On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods
Abstract
:1. Introduction
- Physical: light energy supply, temperature, mixing intensity, light frequency within the culture;
- Chemical: pH, pO2, pCO2, N, P, other nutrients, extracellular products, chemical contaminants;
- Biological: biomass concentration and composition (presence of intracellular products, mostly lipids and pigments), presence of other biological species, physiological state, photosynthetic efficiency (PE) (from which biomass yield on light energy can be derived), cell morphology.
- Monitoring of light in phototrophic microalgal cultivations; and
- Biological variables in microalgal cultivations are almost always intracellular products (lipids, carbohydrates, proteins) that are produced mostly in the stationary phase of the cultivation. Furthermore, there is a need to monitor harmful or competing biological contaminants (algae, pathogens, herbivores) in outdoor cultivations in open photobioreactors.
2. Measurement Methods Used for On-Line Monitoring of Biological Variables
2.1. Biomass Concentration
2.2. Monitoring BC Using Direct Sensors without Complex Signal Evaluation
2.3. Monitoring Biomass Concentration Using Complex Evaluation
2.3.1. Methods Based on Optical Density Measurement
2.3.2. Methods Based on Fluorescence Measurement
2.3.3. Methods Based on Color Measurement
2.3.4. Methods Based on Reflectance Measurement
2.4. Mixed Culture Discrimination
2.5. Cell Count (Cell Number Concentration)
2.6. Cell Morphology
2.7. Culture Health Monitoring, Contamination
2.8. Species Identification and Classification
2.9. Photosynthetic Efficiency, Quantum Yield
2.10. Biomass Composition
2.10.1. Lipids
2.10.2. Carbohydrates
2.10.3. Pigments
2.10.4. Proteins
3. High-Throughput Methods for Monitoring of Biological Variables
4. Computer-Aided Monitoring and Software Sensors
4.1. Observers
4.2. Kalman Filters
4.3. Machine Learning, Artificial Neural Networks
4.4. Chemometric Models
5. Perspectives and Outlook for On-Line Sensing in Microalgal Cultivations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | artificial neural networks |
ATR | attenuated total reflection (infrared spectroscopy) |
BC | biomass concentration |
BODIPY | boron-dipyrromethene, a fluorescent dye |
CARS-MLR | competitive adaptive reweighted sampling MLR |
CC | cell count |
CCD | charge coupled device |
CLD | chord length description |
DWC | dry weight concentration (of biomass) |
EC | extinction coefficient |
EEM | excitation-emission matrix |
EKF | extended Kalman filter |
EX | extinction coefficient |
FAME | fatty acid methylester |
FBRM | focused beam reflectance measurement probe |
FID | flame ionization detector |
FTIR | Fourier transform infrared-spectroscopy |
GA-ANN | genetic algorithm - artificial neural networks |
GC | gas chromatography |
HR | hyperspectral reflectance |
IR | infrared |
ISM | In-Situ Microscope |
LED | light emitting diode |
LW-PLS | locally weighted PLS |
MCR-ALS | multivariate curve resolution - alternating least squares |
MLR | multiple linear regression |
MPC | model predictive control |
MS | mass spectrometry |
NIR | near infrared radiation |
NIRS | NIR spectroscopy |
NMR | nuclear magnetic resonance |
N-PLS | multilinear PLS |
NPQ | non-photochemical quenching |
NTU | nephelometric turbidity unit |
OD | optical density |
OPLS | orthogonal partial least squares |
PAH | polycyclic aromatic hydrocarbons |
PAM | pulse amplitude modulation, a fluorescence technique |
PAR | photosynthetically active radiation |
PBR | photobioreactor |
PCA | principal component analysis |
PCR | principal components regression |
PDMS | polydimethylsiloxane |
PE | photosynthetic efficiency |
PF | particle filter |
PLS | partial least squares (regression) |
PQY | photosynthetic quantum yield |
r | Pearson correlation coefficient |
R2 | coefficient of determination in a regression |
RF | random forest (regression) |
RGB | red-green-blue (color description model) |
SPA-PLS | successive projections algorithm PLS |
SVR | support vector regression |
T | transmittance |
TAG | triacylglycerides |
TLC | thin layer cultivation |
UKF | unscented Kalman filter |
ULRA | univariate linear regression analysis |
UV | ultraviolet |
UVE-PLS | uninformative variable elimination PLS |
VIS | visual (range of radiation) |
WATERGATE | WATER suppression by GrAdient Tailored Excitation, an NMR technique |
ΔF′/Fm′ | effective quantum yield (in PAM fluorometry) |
ε | permittivity |
ρ | Pearson correlation coefficient |
References
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel production from microalgae: A review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- De Souza, M.F.; Rodrigues, M.A.; Bon, E.; Freitas, S. Interference of starch accumulation in microalgal cell growth measurement. Environ. Biol. Fishes 2018, 31, 249–254. [Google Scholar] [CrossRef]
- Kumar, B.R.; Deviram, G.; Mathimani, T.; Duc, P.A.; Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019, 17, 583–588. [Google Scholar] [CrossRef]
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar] [CrossRef]
- Dagge, L.; Harr, K.; Paul, M.; Schnedl, G. Classification of process analysis: Offline, atline, online, inline. Cement Int. 2009, 7, 72–81. [Google Scholar]
- Forno, G.; Ortí, E. Quality Control and Regulatory Aspects for Continuous Biomanufacturing. In Continuous Biomanufacturing—Innovative Technologies and Methods; Wiley-VCH: Weinheim, Germany, 2018; pp. 511–532. [Google Scholar]
- Lanciki, A. Diagram Showing Differences between Offline, Atline, Online, and Inline Analyses. Available online: https://metrohm.blog/on-in-at-offline/ (accessed on 17 November 2021).
