New Insights into the Genetic Mechanism of the Miocene Mounded Stratigraphy in the Qiongdongnan Basin, Northern South China Sea
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Seismic Stratigraphy
4.2. Characteristics of Mounded Stratigraphy
4.3. Tectonic Subsidence
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, P.E.; Hutchinson, D.R.; Gardner, J.; Carney, R.S.; Fornari, D. A photographic and acoustic transect across two deep-water seafloor mounds, Mississippi Canyon, northern Gulf of Mexico. Mar. Pet. Geol. 2009, 25, 969–976. [Google Scholar] [CrossRef]
- Meredyk, S.P.; Edinger, E.; Piper, D.J.W.; Huvenne, V.A.I.; Hoy, S.; Ruffman, A. Enigmatic deep-water mounds on the Orphan Knoll, Labrador Sea. Front. Mar. Sci. 2020, 6, 744. [Google Scholar] [CrossRef] [Green Version]
- Koša, E. Differential subsidence driving the formation of mounded stratigraphy in deep-water sediments; Palaeocene, central North Sea. Mar. Pet. Geol. 2007, 24, 632–652. [Google Scholar] [CrossRef]
- Li, Y.; Pu, R.; Niu, N.; Li, B. Characteristics and origins of middle Miocene mounds and channels in the northern South China Sea. Acta Oceanol. Sin. 2021, 40, 65–80. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, S.; Zhang, G.; Ma, Y.; Mi, L.; Xu, N. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea. Mar. Pet. Geol. 2009, 26, 817–823. [Google Scholar] [CrossRef]
- Schindler, E.; Wehrmann, A. Genesis and internal architecture of the Middle to Upper Devonian Gwirat Al Hyssan reef-mound (Western Sahara). Palaeogeogr. Palaeoecol. 2011, 304, 184–193. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, S.G.; Sun, Q.L.; Huuse, M.; Li, W.; Wang, Z.J. Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Mar. Geol. 2014, 355, 162–172. [Google Scholar] [CrossRef]
- Wynn, R.B.; Stow, D.A.V. Classification and characterisation of deep-water sediment waves. Mar. Geol. 2002, 192, 7–22. [Google Scholar] [CrossRef]
- Purvis, K.; Kao, J.; Flanagan, K.; Henderson, J.; Durant, D. Complex reservoir geometries in a deep water clastic sequence, Gryphon Field, UKCS: Injection structures, geological modelling and reservoir simulation. Mar. Pet. Geol. 2002, 19, 161–179. [Google Scholar] [CrossRef]
- Xu, S.; Hao, F.; Xu, C.; Wang, Y.; Zou, H.; Gong, C. Differential compaction faults and their implications for fluid expulsion in the northern Bozhong Subbasin, Bohai Bay Basin, China. Mar. Pet. Geol. 2015, 63, 1–16. [Google Scholar] [CrossRef]
- Ward, N.I.P.; Alves, T.M.; Blenkinsop, T.G. Differential compaction over Late Miocene submarine channels in SE Brazil: Implications for trap formation. GSA Bull. 2018, 130, 208–221. [Google Scholar] [CrossRef]
- Eschard, R.; Albouy, E.; Deschamps, R.; Euzen, T.; Ayub, A. Downstream evolution of turbiditic channel complexes in the Pab Range outcrops (Maastrichtian, Pakistan). Mar. Pet. Geol. 2003, 20, 691–710. [Google Scholar] [CrossRef]
- Zhao, T.; Pu, R.; Qu, H.; Zhang, G.; Liang, J.; Feng, Y. An origin discussion of mound-shaped reflections in Miocene, southern Qiongdongnan Basin. Acta Oceanol. Sin. 2013, 35, 112–120, (In Chinese with English Abstract). [Google Scholar]
- Sun, Q.; Cartwright, J.; Wu, S.; Zhong, G.; Wang, S.; Zhang, H. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change. Mar. Pet. Geol. 2016, 77, 75–91. [Google Scholar] [CrossRef]
