The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass and Nutrient Sources
2.2. Characterization of Water Hyacinth, Cow Manure, Digestate and Water
2.3. Cultivation Trials
2.4. Anaerobic Digestion Experiments of Cultivated Biomass and Cow Manure
2.5. Techno-Economic Analysis
3. Results
3.1. Cultivation Trials
3.2. Co-Digestion of Cow Manure and Water Hyacinth
3.3. Techno-Economic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, D.; Jain, S. Impact of Intervention of Biomass Cookstove Technologies and Kitchen Characteristics on Indoor Air Quality and Human Exposure in Rural Settings of India. Environ. Int. 2019, 123, 240–255. [Google Scholar] [CrossRef]
- Sen, A.; Mandal, T.K.; Sharma, S.K.; Saxena, M.; Gupta, N.C.; Gautam, R.; Gupta, A.; Gill, T.; Rani, S.; Saud, T.; et al. Chemical Properties of Emission from Biomass Fuels Used in the Rural Sector of the Western Region of India. Atmos. Environ. 2014, 99, 411–424. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Tomlin, A.S. Air Quality and Climate Impacts of Biomass Use as an Energy Source: A Review. Energy Fuels 2021, 35, 14213–14240. [Google Scholar] [CrossRef]
- Ravindra, K.; Kaur-Sidhu, M.; Mor, S.; John, S. Trend in Household Energy Consumption Pattern in India: A Case Study on the Influence of Socio-Cultural Factors for the Choice of Clean Fuel Use. J. Clean. Prod. 2019, 213, 1024–1034. [Google Scholar] [CrossRef]
- Alok, T.; Ambuj, D.; Sagar, K.; Smith, R. Promoting Clean and Affordable Cooking: Promoting Clean and Affordable Cooking. Econ. Political Wkly. 2015, 50, 7–8. [Google Scholar]
- Gould, C.F.; Urpelainen, J. LPG as a Clean Cooking Fuel: Adoption, Use, and Impact in Rural India. Energy Policy 2018, 122, 395–408. [Google Scholar] [CrossRef]
- Pillarisetti, A.; Ghorpade, M.; Madhav, S.; Dhongade, A.; Roy, S.; Balakrishnan, K.; Sankar, S.; Patil, R.; Levine, D.I.; Juvekar, S.; et al. Promoting LPG Usage during Pregnancy: A Pilot Study in Rural Maharashtra, India. Environ. Int. 2019, 127, 540–549. [Google Scholar] [CrossRef]
- The Times of India. Non-Subsidised LPG Cylinder to Cost Rs 50 More: How Prices Have Moved over the Years. The Times of India, 23 March 2022. [Google Scholar]
- The Economic Times. Prolonged Ukraine Crisis, High Crude Prices May Push India’s Import Bill up by 15 per Cent: Experts. The Economic Times, 24 February 2022. [Google Scholar]
- Mottaleb, K.A.; Rahut, D.B. Biogas Adoption and Elucidating Its Impacts in India: Implications for Policy. Biomass Bioenergy 2019, 123, 166–174. [Google Scholar] [CrossRef]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas Generation Potential by Anaerobic Digestion for Sustainable Energy Development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to Biogas Dissemination in India: A Review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Jayaweera, M.W.; Dilhani, J.A.T.; Kularatne, R.K.A.; Wijeyekoon, S.L.J. Biogas Production from Water Hyacinth (Eichhornia crassipes (Mart.) Solms) Grown under Different Nitrogen Concentrations. J. Environ. Sci. Health Part A 2007, 42, 925–932. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, P.; Paul, T.; Ghosh, U.; Pati, B.R.; Mondal, K.C. Production of Bioethanol as Useful Biofuel through the Bioconversion of Water Hyacinth (Eichhornia crassipes). 3 Biotech 2016, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.K.; Singh, Y.P.; Rai, J.P.N. Biogas Production from Plant Biomass Used for Phytoremediation of Industrial Wastes. Bioresour. Technol. 2007, 98, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.K.; Bhui, I.; Banerjee, S.N.; Goswami, R.; Chakraborty, A.K.; Shome, A.; Balachandran, S.; Chaudhury, S. Biogas Production from Locally Available Aquatic Weeds of Santiniketan through Anaerobic Digestion. Clean Technol. Environ. Policy 2015, 17, 1681–1688. [Google Scholar] [CrossRef]