- Scheper, T.; Reardon, K.F. Sensors in Biotechnology. In Sensors: A Comprehensive Survey; Goepel, W., Hesse, J., Zemel, J.N., Eds.; VCH Verlagsgesellschaft: Weinheim, Germany, 1992; pp. 1023–1046. [Google Scholar]
- Posten, C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 2009, 9, 165–177. [Google Scholar] [CrossRef]
- Havlik, I.; Scheper, T.; Reardon, K.F. Monitoring of Microalgal Processes. In Microalgae Biotechnology; Posten, C., Chen, S.F., Eds.; Advances in Biochemical Engineering-Biotechnology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 153, pp. 89–142. [Google Scholar]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Podevin, M.P.A.; Fotidis, I.A.; Angelidaki, I. Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Crit. Rev. Biotechnol. 2017, 38, 704–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-Y.; Zeng, L.-H.; Ren, Z.-H. Recent application of spectroscopy for the detection of microalgae life information: A review. Appl. Spectrosc. Rev. 2019, 55, 26–59. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Zeng, L.-H.; Ren, Z.-H. The application of spectroscopy technology in the monitoring of microalgae cells concentration. Appl. Spectrosc. Rev. 2021, 56, 171–192. [Google Scholar] [CrossRef]
- Sarrafzadeh, M.H.; La, H.-J.; Seo, S.-H.; Asgharnejad, H.; Oh, H.-M. Evaluation of various techniques for microalgal biomass quantification. J. Biotechnol. 2015, 216, 90–97. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Rittmann, B.E. Low-cost optical sensor to automatically monitor and control biomass concentration in microalgal cultivation. Algal Res. 2018, 32, 101–106. [Google Scholar] [CrossRef]
- Flores, G.; Rodriguez-Mata, A.E.; Amabilis-Sosa, L.E.; Gonzalez-Huitron, V.A.; Hernández-González, O.; Lopéz-Peréz, P.A. A turbidity sensor development based on NL-PI observers: Experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation. Open Chem. 2020, 18, 1349–1361. [Google Scholar] [CrossRef]
- Thoré, E.S.J.; Schoeters, F.; Spit, J.; Van Miert, S. Real-Time Monitoring of Microalgal Biomass in Pilot-Scale Photobioreactors Using Nephelometry. Processes 2021, 9, 1530. [Google Scholar] [CrossRef]
- Barbosa, R.C.; Soares, J.; Martins, M.A. Low-cost and versatile sensor based on multi-wavelengths for real-time estimation of microalgal biomass concentration in open and closed cultivation systems. Comput. Electron. Agric. 2020, 176, 105641. [Google Scholar] [CrossRef]
- Jia, F.; Kacira, M.; Ogden, K.L. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae. Sensors 2015, 15, 22234–22248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.L.; Hansen, B.W. Evaluation of the robustness of optical density as a tool for estimation of biomass in microalgal cultivation: The effects of growth conditions and physiological state. Aquac. Res. 2019, 50, 2698–2706. [Google Scholar] [CrossRef]
- Reichardt, T.A.; Maes, D.; Jensen, T.J.; Dempster, T.A.; McGowen, J.A.; Poorey, K.; Curtis, D.J.; Lane, T.W.; Timlin, J.A. Spectroradiometric detection of competitor diatoms and the grazer Poteriochromonas in algal cultures. Algal Res. 2020, 51, 102020. [Google Scholar] [CrossRef]
- Lopez-Exposito, P.; Suarez, A.B.; Negro, C. Estimation of Chlamydomonas reinhardtii biomass concentration from chord length distribution data. Environ. Biol. Fishes 2016, 28, 2315–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expósito, P.L.; Suárez, A.B.; Álvarez, C.N. Laser reflectance measurement for the online monitoring of Chlorella sorokiniana biomass concentration. J. Biotechnol. 2017, 243, 10–15. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Apple, M.E.; Miao, J.; Wyss, G.; Spangler, L. Quantification of cell concentration in biofuel-important microalgae using hyperspectral reflectance and hyperspectral extinction coefficient. Int. J. Remote Sens. 2019, 40, 8764–8792. [Google Scholar] [CrossRef]