- Xiong, P.; Jiang, T.; Kuang, Z.; Cheng, C.; Ren, J.; Lai, H. Sedimentary characteristics and origin of moundes in Meishan Formation, southern Qiongdongnan Basin. Bull. Geol. Sci. Technol. 2021, 40, 11–21, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Feng, Y.; Qu, H.; Zhang, G.; Pu, R. Seismic interpretation and hydrocarbon accumulations implication of the Miocene Meishan Formation reefs in southern Qiongdongnan Basin, northern South China Sea. J. Palaeogeogr. 2017, 6, 206–218. [Google Scholar] [CrossRef]
- Feng, Y.; Ren, Y.; Li, Z.; Jin, L. Geological interpretation and hydrocarbon exploration potential of three types of mound-shaped reflectors in the Meishan Formation, Southern Qiongdongnan Basin. Acta Geol. Sin. 2021, 95, 167–176. [Google Scholar] [CrossRef]
- Tian, J.; Wu, S.; Lv, F.; Wang, D.; Wang, B.; Zhang, X.; Ma, B. Middle Miocene mound-shaped sediment packages on the slope of the Xisha carbonate platforms, South China Sea: Combined result of gravity flow and bottom current. Deep-Sea Res. Part II 2015, 122, 172–184. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Z.; Wang, D.; Lü, F.; Lüdmann, T.; Fulthorpe, C.; Wang, B. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea. Mar. Geol. 2014, 350, 71–83. [Google Scholar] [CrossRef]
- Lei, C.; Ren, J.Y. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean. Mar. Pet. Geol. 2016, 77, 846–864. [Google Scholar] [CrossRef]
- Cobbold, P.R.; Szatmari, P. Radial gravitational gliding on passive margins. Tectonophysics 1991, 188, 249–289. [Google Scholar] [CrossRef]
- Alves, T.M. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Mar. Pet. Geol. 2015, 67, 262–285. [Google Scholar] [CrossRef]
- Xie, X.; Müller, R.D.; Li, S.; Gong, Z.; Steinberger, B. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Mar. Pet. Geol. 2006, 23, 745–765. [Google Scholar] [CrossRef]
- Yin, X.; Ren, J.; Lei, C.; Wang, S. Postrift rapid subsidence characters in Qiongdongnan Basin, South China Sea. J. Earth Sci. 2011, 22, 273–279. [Google Scholar] [CrossRef]
- Sun, Q.; Alves, T.M.; Zhao, M.; Sibuet, J.; Calvès, G.; Xie, X. Post-rift magmatism on the northern South China Sea margin. GSA Bull. 2020, 132, 2382–2396. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Sun, Z.; Liu, J.; Wang, Z. Structural differences between the western and eastern Qiongdongnan Basin: Evidence of Indochina block extrusion and South China Sea seafloor spreading. Mar. Geophys. Res. 2013, 34, 309–323. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.S.; Yan, W.B.; Liu, S.W.; Cai, D.S.; Zhang, G.C.; Zhong, K.; Pei, J.X.; Sun, B. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. J. Asian Earth Sci. 2013, 77, 163–182. [Google Scholar] [CrossRef]
- Shi, W.; Xie, Y.; Wang, Z.; Li, X.; Tong, C. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin. J. Asian Earth Sci. 2013, 66, 150–165. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, W.; Xie, Y.; Wang, Z.; Li, X.; Tong, C. Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sub-basin of the Qiongdongnan Basin, South China Sea. PLoS ONE 2017, 12, e0183676. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Sun, Z.; Liu, J.; Pérez-Gussinyé, M.; Zhuo, H. The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin, South China Sea. Earth Planet. Sci. Lett. 2018, 501, 180–191. [Google Scholar] [CrossRef]