- Shah, F.A.; Mahmood, Q.; Rashid, N.; Pervez, A.; Iqbal, A.; Shah, M.M. Anaerobic Digestion of Water Hyacinth, Giant Reed, Maize and Poultry Waste for Biogas Generation. EC Agric. 2015, 2, 277–284. [Google Scholar]
- Ali, S.S.; Sun, J. Effective Thermal Pre-Treatment of Water Hyacinth (Eichhornia crassipes) for the Enhancement of Biomethanation: VIT® Gene Probe Technology for Microbial Community Analysis with Special Reference to Methanogenic Archaea. J. Environ. Chem. Eng. 2019, 7, 102853. [Google Scholar] [CrossRef]
- O’Sullivan, C.; Rounsefell, B.; Grinham, A.; Clarke, W.; Udy, J. Anaerobic Digestion of Harvested Aquatic Weeds: Water Hyacinth (Eichhornia Crassipes), Cabomba (Cabomba Caroliniana) and Salvinia (Salvinia Molesta). Ecol. Eng. 2010, 36, 1459–1468. [Google Scholar] [CrossRef]
- Barua, V.B.; Kalamdhad, A.S. Biochemical Methane Potential Test of Untreated and Hot Air Oven Pretreated Water Hyacinth: A Comparative Study. J. Clean. Prod. 2017, 166, 273–284. [Google Scholar] [CrossRef]
- Kist, D.L.; Pérez-Elvira, S.I.; Monteggia, L.O. Evaluation of the Steam Explosion Pretreatment Upon the Anaerobic Digestion of Water Hyacinth Biomass: Influence on Liquid and Solid Fractions. Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2018, 40, 298–317. [Google Scholar]
- Ferrer, I.; Palatsi, J.; Campos, E.; Flotats, X. Mesophilic and Thermophilic Anaerobic Biodegradability of Water Hyacinth Pre-Treated at 80 °C. Waste Manag. 2010, 30, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Alfageme, E.R.; Fujiwara, M.; Toda, T. Steam Explosion and Thermal Hydrolysis for Pre-Treating Eichhornia crassipes to Enhance Anaerobic Digestion. Jpn. Soc. Mater. Cycles Waste Manag. 2019, 30, 551. [Google Scholar] [CrossRef]
- Brown, A.E.; Adams, J.M.M.; Grasham, O.R.; Camargo-Valero, M.A.; Ross, A.B. An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth. Energies 2020, 13, 27. [Google Scholar] [CrossRef]
- Sarto, S.; Hildayati, R.; Syaichurrozi, I. Effect of Chemical Pretreatment Using Sulphuric Acid on Biogas Production from Water Hyacinth and Kinetics. Renew. Energy 2019, 132, 335–350. [Google Scholar] [CrossRef]
- Syaichurrozi, I.; Villta, P.K.; Nabilah, N.; Rusdi, R. Effect of Sulfuric Acid Pretreatment on Biogas Production from Salvinia Molesta. J. Environ. Chem. Eng. 2019, 7, 102857. [Google Scholar] [CrossRef]
- Zhang, W.; Ge, X.; Li, Y.-F.; Yu, Z.; Li, Y. Isolation of a Methanotroph from a Hydrogen Sulfide-Rich Anaerobic Digester for Methanol Production from Biogas. Process Biochem. 2016, 51, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Patil, J.; Antonyraj, M.; Gavimath, C. Study on Effect of Pre-Treatment Methods on Biomethanation of Water Hyacinth. Int. J. Adv. Biotechnol. Res. 2011, 2, 143–147. [Google Scholar]
- Katima, J.H.Y. Production of Biogas from Water Hyacinth: Effect of Subtrate Concentration, Particle Size and Incubation Period. Tanzan. J. Sci. 2001, 27, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Aggarwal, N.K.; Saini, A.; Yadav, A. Beyond Biocontrol: Water Hyacinth-Opportunities and Challenges. J. Environ. Sci. Technol. 2016, 9, 26–48. [Google Scholar] [CrossRef] [Green Version]
- EPPO. EPPO Global Database 2019. Available online: https://gd.eppo.int (accessed on 9 October 2022).