- Benavides, M.; Mailier, J.; Hantson, A.-L.; Muñoz, G.; Vargas, A.; Van Impe, J.; Wouwer, A.V. Design and Test of a Low-Cost RGB Sensor for Online Measurement of Microalgae Concentration within a Photo-Bioreactor. Sensors 2015, 15, 4766–4780. [Google Scholar] [CrossRef] [PubMed]
- Sarrafzadeh, M.H.; La, H.-J.; Lee, J.-Y.; Cho, D.-H.; Shin, S.-Y.; Kim, W.-J.; Oh, H.-M. Microalgae biomass quantification by digital image processing and RGB color analysis. Environ. Biol. Fishes 2015, 27, 205–209. [Google Scholar] [CrossRef]
- Murphy, T.E.; Macon, K.; Berberoglu, H. Multispectral image analysis for algal biomass quantification. Biotechnol. Prog. 2013, 29, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.E.; Macon, K.; Berberoglu, H. Rapid algal culture diagnostics for open ponds using multispectral image analysis. Biotechnol. Prog. 2014, 30, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Salmi, P.; Eskelinen, M.; Leppänen, M.; Pölönen, I. Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices. Plants 2021, 10, 341. [Google Scholar] [CrossRef]
- Li, X.; Chen, K.; He, Y. In situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging technique. Algal Res. 2020, 45, 101680. [Google Scholar] [CrossRef]
- Shao, Y.; Pan, J.; Zhang, C.; Jiang, L.; He, Y. Detection in situ of carotenoid in microalgae by transmission spectroscopy. Comput. Electron. Agric. 2015, 112, 121–127. [Google Scholar] [CrossRef]
- Marbà-Ardébol, A.M.; Emmerich, J.; Muthig, M.; Neubauer, P.; Junne, S. In Situ Microscopy for Real-time Determination of Single-cell Morphology in Bioprocesses. J. Vis. Exp. 2019, e57823. [Google Scholar] [CrossRef]
- Marbà-Ardébol, A.-M.; Emmerich, J.; Neubauer, P.; Junne, S. Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional holographic and in situ microscopy. Process. Biochem. 2017, 52, 223–232. [Google Scholar] [CrossRef]
- Karakach, T.K.; McGinn, P.J.; Choi, J.; MacQuarrie, S.P.; Tartakovsky, B. Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry. Environ. Biol. Fishes 2014, 27, 1823–1832. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Barnett, J.Z.; Song, E.; Gutierrez-Wing, M.T.; Rusch, K.; Choi, J.-W. A portable fluorescent sensor for on-site detection of microalgae. Microelectron. Eng. 2015, 144, 6–11. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Barnett, J.Z.; Gutierrez-Wing, M.T.; Rusch, K.A.; Choi, J.-W. A portable fluorescent sensing system using multiple LEDs. In Microfluidics, Biomems, and Medical Microsystems XV; Gray, B.L., Becker, H., Eds.; SPIE-Int Soc Optical Engineering: Bellingham, WA, USA, 2017; Volume 10061. [Google Scholar]
- Shin, Y.-H.; Barnett, J.Z.; Gutierrez-Wing, M.; Rusch, K.A.; Choi, J.-W. A hand-held fluorescent sensor platform for selectively estimating green algae and cyanobacteria biomass. Sens. Actuators B Chem. 2018, 262, 938–946. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Zeng, L.-H.; Ren, Z.-H.; Du, T.-M.; Liu, X. Rapid in situ measurements of algal cell concentrations using an artificial neural network and single-excitation fluorescence spectrometry. Algal Res. 2020, 45, 101739. [Google Scholar] [CrossRef]
- Sá, M.; Monte, J.; Brazinha, C.; Galinha, C.F.; Crespo, J.G. 2D Fluorescence spectroscopy for monitoring Dunaliella salina concentration and integrity during membrane harvesting. Algal Res. 2017, 24, 325–332. [Google Scholar] [CrossRef]
- Sá, M.; Monte, J.; Brazinha, C.; Galinha, C.F.; Crespo, J.G. Fluorescence coupled with chemometrics for simultaneous monitoring of cell concentration, cell viability and medium nitrate during production of carotenoid-rich Dunaliella salina. Algal Res. 2019, 44, 101720. [Google Scholar] [CrossRef]
- Solovchenko, A.; Pogosyan, S.; Chivkunova, O.; Selyakh, I.; Semenova, L.; Voronova, E.; Scherbakov, P.; Konyukhov, I.; Chekanov, K.; Kirpichnikov, M.; et al. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res. 2014, 6, 234–241. [Google Scholar] [CrossRef]
