Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission
Abstract
:1. Introduction
2. Materials
2.1. Straw Biomass
2.2. Additives—Halloysite and Kaolinite
3. Methods
3.1. Biomass Samples Preprocessing
- Pure straw biomass (denoted as S-UPS);
- Straw biomass with addition of 2 and 4 wt.% raw halloysite (HalRaw2 and HalRaw4);
- Straw biomass with addition of 2 and 4 wt.% dried halloysite (HalDry2 and HalDry4);
- Straw biomass with addition of 2 and 4 wt.% calcined halloysite (HalCalc2 and HalCalc4);
- Straw biomass with addition of 2 and 4 wt.% kaolinite (Kao2 and Kao4).
- -
- Heating the furnace with the samples from 25 °C up to a final temperature of 550 °C for 90 min with a constant supply of air (drying and degassing stage);
- -
- Incineration at 550 °C with a constant air supply and periodic mixing of the sample for approx. 3 h (residue combustion stage).
3.2. High-Pressure Adsorption Stand
3.3. Adsorption Experimental Procedure
3.4. CO2 Adsorption Isotherms
3.5. Ash Structural Analysis
4. Results and Discussion
4.1. Results of Microstructure, Porosimetry and Specific Surface Area Investigations
4.2. Comparison of Results with Literature Data Technical and Economic Aspects of CO2 Adsorption on the Straw Ashes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations:
- S-UPS is ash resulting from burning straw without additives;
- HalRaw2 is ash resulting from burning straw with the addition of 2 wt.% raw halloysite;
- HalRaw4 is ash resulting from burning straw with the addition of 4 wt.% raw halloysite;
- HalCalc2 is ash resulting from burning straw with the addition of 2 wt.% calcined halloysite;
- HalCalc4 is ash resulting from burning straw with the addition of 4 wt.% calcined halloysite;
- HalDry2 is ash resulting from burning straw with the addition of 2 wt.% dried halloysite;
- HalDry4 is ash resulting from burning straw with the addition of 4 wt.% dried halloysite;
- Kao2 is ash resulting from burning straw with the addition of 2 wt.% kaolinite;
- Kao4 is ash resulting from burning straw with the addition of 4 wt.% kaolinite.
- KF is the Freundlich isotherm constant (mmol⋅barn/g);
- N is the parameter of the Freundlich isotherm model (adsorption intensity) [-];
- qL is the theoretical maximum monolayer capacity (mmol/g);
- KL is the Langmuir isotherm constant (adsorption equilibrium constant) [1/bar];
- QJ is the theoretical maximum monolayer capacity (mmol/g);
- KJ is the Jovanović isotherm constant (1/bar);
- BT is the energy of adsorption (kJ g/(kg kmol));
- KT is the Temkin isotherm constant (1/bar);
- qH is the theoretical maximum monolayer capacity (mmol/g);
- KH is the Hill isotherm constant (barn);
- nH is the parameter of the Hill isotherm model (Hill cooperativity coefficient of the binding interaction) (-);
- R2 is the coefficient of determination (-);
- Mean R2 is the arithmetic mean of R2 values for a given adsorption isotherm model (considering all cases no. 1–9), Table 2.
References
- Udara Willhelm Abeydeera, L.H.; Wadu Mesthrige, J.; Samarasinghalage, T.I. Samarasinghalage, global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef] [Green Version]
- Bahari, N.A.S.; Alrazi, B.; Husin, N.M. A Comparative analysis of carbon reporting by electricity generating companies in China, India, and Japan. Procedia Econ. Financ. 2016, 35, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Karwot, J.; Ober, J. Safety management of water economy. case study of the water and sewerage company. Manag. Syst. Prod. Eng. 2019, 27, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Deng, S.; Zhao, L.; Zhao, R.; Lin., M.; Du., Y.; Lian, Y. Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study. Appl. Energy 2018, 221, 437–449. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Basha, M.; Qasem, N. Multicomponent and multi-dimensional modeling and simulation of adsorption-based carbon dioxide separation. Comput. Chem. Eng. 2017, 99, 255–270. [Google Scholar] [CrossRef]
- Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 2013, 104, 418–433. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.; Bamidele, O.; Basha, M.; Qasem, N.; Peedikakkal, A.M.P.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Zanco, S.E.; Joss, L.; Hefti, M.; Gazzani, M.; Mazzotti, M. Addressing the criticalities for the deployment of adsorption-based CO2 capture processes. Energy Procedia 2017, 114, 2497–2505. [Google Scholar] [CrossRef]
- Sočo, E.; Kalembkiewicz, J. Comparison of adsorption of Cd(II) and Pb(II) ions on pure and chemically modified fly ashes. Chem. Process Eng. 2016, 37, 215–234. [Google Scholar] [CrossRef]