- Yang, G.; Yin, H.; Gan, J.; Wang, W.; Zhu, J.; Jia, D.; Xiong, X.; Xu, W. Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: Insights from scaled physical models. Tectonics 2022, 41, e2021tc006899. [Google Scholar] [CrossRef]
- Zuo, T.; Wang, R.; He, Y.; Shi, W.; Liang, J.; Xu, L.; Du, H.; Deng, Y.; Xu, X. Natural gas migration pathways and their influence on gas hydrate enrichment in the Qiongdongnan Basin, South China Sea. Geofluids 2022, 2022, 1954931. [Google Scholar] [CrossRef]
- Lei, C.; Ren, J.; Pei, J.; Lin, H.; Yin, X.; Tong, D. Tectonic Framework and Multiple Episode Tectonic Evolution in Deepwater Area of Qiongdongnan Basin, Northern Continental Margin of South China Sea. Earth Sci. 2011, 36, 151–162, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Wan, Z.; Wang, X.; Shi, Q.; Cai, S.; Xia, B. The tectonic differences between the east and the west in the deep-water area of the northern South China Sea. Acta Oceanol. Sin. 2016, 35, 86–95. [Google Scholar] [CrossRef]
- Ren, J.; Xu, L.; Shi, W.; Yang, W.; Wang, R.; He, Y.; Du, H. Shallow overpressure formation in the deep water area of the QiongdongnanBasin, China. Front. Earth Sci. 2022, 10, 922802. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Z.; Yang, J.; Sun, Z.; Zhu, J.; Zhuo, H.; Stock, J. Seismic characteristics and evolution of post-rift igneous complexes and hydrothermal vents in the Lingshui sub-basin (Qiongdongnan basin), northwestern South China Sea. Mar. Geol. 2019, 418, 106043. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, H.; Yang, J.; Yang, X.; Xu, H. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: Implications for the development of the deep thermal anomaly. Basin Res. 2017, 29, 340–362. [Google Scholar] [CrossRef]
- Mao, K.; Xie, X.; Xie, Y.; Ren, J.; Chen, H. Post-rift tectonic reactivation and its effect on deep-water deposits in the Qiongdongnan Basin, northwestern South China Sea. Mar. Geophys. Res. 2015, 36, 227–242. [Google Scholar] [CrossRef]
- Sun, Z.; Zhai, S.; Xiu, C.; Liu, X.; Zong, T.; Luo, W.; Liu, X.; Chen, K.; Li, N. Geochemical characteristics and their significances of rare-earth elements in deep-water well core at the Lingnan Low Uplift Area of the Qiongdongnan Basin. Acta Oceanol. Sin. 2014, 33, 81–95. [Google Scholar] [CrossRef]
- Cheng, C.; Jiang, T.; Kuang, Z.; Yang, C.; Zhang, C.; He, Y.; Cheng, Z.; Tian, D.; Xiong, P. Characteristics of gas chimneys and their implications on gas hydrate accumulation in the Shenhu area, northern South China Sea. J. Nat. Gas Sci. Eng. 2020, 84, 103629. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Yuan, S.; Wang, D.; Ma, Y.; Yao, G.; Gong, Y.; Zhang, G. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea. Geofluids 2010, 10, 351–368. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Wei, J.; Lu, J.; Su, P.; Lin, L.; Huang, W.; Guo, Y.; Deng, W.; Yang, X.; et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea. Mar. Pet. Geol. 2020, 114, 104191. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Y.; Wang, X. Seismic Methods for Exploration and Exploitation of Gas Hydrate. J. Earth Sci. 2021, 32, 839–849. [Google Scholar] [CrossRef]