- Masojídek, J.; Kopecký, J.; Giannelli, L.; Torzillo, G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J. Ind. Microbiol. Biotechnol. 2011, 38, 307–317. [Google Scholar] [CrossRef]
- Jerez, C.G.; Malapascua, J.R.; Sergejevová, M.; Masojídek, J.; Figueroa, F.D.L. Chlorella fusca (Chlorophyta) grown in thin-layer cascades: Estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Res. 2016, 17, 21–30. [Google Scholar] [CrossRef]
- Malapascua, J.; Jerez, C.; Sergejevová, M.; Figueroa, F.D.L.; Masojídek, J. Photosynthesis monitoring to optimize growth of microalgal mass cultures: Application of chlorophyll fluorescence techniques. Aquat. Biol. 2014, 22, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, M.; Zittelli, G.C.; Cicchi, B.; Touloupakis, E.; Faraloni, C.; Maia, I.B.; Pereira, H.; Santos, T.; Malcata, F.X.; Otero, A.; et al. In situ monitoring of chlorophyll a fluorescence in Nannochloropsis oceanica cultures to assess photochemical changes and the onset of lipid accumulation during nitrogen deprivation. Biotechnol. Bioeng. 2021, 118, 4375–4388. [Google Scholar] [CrossRef]
- Deore, P.; Karthikaichamy, A.; Beardall, J.; Noronha, S. Non-photochemical quenching, a non-invasive probe for monitoring microalgal grazing: An early indicator of predation by Oxyrrhis marina and Euplotes sp. Appl. Phycol. 2020, 1, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Sá, M.; Bertinetto, C.G.; Ferrer-Ledo, N.; Jansen, J.J.; Wijffels, R.; Crespo, J.G.; Barbosa, M.; Galinha, C.F. Fluorescence spectroscopy and chemometrics for simultaneous monitoring of cell concentration, chlorophyll and fatty acids in Nannochloropsis oceanica. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sa, M.; Ferrer-Ledo, N.; Wijffels, R.; Crespo, J.; Barbosa, M.; Galinha, C.F. Monitoring of eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica. Algal Res. 2020, 45, 101766. [Google Scholar] [CrossRef]
- Sá, M.; Ramos, A.; Monte, J.; Brazinha, C.; Galinha, C.F.; Crespo, J.G. Development of a monitoring tool based on fluorescence and climatic data for pigments profile estimation in Dunaliella salina. Environ. Biol. Fishes 2020, 32, 363–373. [Google Scholar] [CrossRef]
- Davey, P.T.; Hiscox, W.C.; Lucker, B.F.; O’Fallon, J.V.; Chen, S.; Helms, G.L. Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1H NMR. Algal Res. 2012, 1, 166–175. [Google Scholar] [CrossRef]
- Wang, T.; Liu, T.; Wang, Z.; Tian, X.; Yang, Y.; Guo, M.; Chu, J.; Zhuang, Y. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance. J. Microbiol. Methods 2016, 124, 13–20. [Google Scholar] [CrossRef]
- Bouillaud, D.; Heredia, V.; Castaing-Cordier, T.; Drouin, D.; Charrier, B.; Gonçalves, O.; Farjon, J.; Giraudeau, P. Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Res. 2019, 43. [Google Scholar] [CrossRef]
- Martínez-Bisbal, M.C.; Mestre, N.C.; Martínez-Máñez, R.; Bauzá, J.; Fillol, M.A. Microalgae degradation follow up by voltammetric electronic tongue, impedance spectroscopy and NMR spectroscopy. Sens. Actuators B Chem. 2019, 281, 44–52. [Google Scholar] [CrossRef]
- Bouillaud, D.; Drouin, D.; Charrier, B.; Jacquemmoz, C.; Farjon, J.; Giraudeau, P.; Gonçalves, O. Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process. Biochem. 2020, 93, 63–68. [Google Scholar] [CrossRef]
- Kiss, B.; Németh, Á. Application of a High Cell Density Capacitance Sensor to Different Microorganisms. Period. Polytech. Chem. Eng. 2016, 60, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-I.; Kim, H.S.; Han, K.-H.; Han, A. Digital quantification and selection of high-lipid-producing microalgae through a lateral dielectrophoresis-based microfluidic platform. Lab. Chip. 2019, 19, 4128–4138. [Google Scholar] [CrossRef] [PubMed]
- Perin, G.; Cimetta, E.; Monetti, F.; Morosinotto, T.; Bezzo, F. Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Res. 2016, 19, 69–76. [Google Scholar] [CrossRef]
