Numerical Study on Pool Film Boiling of Liquid Hydrogen over Horizontal Cylinders
Abstract
:1. Introduction
2. Simulation Method and Modeling
2.1. Physical Model
2.2. Governing Equations
2.3. Turbulence Model
2.4. Numerical Approaches
3. Model Validation
3.1. Phase Change Verification
3.2. Grid Independence
3.3. Experimental Verification
4. Results and Discussion
4.1. Film Boiling on a Wire Surface
4.2. Film Boiling on the Tube Surface
4.3. Analysis of Heater Diameter
5. Conclusions
- (1)
- The diameter of the horizontal cylinder is a key factor affecting the thermal and physical performance of hydrogen pool film boiling. As the diameter increases, the bubble detachment diameter gradually increases, the heat flux decreases, and the bubble growth period experiences a complicated law.
- (2)
- For the wire heating surface, the heat flux is affected by the evolution of a single bubble and the formation and departure process of a bubble exactly corresponds to a typical cycle of heat flux change. Besides, the small-diameter wire is wrapped by gas film and the spatial-averaged heat flux keeps stable during the whole film boiling process.
- (3)
- For the tube heating surface, the heat transfer is mainly affected by the movement of multiple crescent-shaped gas structures along the surface and the heat flux fluctuation is smaller than that of the wire surface. When the diameter of the tube increases to a certain extent, the bubble detachment diameter, the heat flux, and the bubble growth period all reach stable values.
- (4)
- As the wire diameter increases, two different gas–liquid interface patterns are observed. The degree of subcooling and the diameter of the wire heater are two determining factors for the gas–liquid interface shape. In addition, the transition diameter of two different thermal performance patterns increases with the increase in the subcooling degree.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
cp | Specific heat, J/(kg·K) |
D | Diameter of cylinder, m |
E | Internal energy, J/kg |
Fvol | Volume force, N/m3 |
g | Acceleration due to gravity, m/s2 |
h | Enthalpy, J/kg |
H | Height of hydrogen pool, m |
Hc | Height of cylinder, mm |
hfg | Latent heat, J/kg |
L | Length of hydrogen pool, m |
Nu | Nusselt number |
p | Pressure, Pa |
P0 | Atmospheric pressure, Pa |
Pr | Prandtl number |
Prt | Turbulent Prandtl number |
q | Heat flux, W/m2 |
Re | Reynolds number |
S | Volume mass source, kg/(m3s) |
Sh | Energy source term, J/(m3s) |
t | Time, s |
T | Temperature, K |
ΔTsup | Wall superheat, TW-Tsat |
ΔTsub | Liquid subcooling, Tsat-Tl |
Greek symbols | |
a | Void fraction |
ε | Turbulence dissipation rate, m2/s3 |
ρ | Density, kg/m3 |
k | Surface curvature, 1/m |
λ | Thermal conductivity, W/(mK) |
The most dangerous wavelength, m | |
μ | Dynamic viscosity, Pa·s |
μt | Turbulent viscosity, Pa·s |
v | Velocity, m·s −1 |
γ | Enthalpy, J/kg |
σ | Surface tension, N/m |
Φ | Generic property |
Subscripts | |
eff | Effective |
f | Fluid |
g | Gas |
l | Liquid |
m | Mixture property |
sat | Saturation property |
sub | Subcooled property |
sup | Superheat property |
w | Wall |
References
- Nukiyama, S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transf. 1966, 9, 1419–1433. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, L.; Xia, S.; Ren, J.; Mao, H.; Xu, Y. Numerical investigation on subcooled pool film boiling of liquid hydrogen in different gravities. Int. J. Hydrog. Energy 2020, 46, 2646–2657. [Google Scholar] [CrossRef]
- Nelson, R.; Unal, C. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles Part I: Thermal hydraulic model. Nucl. Eng. Des. 1992, 136, 277–298. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y.; Tan, H. Numerical study on natural convection of liquid nitrogen used to cool the high-temperature supercon-ducting cable in a new combined energy transmission system. Cryogenics 2020, 109, 103101. [Google Scholar] [CrossRef]
- Bromley, L.A. Heat transfer in stable film boiling. Chem. Eng. Prog. 1950, 46, 221–227. [Google Scholar]
- Banchero, J.T.; Barker, G.E. Stable film boiling of liquid oxygen outside single horizontal tubes and wires. Chem. Eng. Prog. 1965, 51, 21. [Google Scholar]
- Breen, B.P.; Westwater, J.W. Effect of diameter of horizontal tubes on film boiling heat transfer. Chem. Eng. Prog. 1962, 58, 67–72. [Google Scholar]
- Flanigan, V.J. A Study of Film Boiling of Liquid Nitrogen and Liquid Argon Over a Wide Pressure Range with Cylindrical Heaters 1967. Master’s Thesis, University of Missouri, Columbia, MO, USA, 1967; p. 5171. Available online: https://scholarsmine.mst.edu/masters_theses/5171 (accessed on 14 December 2021).