- Gao, M.; Xu, S.; Zhuo, H.; Wang, Y.; Wu, S. Coupling relationship between shelf-edge trajectories and slope morphology and its implications for deep-water oil and gas exploration: A case study from the passive continental margin, East Africa. J. Earth Sci. 2020, 31, 820–833. [Google Scholar] [CrossRef]
- Gui, B.; He, D.; Zhang, Y.; Sun, Y.; Zhang, W. 3D geometry and kinematics of the Niudong Fault, Baxian Sag, Bohai Bay Basin, Eastern China—Insights from high-resolution seismic data. J. Struct. Geol. 2021, 146, 104307. [Google Scholar] [CrossRef]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150–1165. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Yao, Y.; Liu, D.; Yang, Y.; Wang, Y.; Cai, Y. Application of seismic curvature attributes in the delineation of coal texture and deformation in Zhengzhuang field, southern Qinshui Basin. AAPG Bull. 2020, 104, 1143–1166. [Google Scholar] [CrossRef]
- Fang, P.; Ding, W.; Fang, Y.; Zhao, Z.; Feng, Z. Cenozoic tectonic subsidence in the southern continental margin, South China Sea. Front. Earth Sci. 2017, 11, 427–441. [Google Scholar] [CrossRef]
- Fang, P.; Ding, W.; Zhao, Y.; Lin, X.; Zhao, Z. Detachment-controlled subsidence pattern at hyper-extended passive margin: Insights from backstripping modelling of the Baiyun Rift, northern South China Sea. Gondwana Res. 2022, in press. [Google Scholar] [CrossRef]
- Steckler, M.S.; Watts, A.B. Subsidence of the Atlantic-type continental margin off New York. Earth Planet. Sci. Lett. 1978, 41, 1–13. [Google Scholar] [CrossRef]
- Long, H.; Flemings, P.B.; Germaine, J.T.; Saffer, D.M. Consolidation and overpressure near the seafloor in the Ursa Basin, Deepwater Gulf of Mexico. Earth Planet. Sci. Lett. 2011, 305, 11–20. [Google Scholar] [CrossRef]
- Fang, P.; Ding, W.; Lin, X.; Zhao, Z.; Fang, Y.; Li, C. Neogene subsidence pattern in the multi-episodic extension systems: Insights from backstripping modelling of the Okinawa Trough. Mar. Pet. Geol. 2020, 111, 662–675. [Google Scholar] [CrossRef]
- Zhai, P.; Chen, H.; Xie, Y.; Wang, Z.; Tong, C. Modelling of evolution of overpressure system and hydrocarbon migration in deepwater area of Qiongdongnan basin, South China Sea. J. Cent. South Univ. 2013, 44, 4187–4201, (In Chinese with English Abstract). [Google Scholar]
- Petrobras, P. Campos and Espirito Santo Basins, offshore Brazil. In Seismic Expression of Structural Styles: A Picture and Work Atlas; Bally, A.W., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1983; Volume 2, pp. 51–58. [Google Scholar]
- Buffler, R.T.; Locker, S.D.; Bryant, W.R.; Hall, S.A.; Pilger, R.H. Gulf of Mexico. In Ocean Margin Drilling Program, Regional Atlas Ser., Atlas 6; Marine Science International: Woods Hole, MA, USA, 1984; 26p. [Google Scholar]
- Alves, T.M.; Lourençob, S.D.N. Geomorphologic features related to gravitational collapse: Submarine landsliding to lateral spreading on a Late Miocene–Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology 2010, 123, 13–33. [Google Scholar] [CrossRef]
- Alves, T.M. Scale-relationships and geometry of normal faults reactivated during gravitational gliding of Albian rafts (Espírito Santo Basin, SE Brazil). Earth Planet. Sci. Lett. 2012, 331–332, 80–96. [Google Scholar] [CrossRef]