- Sauer, J.S.; Simkovsky, R.; Moore, A.N.; Camarda, L.; Sherman, S.L.; Prather, K.A.; Pomeroy, R.S. Continuous measurements of volatile gases as detection of algae crop health. Proc. Natl. Acad. Sci. USA 2021, 118, e2106882118. [Google Scholar] [CrossRef]
- Griffiths, M.; Garcin, C.; van Hille, R.P.; Harrison, S.T. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 2011, 85, 119–123. [Google Scholar] [CrossRef]
- Chioccioli, M.; Hankamer, B.; Ross, I.L. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE 2014, 9, e97269. [Google Scholar] [CrossRef] [Green Version]
- Chirivella-Martorell, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Modelling of Biomass Concentration, Multi-Wavelength Absorption and Discrimination Method for Seven Important Marine Microalgae Species. Energies 2018, 11, 1089. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Sá, M.; (Cabanelas, I.I.T.; Wijffels, R.H.; Barbosa, M.J. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions. Biotechnol. Bioeng. 2021, 118, 1355–1365. [Google Scholar] [CrossRef]
- Höpfner, T.; Bluma, A.; Rudolph, G.; Lindner, P.; Scheper, T. A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst. Eng. 2009, 33, 247–256. [Google Scholar] [CrossRef]
- Franco, B.; Navas, L.; Gómez, C.; Sepúlveda, C.; Acién, F. Monoalgal and mixed algal cultures discrimination by using an artificial neural network. Algal Res. 2019, 38, 101419. [Google Scholar] [CrossRef]
- Reichardt, T.A.; Collins, A.M.; McBride, R.C.; Behnke, C.A.; Timlin, J.A. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria. Appl. Opt. 2014, 53, F31–F45. [Google Scholar] [CrossRef] [PubMed]
- Deore, P.; Beardall, J.; Palacios, Y.M.; Noronha, S.; Heraud, P. FTIR combined with chemometric tools—A potential approach for early screening of grazers in microalgal cultures. Environ. Biol. Fishes 2021, 33, 2709–2722. [Google Scholar] [CrossRef]
- He, S.; Xu, Z.; Jiang, Y.; Ji, J.; Forsberg, E.; Li, Y. Classification, identification and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning. Opt. Exp. 2020, 28, 30686–30700. [Google Scholar] [CrossRef]
- Deglint, J.L.; Jin, C.; Wong, A. Investigating the Automatic Classification of Algae Using the Spectral and Morphological Characteristics via Deep Residual Learning. In Image Analysis and Recognition; Karray, F., Campilho, A., Yu, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing Ag: Cham, Switzerland, 2019; Volume 11663, pp. 269–280. [Google Scholar]
- Malapascua, J.; Ranglová, K.; Masojídek, J. Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor. Photosynthetica 2019, 57, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.J.; Jung, D.H.; Kim, J.H.; Lee, J.M. A comparative study of soft sensor design for lipid estimation of microalgal photobioreactor system with experimental validation. Bioresour. Technol. 2015, 179, 275–283. [Google Scholar] [CrossRef]
- Yoo, S.J.; Jeong, D.H.; Kim, J.H.; Lee, J.M. Optimization of microalgal photobioreactor system using model predictive control with experimental validation. Bioprocess Biosyst. Eng. 2016, 39, 1235–1246. [Google Scholar] [CrossRef]
- Mairet, F.; Moisan, M.; Bernard, O. Interval observer with near optimal adaptation dynamics. Application to the estimation of lipid quota in microalgae. Int. J. Robust Nonlinear Control. 2014, 24, 1142–1157. [Google Scholar] [CrossRef]
- Mairet, F.; Moisan, M.; Bernard, O. Estimation of neutral lipid and carbohydrate quotas in microalgae using adaptive interval observers. Bioprocess Biosyst. Eng. 2014, 37, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, C.; Song, L.; Sommerfeld, M.; Hu, Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 2009, 77, 41–47. [Google Scholar] [CrossRef]
- Doan, T.-T.Y.; Obbard, J.P. Improved Nile Red staining of Nannochloropsis sp. Environ. Biol. Fishes 2010, 23, 895–901. [Google Scholar] [CrossRef]
- Satpati, G.G.; Mallick, S.K.; Pal, R. An alternative high-throughput staining method for detection of neutral lipids in green microalgae for biodiesel applications. Biotechnol. Bioprocess Eng. 2015, 20, 1044–1055. [Google Scholar] [CrossRef]
