780 | 2300/- |
Load capacity | kg | 14,000 | ||
Fuel tank volume | L | 330/- | 165 | 740/- |
Hydraulic tank volume | L | 220/- | 140 | 120/- |
Felling diameter | mm | -/450–500 | ||
Drum diameter | mm | -/1000 | ||
Drum width | mm | -/1200 | ||
Maximum chipping diameter | mm | -/800 | ||
Knives | n° | -/5 | ||
Length | mm | 9750/- | 10,400 | 7593/- |
Width | mm | 2480/- | 3070 | 3300/- |
Height | mm | 3020/- | 3700 | 3941/- |
Machines | Work Cycle Time | Time Elements | Description |
---|---|---|---|
Excavator/Shear | Felling whole trees | Moving | Started when the shear or the boom started to move to a tree and ended when machine head was clamped on the tree. |
Felling | Started when the shear clamped onto the tree stem and ended when the tree touched the ground. | ||
Bunching | Started when the shear grabbed a log and ended when it dropped the log onto the pile. | ||
Clearing | The use of a head to remove non-merchantable material. Started when the shear began to clean the area surrounding the trees from the shrub layer higher than one meter and ended when it dropped it on the pile of trees. | ||
Delay | Any interruption to the harvesting operation spending extra time (e.g., operational, personal, mechanical). | ||
Forwarder | Extraction of whole trees | Loading | Started once the forwarder was at the side of the logs piles to be loaded, the displacement is stopped, and the crane arm began to move. It included the time spent after the forwarder finished loading the logs from one pile and moved to the next pile until the forwarder was fully loaded. |
Loaded travel | Once the bunk of the forwarder was full it began to move with the load to the landing. | ||
Unloading | At the landing, the forwarder used the crane to unload the logs from its bunk. This activity included the small movements required at the landing in order to complete the unloading. | ||
Empty travel | Started after the unloading of trees at the landing. The forwarder had to return to the work zone once unloaded. | ||
Delay | Any interruption to the harvesting operation spending extra time (e.g., operational, personal, mechanical). | ||
Tractor/Chipper | Chipping of branches and tops | Truck positioning | Time for positioning the truck next to the chipper. |
Moving | Started when the chipper arm moved from the pile of trees to the feeding mouth. | ||
Chipping | Started when the operator started feeding into the chipper and ended when the wood chips were completely expelled from the gooseneck. | ||
Delay | Any interruption to the harvesting operation spending extra time (e.g., operational, personal, mechanical). |
Unit | ||
---|---|---|
Density:
| n ha−1 n ha−1 n ha−1 | 335 1157 110 |
Average number of trees for stump | n | 3.45 |
Average DBH | cm | 13.1 |
Average height | m | 10.2 |
Basal area | m2 | 15.64 |
Range volume | m3 | 0.01–0.39 |
Average biomass harvested | t ha−1 | 114.7 |
Fraction | Sieve Size (mm) | Volume, w-% | Measured Fraction (Requirement Pursuant to the EN ISO 17225-1:2014 Standard) | Class |
---|---|---|---|---|
Fines | <3.15 | 8.3 | 8.3% (F10) | F10 |
Main fraction | 3.15–8 | 20.26 | 81.5% (≥60%) | P31 |
8–16 | 36.00 | |||
16–31.5 | 25.24 | |||
31.5–45 | 5.86 | Belongs to the main fraction | P31 | |
Coarse fraction | 45–63 | 0.25 | 4.25% (≤6% more than 45 mm) All under 150 mm | P31 |
63–100 | 0.22 | |||
<100 | 3.78 |
Sample | HHV (MJ kg−1) | Ash (%) | C (%) | H (%) | N (%) |
---|---|---|---|---|---|
1 | 17.09 | 3.20 | 53.44 | 9.12 | 1.43 |
2 | 17.72 | 3.47 | 56.56 | 8.94 | 1.34 |
3 | 17.36 | 3.72 | 53.91 | 9.15 | 2.56 |
4 | 17.74 | 3.34 | 51.98 | 9.11 | 1.93 |
5 | 17.93 | 3.59 | 52.38 | 8.76 | 1.96 |
Mean | 17.57 | 3.46 | 53.65 | 9.02 | 1.84 |
SD | 0.34 | 0.21 | 1.80 | 0.17 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Giudice, A.; Scarfone, A.; Paris, E.; Gallucci, F.; Santangelo, E. Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy. Energies 2022, 15, 9444. https://doi.org/10.3390/en15249444
Del Giudice A, Scarfone A, Paris E, Gallucci F, Santangelo E. Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy. Energies. 2022; 15(24):9444. https://doi.org/10.3390/en15249444
Chicago/Turabian StyleDel Giudice, Angelo, Antonio Scarfone, Enrico Paris, Francesco Gallucci, and Enrico Santangelo. 2022. "Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy" Energies 15, no. 24: 9444. https://doi.org/10.3390/en15249444
APA StyleDel Giudice, A., Scarfone, A., Paris, E., Gallucci, F., & Santangelo, E. (2022). Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy. Energies, 15(24), 9444. https://doi.org/10.3390/en15249444