- Capone, G.J.; Park, E.L. Estimation of Film-Boiling Heat Transfer Coefficients for Cylindrical Heaters in Corresponding-States Fluids; Springer: New York, NY, USA, 1995; pp. 283–285. [Google Scholar] [CrossRef]
- Lei, W.; Jiaojiao, W.; Tian, Y.; Xiaoning, H.; Fushou, X.; Yanzhong, L. Film boiling heat transfer prediction of liquid nitrogen from different geometry heaters. Int. J. Multiphas. Flow 2020, 156, 119854. [Google Scholar] [CrossRef]
- Gorenflo, D.; Baumhögger, E.; Windmann, T.; Herres, G. Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: Integral heat transfer for horizontal copper cylinders. Int. J. Refrig. 2010, 33, 1229–1250. [Google Scholar] [CrossRef]
- Pomerantz, M.L. Film Boiling on a Horizontal Tube in Increased Gravity Fields. J. Heat Transf. 1964, 86, 213. [Google Scholar] [CrossRef]
- Sakurai, A.; Shiotsu, M.; Hata, K. Effect of System Pressure on Film-Boiling Heat Transfer, Minimum Heat Flux, and Minimum Temperature. Nucl. Sci. Eng. 1984, 88, 321–330. [Google Scholar] [CrossRef]
- Sakurai, A.; Shiotsu, M.; Hata, K. Effect of subcooling on film boiling heat transfer from horizontal cylinder in a pool of water. In Proceedings of the International Heat Transfer Conference 8, San Francisco, CA, USA, 17–22 August 1986. [Google Scholar] [CrossRef]
- Sakurai, A.; Shiotsu, M.; Hata, K. A General Correlation for Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Subcooled Liquid: Part 1—A Theoretical Pool Film Boiling Heat Transfer Model Including Radiation Contributions and Its Analytical Solution. J. Heat Transf. 1990, 112, 430–440. [Google Scholar] [CrossRef]
- Sakurai, A.; Shiotsu, M.; Hata, K. A general correlation for pool film boiling heat transfer from a horizontal cylinder to subcooled liquid:Part2-Experimental data for various liquids and its correlation. J. Heat Transf. 1990, 112, 836–845. [Google Scholar] [CrossRef]
- Sarma, P.K.; Rao, V.D.; Bergles, A.E. Turbulent film boiling on a horizontal cylinder—effect of temperature dependent properties. Energ. Convers. Manag. 1997, 38, 1135–1144. [Google Scholar] [CrossRef]
- Sarma, P.K.; Subrahmanyam, T.; Rao, V.D.; Bergles, A.E. Turbulent film boiling on a horizontal cylinder. Int. J. Heat Mass Transf. 2001, 44, 207–214. [Google Scholar] [CrossRef]
- Frederking, T.H.K.; Clark, J.A. Natural Convection Film Boiling on a Sphere; Springer: Boston, MA, USA, 1963; pp. 501–506. [Google Scholar]
- Simoneau, R.J.; Baumeister, K.J. Experimental Effects of Pressure, Subcooling, and Diameter on Thin-Wire Film Boiling of Liquid Nitrogen; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; et al. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection. Phys. Procedia 2015, 67, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Rousselet, Y.; Warrier, G.R.; Dhir, V.K. Subcooled pool film boiling heat transfer from small horizontal cylinders at near-critical pressures. Int. J. Heat Mass Transf. 2014, 72, 531–543. [Google Scholar] [CrossRef]
- Ede, A.J.; Siviour, J.B. Sub-cooled film boiling on horizontal cylinders. Int. J. Heat Mass Transf. 1975, 18, 737–742. [Google Scholar] [CrossRef]
- Son, G.; Dhir, V.K. Numerical Simulation of Saturated Film Boiling on a Horizontal Surface. J. Heat Transf. 1997, 119, 525–533. [Google Scholar] [CrossRef]
- Juric, D.; Tryggvason, G. Computations of boiling flows. Int. J. Multiph. Flow 1998, 24, 387–410. [Google Scholar] [CrossRef]
- Esmaeeli, A.; Tryggvason, G. Computations of film boiling. Part I: Numerical method. Int. J. Heat Mass Transf. 2004, 47, 5451–5461. [Google Scholar] [CrossRef]
- Esmaeeli, A.; Tryggvason, G. Computations of film boiling. Part II: Multi-mode film boiling. Int. J. Heat Mass Transf. 2004, 47, 5463–5476. [Google Scholar] [CrossRef]
- Son, G.; Dhir, V.K. Numerical simulation of film boiling near critical pressures with a level set method. J. Heat Transfer 1998, 120, 183–192. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Jin, Y.; Li, Y. Development of thermal stratification in a rotating cryogenic liquid hydrogen tank. Int. J. Hydrog. Energy 2015, 40, 15067–15077. [Google Scholar] [CrossRef]