- Penfound, W.T.; Earle, T.T. The Biology of the Water Hyacinth. Ecol. Monogr. 1948, 18, 447–472. [Google Scholar] [CrossRef] [Green Version]
- Center, T.D.; Spencer, N.R. The Phenology and Growth of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) in a Eutrophic North-Central Florida Lake. Aquat. Bot. 1981, 10, 1–32. [Google Scholar] [CrossRef]
- Gopal, B. Water Hyacinth: Aquatic Plant Study; Elsevier: Amsterdam, The Netherlands, 1987; ISBN 978-0-444-42707-6. [Google Scholar]
- Reddy, K.R.; Debusk, W.F. Growth Characteristics of Aquatic Macrophytes Cultured in Nutrient-Enriched Water: I. Water Hyacinth, Water Lettuce, and Pennywort. Econ. Bot. 1984, 38, 229–239. [Google Scholar] [CrossRef]
- Wolverton, B.C.; McDonald, R.C. Water Hyacinth (Eichhornia crassipes) Productivity and Harvesting Studies. Econ. Bot. 1979, 33, 1–10. [Google Scholar] [CrossRef]
- Reddy, K.R.; Tucker, J.C. Productivity and Nutrient Uptake of Water Hyacinth, Eichhornia crassipes I. Effect of Nitrogen Source. Econ. Bot. 1983, 37, 237–247. [Google Scholar] [CrossRef]
- Boyd, C.E. Vascular Aquatic Plants for Mineral Nutrient Removal from Polluted Waters. Econ. Bot. 1970, 24, 95–103. [Google Scholar] [CrossRef]
- Bandgar, P.S.; Jain, S.; Panwar, N.L. Current Status, Opportunities and Challenges in Anaerobic Digestion in Indian Context: An Overview. Bioresour. Technol. Rep. 2021, 16, 100830. [Google Scholar] [CrossRef]
- Dey, B.; Roy, B.; Kumar, N. The Status And Impact of National Biogas And Manure Management Programme At Aizawl In North-East India. In Proceedings of the Twelve International Conference onThermal Engineering:Theory and Applications, Gandhinagar, India, 23–26 February 2019. [Google Scholar]
- Mukhuba, M.; Roopnarain, A.; Adeleke, R.; Moeletsi, M.; Makofane, R. Comparative Assessment of Bio-Fertiliser Quality of Cow Dung and Anaerobic Digestion Effluent. Cogent Food Agric. 2018, 4, 1435019. [Google Scholar] [CrossRef]
- Samar, K.K.; Sharma, D.; Meena, G.L. February 2016, pp. 16–21. Available online: https://mnre.gov.in/img/documents/uploads/f93373e7bb8143fd9665e46ea4e5cbda.pdf (accessed on 9 October 2022).
- Raha, D.; Mahanta, P.; Clarke, M.L. The Implementation of Decentralised Biogas Plants in Assam, NE India: The Impact and Effectiveness of the National Biogas and Manure Management Programme. Energy Policy 2014, 68, 80–91. [Google Scholar] [CrossRef]
- Vasmara, C.; Cianchetta, S.; Marchetti, R.; Ceotto, E.; Galletti, S. Potassium Hydroxyde Pre-Treatment Enhances Methane Yield from Giant Reed (Arundo Donax L.). Energies 2021, 14, 630. [Google Scholar] [CrossRef]
- Chi, X.; Liu, C.; Bi, Y.-H.; Yu, G.; Zhang, Y.; Wang, Z.; Li, B.; Cui, Q. A Clean and Effective Potassium Hydroxide Pretreatment of Corncob Residue for the Enhancement of Enzymatic Hydrolysis at High Solids Loading. RSC Adv. 2019, 9, 11558–11566. [Google Scholar] [CrossRef] [Green Version]
- Kjeldahl, J. New method for the determination of nitrogen in organic substances. Fresenius Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Baethgen, W.E.; Alley, M.M. A Manual Colorimetric Procedure for Measuring Ammonium Nitrogen in Soil and Plant Kjeldahl Digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.B., Eaton, A.D., Rice, E.W., Eds.; American Public Health Association: Washington, DC, USA, 2017; Volume 10, ISBN 978-0-87553-287-5. [Google Scholar]
- NASA Prediction of Worldwide Energy Resources (POWER). Available online: https://power.larc.nasa.gov/data-accessviewer/ (accessed on 20 April 2022).
- Kanwar, S.S.; Gupta, R.K.; Guleri, R.L.; Singh, S.P. Performance Evaluation of a 1 M3 Modified, Fixed-Dome Deenbandhu Biogas Plant under Hilly Conditions. Bioresour. Technol. 1994, 50, 239–241. [Google Scholar] [CrossRef]
- The World Bank Inflation, Consumer Prices (Annual %)–India. Available online: https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?locations=IN (accessed on 27 April 2022).
- Ministry of New and Renewable Energy New National Biogas and Organic Manure Programme (NNBOMP). Available online: https://biogas.mnre.gov.in/about-the-programmes (accessed on 27 April 2022).