- Satpati, G.G.; Pal, R. Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Ann. Microbiol. 2015, 65, 937–949. [Google Scholar] [CrossRef]
- Palmer, J.S.; Lawton, L.A.; Kindt, R.; Edwards, C. Rapid analytical methods for the microalgal and cyanobacterial biorefinery: Application on strains of industrial importance. Microbiology 2021, 10, e1156. [Google Scholar] [CrossRef] [PubMed]
- Noll, P.; Henkel, M. History and Evolution of Modeling in Biotechnology: Modeling & Simulation, Application and Hardware Performance. Comput. Struct. Biotechnol. J. 2020, 18, 3309–3323. [Google Scholar] [CrossRef]
- Faassen, S.M.; Hitzmann, B. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring. Sensors 2015, 15, 10271–10291. [Google Scholar] [CrossRef] [Green Version]
- Leardi, R. Chapter 17—Chemometric Methods in Food Authentication. In Modern Techniques for Food Authentication, 2nd ed.; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 687–729. [Google Scholar]
- Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B.A.; Del Rio-Chanona, E.A.; Zhang, D. Machine learning for biochemical engineering: A review. Biochem. Eng. J. 2021, 172, 108054. [Google Scholar] [CrossRef]
- Benavides, M.; Coutinho, D.; Hantson, A.-L.; Van Impe, J.; Wouwer, A.V. Robust Luenberger observers for microalgal cultures. J. Process. Control. 2015, 36, 55–63. [Google Scholar] [CrossRef]
- García-Mañas, F.; Guzmán, J.; Berenguel, M.; Acién, F. Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production. Algal Res. 2019, 37, 103–114. [Google Scholar] [CrossRef]
- Daboussy, M.; Titica, M.; Boillereaux, L. Parameter identification and state estimation of a microalgae dynamical model in sulphur deprived conditions: Global sensitivity analysis, optimization criterion, extended Kalman filter. Can. J. Chem. Eng. 2014, 92, 1378–1395. [Google Scholar] [CrossRef]
- Ferro, L.; Gojkovic, Z.; Gorzsás, A.; Funk, C. Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR-FTIR Spectroscopy. Molecules 2019, 24, 3237. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.J.; Kim, J.H.; Lee, J.M. Dynamic modelling of mixotrophic microalgal photobioreactor systems with time-varying yield coefficient for the lipid consumption. Bioresour. Technol. 2014, 162, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Acién, F.; Guzmán, J.; Berenguel, M.; Mendoza, J. Dynamic model of an industrial raceway reactor for microalgae production. Algal Res. 2016, 17, 67–78. [Google Scholar] [CrossRef]
- Havlik, I.; Reardon, K.F.; Ünal, M.; Lindner, P.; Prediger, A.; Babitzky, A.; Beutel, S.; Scheper, T. Monitoring of microalgal cultivations with on-line, flow-through microscopy. Algal Res. 2013, 2, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Ozdalgic, B.; Ustun, M.; Dabbagh, S.R.; Haznedaroglu, B.Z.; Kiraz, A.; Tasoglu, S. Microfluidics for microalgal biotechnology. Biotechnol. Bioeng. 2021, 118, 1716–1734. [Google Scholar] [CrossRef] [PubMed]
Monitoring Method | Monitored Variable (Concentration) | On-Line/Off-Line | Sensor Type | Comment | References |
---|---|---|---|---|---|
OD, turbidity (single wavelength) | Biomass | On | Self-constructed 560 nm Amphenol TSD-10 730 nm Commercial 880 nm | Flow-through cell | (1) [15,16,17,18] |
OD (multiple wavelength) | Biomass Growth phase Chlorophyll | On Off | (1) OD self-constructed LED 400, 750, 850 nm Laser 650, 685, 780 nm (2) 550, 665, 750 nm | (1) Flow-through cell | (1) [19,20] (2) [21] |
Reflectance | Contamination Biomass Cell count | On Off | (1) Spectrometer (2) (a) Reflectance probe (2) (b) Spectroradiometer | Contamination on-line | (1) [22] (2) (a) [23,24] (2) (b) [25] |
Color analysis (RGB) | Biomass | On Off | (1) Commercial color sensor (2) CCD camera, Webcam | (1) Flow-through cell | (1) [26] (2) [15,27,28,29] |