- Mourgues, R.; Cobbolda, P.R. Sandbox experiments on gravitational spreading and gliding in the presence of fluid overpressures. J. Struct. Geol. 2006, 28, 887–901. [Google Scholar] [CrossRef]
- Carter, G.D.O.; Cooper, R.; Gafeira, J.; Howe, J.A.; Long, D. Morphology of small-scale submarine mass movement events across the northwest United Kingdom. Geomorphology 2020, 365, 107282. [Google Scholar] [CrossRef]
- Biancardi, C.A.; Alves, T.M.; Martins-Ferreira, M.A.C. Unpredictable geometry and depositional stacking patterns of mass-transport complexes in salt minibasins. Mar. Pet. Geol. 2020, 120, 104522. [Google Scholar] [CrossRef]
- Alsop, G.I.; Weinberger, R.; Marco, S.; Levi, T. Identifying soft-sediment deformation in rocks. J. Struct. Geol. 2019, 125, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.A.L. Three-dimensional seismic analysis of megaclast deformation within a mass transport deposit; implications for debris flow kinematics. Geology 2011, 39, 203–206. [Google Scholar] [CrossRef]
- Imber, J.; Childs, C.; Nell, P.A.R.; Walsh, J.J.; Hodgetts, D.; Flint, S. Hanging wall fault kinematics and footwall collapse in listric growth fault systems. J. Struct. Geol. 2003, 25, 197–208. [Google Scholar] [CrossRef]
- Li, X.; Fairweather, L.; Wu, S.; Ren, J.; Zhang, H.; Quan, X.; Jiang, T.; Zhang, C.; Su, M.; He, Y.; et al. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea. J. Asian Earth Sci. 2013, 62, 685–696. [Google Scholar] [CrossRef]
- Su, M.; Xie, X.; Xie, Y.; Wang, Z.; Zhang, C.; Jiang, T.; He, Y. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. J. Asian Earth Sci. 2014, 79, 552–563. [Google Scholar] [CrossRef]
- Su, M.; Xie, X.; Wang, Z.; Jiang, T.; Zhang, C.; He, Y. Sedimentary evolution of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Pet. Res. 2016, 1, 81–92. [Google Scholar] [CrossRef]
- Su, M.; Wu, C.; Chen, H.; Li, D.; Jiang, T.; Xie, X.; Jiao, H.; Wang, Z.; Sun, X. Late Miocene provenance evolution at the head of Central Canyon in the Qiongdongnan Basin, Northern South China Sea. Mar. Pet. Geol. 2019, 110, 787–796. [Google Scholar] [CrossRef]
- Su, M.; Lin, Z.; Wang, C.; Kuang, Z.; Liang, J.; Chen, H.; Liu, S.; Zhang, B.; Luo, K.; Huang, S.; et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea. Mar. Geol. 2020, 424, 106166. [Google Scholar] [CrossRef]
- Ziegler, P.A.; Cloetingh, S. Dynamic processes controlling evolution of rifted basins. Earth Sci. Rev. 2004, 64, 1–50. [Google Scholar] [CrossRef]
- Ding, W.; Franke, D.; Li, J.; Steuer, S. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea. Tectonophysics 2013, 582, 162–176. [Google Scholar] [CrossRef]
- Franke, D.; Savva, D.; Pubellier, M.; Steuer, S.; Mouly, B.; Auxietre, J.; Meresse, F.; Chamot-Rooke, N. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 2014, 58, 704–720. [Google Scholar] [CrossRef]
- Zhao, Z. The deep mantle upwelling beneath the northwestern South China Sea: Insights from the time-varying residual subsidence in the Qiongdongnan Basin. Geosci. Front. 2021, 12, 101246. [Google Scholar] [CrossRef]
- Davies, J.H.; Bunge, H.P. Are splash plumes the origin of minor hotspots? Geology 2006, 34, 349–352. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Li, X.; Li, J.; Xu, Y.; Li, X. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth Planet. Sci. Lett. 2013, 377, 248–259. [Google Scholar] [CrossRef]