- Potassium Hydroxide Industrial Grade. Available online: https://www.indiamart.com/proddetail/potassium-hydroxide-industrial-grade-23445442191.html (accessed on 27 April 2022).
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative Characterization of Digestate versus Pig Slurry and Cow Manure–Chemical Composition and Effects on Soil Microbial Activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.B.; Wong, W. Growth and Macronutrient Removal of Water Hyacinth in a Small Secondary Sewage Treatment Plant. Resour. Conserv. Recycl. 1994, 11, 161–178. [Google Scholar] [CrossRef]
- Wilson, J.R.; Holst, N.; Rees, M. Determinants and Patterns of Population Growth in Water Hyacinth. Aquat. Bot. 2005, 81, 51–67. [Google Scholar] [CrossRef]
- Imaoka, T.; Teranishi, S. Rates of Nutrient Uptake and Growth of the Water Hyacinth (Eichhornia crassipes (Mart.) Solms). Water Res. 1988, 22, 943–951. [Google Scholar] [CrossRef]
Cow Manure (AR*, FW %) | Water Hyacinth (AR*, FW %) | Digestate (AR*, FW%) | |
---|---|---|---|
Moisture | 83.2 | 92.2 | - |
TS | 16.8 | 7.8 | - |
VS | 14.1 | 6.4 | - |
Ash | 2.7 | 1.3 | - |
N | 0.20 | - | 0.04 |
P | 0.24 | 0.07 | 0.01 |
K | 0.61 | 0.08 | 0.04 |
Pre-Treatment Method | Biogas Yield (L/kg VS) | Methane Yield (L/kg VS) | Methane Content (%) |
---|---|---|---|
Mechanical and Chemical | 339.5 ± 44.5 | 197.0 ± 26.0 | 58.0 ± 0.1 |
Mechanical | 317.5 ± 40.5 | 182.0 ± 23.0 | 57.3 ± 0.1 |
No Pre-treatment | 251.4 ± 32.3 | 145.9 ± 18.9 | 58.0 ± 0.1 |
Scenario | LPG Cylinders per Month | LPG Consumption (kg/day) | Bio-CH4 Requirement (m3/day) | Biogas Requirement (m3/day) | Subsidy Available (INR) |
---|---|---|---|---|---|
1 | 1 | 0.47 | 0.55 | 0.92 | - |
2 | 1.5 | 0.71 | 0.83 | 1.39 | 7500 |
3 | 2 | 0.95 | 1.11 | 1.85 | 7500 |
4 | 3 | 1.42 | 1.66 | 2.77 | 12,000 |
Scenario | WH Loading | CM Loading AD|Cultivation | Water Addition | KOH Addition | Installation Cost | Subsidised Installation Cost |
---|---|---|---|---|---|---|
(kg/Day) | (kg/Day) | (kg/Day) | (kg/Day) | (INR) | (INR) | |
1 | 5.5 | 21.9|3.6 | 48.7 | 0.16 | 35,488 | 35,488 |
2 | 8.2 | 32.8|5.5 | 68.3 | 0.25 | 51,052 | 43,552 |
3 | 10.9 | 43.7|7.3 | 91.1 | 0.33 | 68,069 | 60,569 |
4 | 16.4 | 65.6|10.9 | 136.7 | 0.49 | 102,104 | 90,104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bray, D.G.; Nahar, G.; Grasham, O.; Dalvi, V.; Rajput, S.; Dupont, V.; Camargo-Valero, M.A.; Ross, A.B. The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems. Energies 2022, 15, 9599. https://doi.org/10.3390/en15249599
Bray DG, Nahar G, Grasham O, Dalvi V, Rajput S, Dupont V, Camargo-Valero MA, Ross AB. The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems. Energies. 2022; 15(24):9599. https://doi.org/10.3390/en15249599
Chicago/Turabian StyleBray, Douglas G., Gaurav Nahar, Oliver Grasham, Vishwanath Dalvi, Shailendrasingh Rajput, Valerie Dupont, Miller Alonso Camargo-Valero, and Andrew B. Ross. 2022. "The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems" Energies 15, no. 24: 9599. https://doi.org/10.3390/en15249599
APA StyleBray, D. G., Nahar, G., Grasham, O., Dalvi, V., Rajput, S., Dupont, V., Camargo-Valero, M. A., & Ross, A. B. (2022). The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems. Energies, 15(24), 9599. https://doi.org/10.3390/en15249599