Hyperspectral (Absorbance/transmittance spectrum) | Biomass Cell count Lipids Carotenoids | Off | (2) (a, c) Spectral camera (2) (b) Spectroradiometer (2) (d) Spectrometer | (2) (a) [30] (2) (b) [25] (2) (c) [31] (2) (d)[32] | |
ISM | Cell morphology Lipids | On Off | (1) In-Situ Microscope (2) In-Situ Microscope, holographic microscope | (1) [33] (2) [34] | |
Chlorophyll fluorometry | Protein Biomass Contamination | On Off | (1) LEDs/Photodiode (2) (a) Fluorometer (2) (b) 2D-Fluorometer | Single/multiple excitation ANN Chemometric model | (1) [35] (2) [36,37,38] (2) (a) [39] (2) (b) [40,41] |
PAM fluorometry | Quantum yield (Photosynthetic efficiency) Contamination | On Off | PAM fluorometer | Stress detection (1) Light adapted except [42] (2) Dark adapted | (1) [42,43,44,45,46] (2) [47] |
2D-fluorometry | Biomass Nitrate Cell count Cell viability Fatty acids Lipids Pigments | Off | 2D fluorometer with a cuvette or with a fiber optics probe | Chemometric models | (2) [40,41,48,49,50] |
NMR | Lipids | On | Benchtop NMR in a bypass | Expensive instruments | (1) [51,52,53,54,55] |
Dielectric spectroscopy, dielectrophoresis, capacitance, impedance, permittivity | Viable cell concentration Lipids | On | (1) Commercial probe (2) Microfluidic device | (1) [15,56] (2) [57] | |
Microfluidic implementation | Lipids | On Off | (2) (a) PAM fluorometer (2) (b) Permittivity | (2) (a) [58] (2) (b) [57] | |
Mass spectrometry | Contamination | On | TOF mass spectrometer | Grazer detection Expensive instruments | (1) [59] |
Biological Variable | Measurement Method | Method Accuracy | Limitations/Conditions | Reference |
---|---|---|---|---|
Biomass | OD, turbidity | OD/DWC: R2 = 0.81–0.96 [19] | PBR bypass | [19] [16] [18] [20] |
Vout/OD: R2 = 0.95 [16] | ||||
NTU/DWC: R2 = 0.88–0.93 [18] | ||||
OD/DWC: R2 = 0.88–0.92 [18] | ||||
OD/DWC: R2 = 0.99 [20] | ||||
Biomass | Color analysis (RGB) | OD/DWC: R2 = 0.998 [26] | PBR bypass [26] | [26] [28] [29] |
(r,g,b)/DWC: R2 = 0.97–0.99 [28] | Open container/biofilm, suspension [28] | |||
(r,b)/DWC: R2 = 0.90–0.96 [29] | Open container/suspension [29] | |||
Biomass | Transmittance spectrum | DWC/T751/T676: r = 0.51–0.93 [30] | Microwells | [30] |
Biomass | Chlorophyll fluorometry | DWC/Chl a fluorescence: r = 0.95 [35] | Fiber probe in PBR bypass | [35] [39] |
Cell count | Transmittance spectrum Hyperspectral reflectance, EC Permittivity Chlorophyll fluorometry | CC/T751/T676: r = 0.85–0.96 [30] | Microwells [30] | [30] [25] [56] [35] |
CC/HR,EC: R2 = 0.99 [25] | Open container [25] | |||
CC/OD560: R2 = 0.992–0.999 [56] | Flask bypass [56] | |||
CC/Chl a fluorescence: r = 0.92 [35] | Fiber probe in PBR bypass [35] | |||
Viable cell count | Permittivity (ε) | OD560/Δε: R2 = 0.99 (calibration) | Commercial probe | [56] |
OD560/Δε: R2 = 0.77 (cultivation) | ||||
Lipids | NMR Quantum yield (ΔF′/Fm′) NIR spectrum | Algal lipids/NMR signal: R2 > 0.99 [55] | PBR bypass [55] | [55] [52] [46] [31] |
Algal lipids/NMR signal: R2 = 0.99 [52] | Bleed [52] | |||
Lipids as %DW/QY(ΔF′/Fm′): r = −0.96 [46] | In-situ fiber [46] | |||
Lipids predicted/observed: R2 = 0.94 [31] | Sampling [31] | |||
Fatty acids | ISM/Image recognition | DHA/cell diameter: R2 = 0.98 (calibration) | PBR in-situ probe | [34] |
Protein | Chlorophyll fluorometry | Protein/Chl a fluorescence: r = 0.92 | Fiber probe in PBR bypass | [35] |
Carotenoids (C) | VIS/NIR spectrum | Predicted/observed C: r = 0.96 | Fiber in sample | [32] |
Variables Monitored by the Software Sensor | Input Variables (On-Line When Not Otherwise Stated) | Software Sensor Type | References |
---|---|---|---|
Lipids Carbohydrates | Particle counter Nitrate (assumed measured on-line) | Adaptive interval observer | [73,74] |
1. Extracellular nitrate, intracellular nitrate quota 2. Intracellular nitrate quota | 1. OD (biomass) 2. OD (biomass), extracellular nitrate | Luenberger observer | [84] |
Biomass Glucose | Turbidity | Robust nonlinear observer | [17] |
Biomass Sulfur | Outlet gas (O2, CO2) by MS | EKF | [86] |
