Characteristics of Dye-Sensitized Solar Cell under PWM Illumination: Toward Indoor Light-Energy Harvesting in the Solid-State Lighting Era
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
- R0: The electrical resistance of the transparent electrode;
- R1 || Q1: Charge transfer at the counter electrode (above 1 kHz);
- R2 || Q2: Electron transport in the TiO2 layer and electron-hole recombination (between 1 Hz and 1 kHz);
- R3 || Q3: Electrolyte diffusion (for frequencies lower than 1 Hz).
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surv. Tutor. 2010, 13, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Matiko, J.W.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2013, 25, 012002. [Google Scholar] [CrossRef]
- Raj, A.; Steingart, D. Review—Power Sources for the Internet of Things. J. Electrochem. Soc. 2018, 165, B3130–B3136. [Google Scholar] [CrossRef]
- Mathews, I.; Kantareddy, S.N.; Buonassisi, T.; Peters, I.M. Technology and Market Perspective for Indoor Photovoltaic Cells. Joule 2019, 3, 1415–1426. [Google Scholar] [CrossRef]
- Venkateswararao, A.; Ho, J.K.; So, S.K.; Liu, S.-W.; Wong, K.-T. Device characteristics and material developments of indoor photovoltaic devices. Mater. Sci. Eng. R Rep. 2019, 139, 100517. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Li, B.; Hou, B.; Amaratunga, G.A.J. Indoor photovoltaics, The Next Big Trend in solution-processed solar cells. Infomat 2021, 3, 445–459. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photon. 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Sacco, A.; Rolle, L.; Scaltrito, L.; Tresso, E.; Pirri, C.F. Characterization of photovoltaic modules for low-power indoor application. Appl. Energy 2013, 102, 1295–1302. [Google Scholar] [CrossRef]
- Li, Y.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. The effect of the type of illumination on the energy harvesting performance of solar cells. Sol. Energy 2015, 111, 21–29. [Google Scholar] [CrossRef]
- Mori, S.; Gotanda, T.; Nakano, Y.; Saito, M.; Todori, K.; Hosoya, M. Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 2015, 54, 071602. [Google Scholar] [CrossRef]
- Tada, K. Characterization of polymer bulk heterojunction photocell with unmodified C 70 prepared with halogen-free solvent for indoor light harvesting. Org. Electron. 2016, 30, 289–295. [Google Scholar] [CrossRef]
- Lee, H.K.H.; Li, Z.; Durrant, J.R.; Tsoi, W.C. Is organic photovoltaics promising for indoor applications? Appl. Phys. Lett. 2016, 108, 253301. [Google Scholar] [CrossRef]
- Tada, K. Characteristics of PTB7-Th:C bulk heterojunction photocells under low-light illumination: Critical effect of dark parallel resistance. Phys. Status Solidi A 2017, 214, 1700018. [Google Scholar] [CrossRef]
- Tada, K. Low-light characteristics of polymer photocell with S-shaped current-voltage curve at 1 sun. Mol. Cryst. Liq. Cryst. 2017, 653, 39–43. [Google Scholar] [CrossRef]
- Aoki, Y. Photovoltaic performance of Organic Photovoltaics for indoor energy harvester. Org. Electron. 2017, 48, 194–197. [Google Scholar] [CrossRef]
- Tada, K. Effect of fullerene substituent on low-light characteristics of polymer: Fullerene bulk heterojunction solar cells. Mol. Cryst. Liq. Cryst. 2020, 705, 65–70. [Google Scholar] [CrossRef]
- Saeed, M.A.; Yoo, K.; Kang, H.C.; Shim, J.W.; Lee, J.-J. Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dye. Pigment. 2021, 194, 109626. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Nattestad, A.; Perera, I.; Spiccia, L. Developments in and prospects for photocathodic and tandem dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 2016, 28, 44–71. [Google Scholar] [CrossRef] [Green Version]
- Daoud, A.; Cheknane, A.; Meftah, A.; Nunzi, J.M.; Shalabi, M.; Hilal, H.S. Spatial separation strategies to control charge recombination and dye regeneration in p-type dye sensitized solar cells. Sol. Energy 2022, 236, 107–152. [Google Scholar] [CrossRef]
- Bonomo, M.; Ekoi, E.J.; Marrani, A.G.; Zarate, A.Y.S.; Dowling, D.P.; Barolo, C.; Dini, D. NiO/ZrO2 nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs. Sustain. Energy Fuels 2021, 5, 4736–4748. [Google Scholar] [CrossRef]
- Cheng, H.; Ayaz, M.; Wrede, S.; Boschloo, G.; Hammarström, L.; Tian, H. Assessing the effect of surface states of mesoporous NiO films on charge transport and unveiling an unexpected light response phenomenon in tandem dye-sensitized solar cells. Energy Adv. 2022, 1, 303–311. [Google Scholar] [CrossRef]
- Farré, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F. A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel-Oxide-based Dye-Sensitized Solar Cells. ChemSusChem 2017, 10, 2618–2625. [Google Scholar] [CrossRef]
- Aslam, A.; Mehmood, U.; Arshad, M.H.; Ishfaq, A.; Zaheer, J.; Khan, A.U.H.; Sufyan, M. Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Sol. Energy 2020, 207, 874–892. [Google Scholar] [CrossRef]
- Tanabe, N. Dye-Sensitized Solar Cell for Energy Harvesting Applications. Fujikura Tech. Rev. 2013, 42, 109–113. Available online: https://www.fujikura.co.jp/eng/rd/gihou/backnumber/pages/__icsFiles/afieldfile/2013/05/23/42e_30.pdf (accessed on 28 November 2022).