- Shao, X.; Pu, L.; Li, Q.; Li, Y. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions. Int. J. Hydrog. Energy 2018, 43, 5249–5260. [Google Scholar] [CrossRef]
- Qian, J.-Y.; Li, X.-J.; Gao, Z.-X.; Jin, Z.-J. A numerical study of unintended hydrogen release in a hydrogen refueling station. Int. J. Hydrog. Energy 2020, 45, 20142–20152. [Google Scholar] [CrossRef]
- Arevalo-Ramirez, R.; Antúnez, D.; Rebollo, L.; Abánades, A. Estimation of radiation coupling factors in film boiling around spheres by mean of Computational Fluid Dynamics (CFD) tools. Int. J. Heat Mass Transf. 2014, 78, 84–89. [Google Scholar] [CrossRef]
- Yuan, M.H.; Yang, Y.H.; Li, T.S.; Hu, Z.H. Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method. Int. J. Heat Mass Transf. 2008, 51, 1646–1657. [Google Scholar] [CrossRef]
- Ahammad, M.; Olewski, T.; Véchot, L.N.; Mannan, S. A CFD based model to predict film boiling heat transfer of cryogenic liquids. J. Loss Prev. Process. Ind. 2016, 44, 247–254. [Google Scholar] [CrossRef]
- Saha, A.; Das, A.K. Numerical study of boiling around wires and influence of active or passive neighbours on vapour film dy-namics. Int. J. Heat Mass Transf. 2018, 130, 440–454. [Google Scholar] [CrossRef]
- Tomar, G.; Biswas, G.; Sharma, A.; Agrawal, A. Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method. Phys. Fluids 2005, 17, 112103. [Google Scholar] [CrossRef]
- Ningegowda, B.M.; Premachandran, B. Numerical investigation of the pool film boiling of water and R134a over a horizontal surface at near-critical conditions. Numer. Heat Transf. Part A Appl. 2017, 71, 44–71. [Google Scholar] [CrossRef]
- Singh, N.K.; Premachandran, B. Numerical investigation of film boiling on a horizontal wavy wall. Int. J. Heat Mass Transf. 2020, 150, 119371. [Google Scholar] [CrossRef]
- Sadeghi, R.; Shadloo, M.S. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer. Heat Transf. Part A Appl. 2017, 71, 560–574. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, P. 3D simulations of pool boiling above smooth horizontal heated surfaces by a phase-change lattice Boltzmann method. Int. J. Heat Mass Transf. 2018, 131, 1095–1108. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Launder, B.E.; Sharma, B.I. Application of Energy Dissipation Model of Turbulence to the Calculation of Flow Near Spinning Disc. Lett. Heat Mass Transf. 1974, 1, 131–137. [Google Scholar] [CrossRef]
- Kharangate, C.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Zhu, K.; Wang, Y.; Wang, L.; Tan, H. Investigation on no-vent filling process of liquid hydrogen tank under microgravity condition. Int. J. Hydrog. Energy 2017, 42, 8264–8277. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zhou, G. Study on thermal stratification in liquid hydrogen tank under different gravity levels. Int. J. Hydrog. Energy 2018, 43, 9369–9378. [Google Scholar] [CrossRef]
- Merte, H. Incipient and Steady Boiling of Liquid Nitrogen and Liquid Hydrogen under Reduced Gravity; Technical Report No. 7, NASA CR-103047; The University of Michigan: Ann Arbor, MI, USA, 1970. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, Y.; Wang, L. Numerical Study on Pool Film Boiling of Liquid Hydrogen over Horizontal Cylinders. Energies 2022, 15, 1044. https://doi.org/10.3390/en15031044
Wang J, Li Y, Wang L. Numerical Study on Pool Film Boiling of Liquid Hydrogen over Horizontal Cylinders. Energies. 2022; 15(3):1044. https://doi.org/10.3390/en15031044
Chicago/Turabian StyleWang, Jiaojiao, Yanzhong Li, and Lei Wang. 2022. "Numerical Study on Pool Film Boiling of Liquid Hydrogen over Horizontal Cylinders" Energies 15, no. 3: 1044. https://doi.org/10.3390/en15031044
APA StyleWang, J., Li, Y., & Wang, L. (2022). Numerical Study on Pool Film Boiling of Liquid Hydrogen over Horizontal Cylinders. Energies, 15(3), 1044. https://doi.org/10.3390/en15031044