Lipids | Turbidity Glucose (off-line) | EKF, UKF, PF | [71,72] |
Biomass | pO2 pH, air flow CO2 flow solar radiation | EKF | [85] |
Cell count | Fluorescence spectrum (off-line) | ANN | [39] |
Contamination | Multispectral absorption (off-line) | ANN | [65] |
Biomass | Reflectance (off-line) | ANN | [23] |
Biomass | Reflectance (off-line) | SVR, RF regression | [24] |
Protein, lipids, carbohydrates | IR spectrum (ATR-FTIR) off-line | Chemometrics | [87] |
Cell count Cell viability Nitrate concentration Chlorophyll a, b concentration Carotenoids Total fatty acids EPA | 2D fluorometry (EEM) (off-line, adaptable to on-line) | Chemometrics | [40,41,48,49,50] |
Biomass (X) Fucoxanthin (Fx) | 2D fluorometry (EEM) | Chemometrics | [63] |
Carotenoids | Transmission spectrum | Chemometrics | [32] |
Biological Variable | SW Sensor Type | Method Accuracy | Limitations/Conditions | Reference |
---|---|---|---|---|
Lipids Carbohydrates | Adaptive interval observer | Graphic comparison 35 days Graphic comparison 35 days | Tested with experimental data, adaptable to on-line | [74] [73] |
Extracellular nitrate, intracellular nitrate quota Intracellular nitrate quota | Luenberger observer | Graphic comparison 4–6 days | Tested with experimental data, adaptable to on-line | [84] |
Biomass Glucose | Robust nonlinear observer | Graphic comparison 18 days | On-line implementation | [17] |
Biomass Sulfur | EKF | Graphic comparison 8–10 days | On-line implementation | [86] |
Lipids | EKF, UKF, PF | Graphic comparison 300 h Graphic comparison 300 h | On-line implementation | [72] [71] |
Biomass | EKF | Graphic comparison within 1 day | On-line implementation | [85] |
Cell count | ANN | Graphic comparison 10 days | Adaptable to on-line | [39] |
Contamination | ANN | Identification of 4 pure species Accuracy > 98.7% | Measured in samples | [65] |
Biomass (X) | ANN | Predicted/observed X: R2 = 0.92 | Measured in samples | [23] |
Biomass (X) | SV regression RF regression | Predicted/observed X: R2 = 0.87 Predicted/observed X: R2 = 0.81 | Measured in samples | [24] |
Protein (P) Lipids (L) Carbohydrates(C) Ratio carbohydrates/proteins | Chemometric models | Predicted/observed P: R2 = 0.88/0.92/0.85 Predicted/observed L: R2 = 0.82/0.90/0.77 Predicted/observed C: R2 = 0.65/0.77/0.63 Predicted/observed C/P: R2 = 0.84 | Freeze-dried samples | [87] |
Cell count (CC) Cell viability (CV) Nitrate concentration (N) Chlorophyll a, b concn. (Chl) Carotenoids (C) Total fatty acids (TFA) EPA fraction in TAG | Chemometric models | Predicted/observed CC: R2 = 0.66–0.97 Predicted/observed CV: R2 = 0.69 Predicted/observed N: R2 = 0.80 Predicted/observed Chl: R2 = 0.75–0.85 Predicted/observed C: R2 = 0.72–0.89 Predicted/observed TFA: R2 = 0.78 Predicted/observed EPA: R2 = 0.87 | Adaptable to on-line | CC, CV: [40] CC, CV, N: [41] CC, Chl, TFA: [48] EPA: [49] Chl, C: [50] |
Biomass (X) Fucoxanthin (Fx) | Chemometric model | Validation X: R2 = 0.93–0.96 Validation Fx: R2 = 0.63–0.77 | Measured in samples | [63] |
Carotenoids (C) | Chemometric model | Predicted/observed C: r = 0.96 | Measured in samples | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havlik, I.; Beutel, S.; Scheper, T.; Reardon, K.F. On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods. Energies 2022, 15, 875. https://doi.org/10.3390/en15030875
Havlik I, Beutel S, Scheper T, Reardon KF. On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods. Energies. 2022; 15(3):875. https://doi.org/10.3390/en15030875
Chicago/Turabian StyleHavlik, Ivo, Sascha Beutel, Thomas Scheper, and Kenneth F. Reardon. 2022. "On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods" Energies 15, no. 3: 875. https://doi.org/10.3390/en15030875
APA StyleHavlik, I., Beutel, S., Scheper, T., & Reardon, K. F. (2022). On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods. Energies, 15(3), 875. https://doi.org/10.3390/en15030875