- Berra, F.; Carminati, E. Differential compaction and early rock fracturing in high-relief carbonate platforms: Numerical modelling of a Triassic case study (Esino Limestone, Central Southern Alps, Italy). Basin Res. 2012, 24, 598–614. [Google Scholar] [CrossRef]
- Alsop, G.I.; Weinberger, R.; Marco, S.; Levi, T. Distinguishing coeval patterns of contraction and collapse around flow lobes in mass transport deposits. J. Struct. Geol. 2020, 134, 104013. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. Influence of Tectonics and Morphometric Features on the Landslide Distribution: A Case Study from the Mesima Basin (Calabria, South Italy). J. Earth Sci. 2020, 31, 393–409. [Google Scholar] [CrossRef]
- Wang, R.; Shi, W.; Xie, X.; Zhang, W.; Qin, S.; Liu, K.; Busbey, A.B. Clay mineral content, type, and their effects on pore throat structure and reservoir properties: Insight from the Permian tight sandstones in the Hangjinqi area, north Ordos Basin, China. Mar. Pet. Geol. 2020, 115, 104281. [Google Scholar] [CrossRef]
- He, X.; Xu, C.; Qi, W.; Huang, Y.; Cheng, J.; Xu, X.; Yao, Q.; Lu, Y.; Dai, B. Landslides Triggered by the 2020 Qiaojia Mw5.1 Earthquake, Yunnan, China: Distribution, Influence Factors and Tectonic Significance. J. Earth Sci. 2021, 32, 1056–1068. [Google Scholar] [CrossRef]
Age (Ma) | HF1 (mW/m2) | HF2 (mW/m2) | HF3 (mW/m2) | HF4 (mW/m2) | HF5 (mW/m2) | HF6 (mW/m2) | Age (Ma) | PWD1 (m) | PWD2 (m) | PWD3 (m) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 58 | 65 | 72 | 77 | 84 | 92 | 1.9 | 120 | 1600 | 700 |
2 | 61 | 68 | 76 | 80 | 88 | 96 | 5.5 | 90 | 1100 | 500 |
5.5 | 54 | 58 | 64 | 69 | 75 | 80 | 10.5 | 50 | 700 | 300 |
10.5 | 55 | 59 | 66 | 71 | 76 | 81 | 15.5 | 60 | 500 | 150 |
17.5 | 57 | 61 | 70 | 75 | 79 | 82 | 17.5 | 40 | 400 | 120 |
23 | 58 | 62 | 70 | 74 | 78 | 81 | 21 | 20 | 200 | 30 |
30 | 50 | 53 | 58 | 63 | 66 | 69 | 22 | 15 | 100 | 20 |
36 | 44 | 47 | 52 | 57 | 60 | 62 | 23 | 40 | 100 | 50 |
38 | 45 | 48 | 53 | 57 | 60 | 62 | 25.5 | 20 | 80 | 30 |
50 | 42 | 44 | 46 | 48 | 50 | 52 | 33 | 10 | 50 | 20 |
50 | 20 | 20 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Shi, W.; Wang, R.; Ren, J.; He, Y.; Du, H.; Zuo, T.; Huang, J.; Dong, Y. New Insights into the Genetic Mechanism of the Miocene Mounded Stratigraphy in the Qiongdongnan Basin, Northern South China Sea. Energies 2022, 15, 9478. https://doi.org/10.3390/en15249478
Xu L, Shi W, Wang R, Ren J, He Y, Du H, Zuo T, Huang J, Dong Y. New Insights into the Genetic Mechanism of the Miocene Mounded Stratigraphy in the Qiongdongnan Basin, Northern South China Sea. Energies. 2022; 15(24):9478. https://doi.org/10.3390/en15249478
Chicago/Turabian StyleXu, Litao, Wanzhong Shi, Ren Wang, Jinfeng Ren, Yulin He, Hao Du, Tingna Zuo, Jin Huang, and Yang Dong. 2022. "New Insights into the Genetic Mechanism of the Miocene Mounded Stratigraphy in the Qiongdongnan Basin, Northern South China Sea" Energies 15, no. 24: 9478. https://doi.org/10.3390/en15249478
APA StyleXu, L., Shi, W., Wang, R., Ren, J., He, Y., Du, H., Zuo, T., Huang, J., & Dong, Y. (2022). New Insights into the Genetic Mechanism of the Miocene Mounded Stratigraphy in the Qiongdongnan Basin, Northern South China Sea. Energies, 15(24), 9478. https://doi.org/10.3390/en15249478