- Tada, K. Lighting flicker: A blind spot in indoor photovoltaic cell characterization. Appl. Phys. Express 2020, 13, 024005. [Google Scholar] [CrossRef]
- Lehman, B.; Wilkins, A.J. Designing to Mitigate Effects of Flicker in LED Lighting: Reducing risks to health and safety. IEEE Power Electron. Mag. 2014, 1, 18–26. [Google Scholar] [CrossRef]
- IEEE Std 1789–2015; IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers. IEEE: New York, NY, USA, 2015; pp. 1–80. [CrossRef]
- Available online: https://www.fujikura.co.jp/eng/products/infrastructure/dsc/01/dsc_brochure.pdf (accessed on 28 November 2022).
- Dyble, M.; Narendran, N.; Bierman, A.; Klein, T. Impact of Dimming White LEDs: Chromaticity Shifts Due to Different Dimming Methods. In Proceedings of the Fifth International Conference on Solid State Lighting, San Diego, CA, USA, 1–4 August 2005; p. 59411H. [Google Scholar] [CrossRef]
- Gu, Y.; Narendran, N.; Dong, T.; Wu, H. Spectral and luminous efficacy change of high-power LEDs under different dimming methods. In Proceedings of the Sixth International Conference on Solid State Lighting, San Diego, CA, USA, 14-17 August 2006; p. 63370J. [Google Scholar] [CrossRef]
- Tada, K. Performance evaluation method of dye-sensitized solar cell under modulated illumination. Mol. Cryst. Liq. Cryst. 2021, 727, 2–8. [Google Scholar] [CrossRef]
- Koide, N.; Chiba, Y.; Han, L. Methods of Measuring Energy Conversion Efficiency in Dye-sensitized Solar Cells. Jpn. J. Appl. Phys. 2005, 44, 4176–4181. [Google Scholar] [CrossRef]
- Sacco, A. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 79, 814–829. [Google Scholar] [CrossRef]
- Chua, L.O.; Desoer, C.A.; Kuh, E.S. Linear and Nonlinear Circuits; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
Circuit Parameter | Value |
---|---|
R0 [Ω] | 8.12 |
R1 [Ω] | 2.34 |
Q1 [F∙s(a1−1)] | 1.55 × 10−4 |
a1 | 0.783 |
R2 [Ω] | 4.37 |
Q2 [F∙s(a2−1)] | 2.89 × 10−3 |
a2 | 0.925 |
R3 [Ω] | 0.361 |
Q3[F∙s(a3−1)] | 0.339 |
a3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tada, K. Characteristics of Dye-Sensitized Solar Cell under PWM Illumination: Toward Indoor Light-Energy Harvesting in the Solid-State Lighting Era. Energies 2022, 15, 9553. https://doi.org/10.3390/en15249553
Tada K. Characteristics of Dye-Sensitized Solar Cell under PWM Illumination: Toward Indoor Light-Energy Harvesting in the Solid-State Lighting Era. Energies. 2022; 15(24):9553. https://doi.org/10.3390/en15249553
Chicago/Turabian StyleTada, Kazuya. 2022. "Characteristics of Dye-Sensitized Solar Cell under PWM Illumination: Toward Indoor Light-Energy Harvesting in the Solid-State Lighting Era" Energies 15, no. 24: 9553. https://doi.org/10.3390/en15249553
APA StyleTada, K. (2022). Characteristics of Dye-Sensitized Solar Cell under PWM Illumination: Toward Indoor Light-Energy Harvesting in the Solid-State Lighting Era. Energies, 15(24), 9553. https://doi.org/10.3390/en15249553