- Yao, Z.; Ji, X.; Sarker, P.; Tang, J.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.C.; Tran, T.D.M.; Dao, V.B.; Vu, Q.-T.; Nguyen, T.D.; Thai, H. Using modified fly ash for removal of heavy metal ions from aqueous solution. J. Chem. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Jarusiripot, C. Removal of reactive dye by adsorption over chemical pretreatment coal based bottom ash. Proced. Chem. 2014, 9, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Zwain, H.M.; Vakili, M.; Dahlan, I. Waste material adsorbents for zinc removal from wastewater: A comprehensive review. Int. J. Chem. Eng. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Application of fly ash as an adsorbent for removal of air and water pollutants. Appl. Sci. 2018, 8, 1116. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Tripathy, S.; Panigrahi, M.K.; Equeenuddin, S.M. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Appl. Water Sci. 2013, 3, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Goswami, L.; Singh, A.K.; Sikandar, M. Valorization of coal fired-fly ash for potential heavy metal removal from the single and multi-contaminated system. Heliyon 2019, 5, e02562. [Google Scholar] [CrossRef] [Green Version]
- Franus, M.; Wdowin, L.; Bandura, W. Franus, removal of environmental pollutions using zeolites from fly ash: A review. Fresenius Environ. Bull. 2015, 24, 854–866. [Google Scholar]
- Zhang, Z.; Wang, B.; Sun, Q. Fly ash-derived solid amine sorbents for CO2 capture from flue gas. Energ. Proc. 2014, 63, 2367–2373. [Google Scholar] [CrossRef] [Green Version]
- Zgureva, D. Carbon dioxide adsorption studies on fly ash zeolites. Coal Combust. Gasif. Prod. 2016, 8, 54–59. [Google Scholar] [CrossRef]
- Czuma, N.; Casanova, I.; Baran, P.; Szczurowski, J.; Zarębska, K. CO2 sorption and regeneration properties of fly ash zeolites synthesized with the use of differentiated methods. Sci. Rep. 2020, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Sakiewicz, P.; Piotrowski, K.; Kalisz, S. Neural network prediction of parameters of biomass ashes, reused within the circular economy frame. Renew. Energy 2020, 162, 743–753. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Lira-Zúñiga, S.; Rodríguez-Córdova, L.; Herrera-Zeppelin, L.; Herrera-Urbina, R.; Sáez-Navarrete, C. CO2 adsorption on agricultural biomass combustion ashes. Maderas. Cienc. Tecnol. 2016, 18, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Dogar, S.; Nayab, S.; Farooq, M.Q.; Said, A.; Kamran, R.; Duran, H.; Yameen, B. Utilization of biomass fly ash for improving quality of organic dye-contaminated water. ACS Omega 2020, 5, 15850–15864. [Google Scholar] [CrossRef]
- Arshadi, M.; Amiri, M.J.; Mousavi, S. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resour. Ind. 2014, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Keng, P.S.; Ling, L.S.; Tiong, H.S.; Tse, H.Y.; Teng, O.S. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Civ. Environ. Eng. Fac. Publ. 2014, 100, 15–25. [Google Scholar] [CrossRef]
- Deokar, S.K.; Mandavgane, S.A.; Kulkarni, B.D. Behaviour of biomass multicomponent ashes as adsorbents. Curr. Sci. 2016, 110, 1–7. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A.; Singh, N. Rice and wheat straw ashes: Characterization and modeling of pretilachlor sorption kinetics and adsorption isotherm. J. Environ. Sci. Health Part B 2019, 54, 303–312. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef] [PubMed]
- Kishore, P.; Srinivas, B.N.; Rao, K.S.; Turaka, A.K.; Prasad, N.B.L. Carbon dioxide adsorption studies of rice husk ash prepared in different atmospheres. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 16017–16025. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.-H.; Tsang, D.C.; et al. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Abang, S.; Janaun, J.; Anisuzzaman, S.M.; Ikhwan, F.S. Development of carbon dioxide adsorbent from rice husk char. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 12022. [Google Scholar] [CrossRef] [Green Version]
- Papa, E.; Medri, V.; Landi, E.B.; Ballarin, F. Miccio, production and characterization of geopolymers based on mixed composi-tions of metakaolin and coal ashes. Mater. Des. 2014, 56, 409–415. [Google Scholar] [CrossRef]
- Minelli, M.; Medri, V.; Papa, E.; Miccio, F.; Landi, E.; Doghieri, F. Geopolymers as solid adsorbent for CO2 capture. Chem. Eng. Sci. 2016, 148, 267–274. [Google Scholar] [CrossRef]
- Lutyński, M.; Sakiewicz, P.; González, M.Á.G. Halloysite as mineral adsorbent of CO2—Kinetics and adsorption capacity, Inżynieria Mineralna. J. Pol. Miner. Eng. Soc. 2014, 15, 111–117. [Google Scholar]
- Waszczuk, P.; Lutynski, M.; Gonzalez, M.A.G.; Smolinski, A.; Howaniec, N. Carbon dioxide sorption on EDTA modified halloysite. E3S Web Conf. 2016, 8, 1054. [Google Scholar] [CrossRef] [Green Version]
- Pajdak, A.; Skoczylas, N.; Szymanek, A.; Lutyński, M.; Sakiewicz, P. Sorption of CO2 and CH4 on raw and calcined halloysite—Structural and pore characterization study. Materials 2020, 13, 917. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Rubino, I.; Lee, J.-Y.; Choi, H.-J. Application of halloysite nanotubes for carbon dioxide capture. Mater. Res. Express 2016, 3, 045019. [Google Scholar] [CrossRef]
- Cai, H.; Bao, F.; Gao, J.; Chen, T.; Wang, S.; Ma, R. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes. Environ. Technol. 2015, 36, 1273–1280. [Google Scholar] [CrossRef]
- Jagodzińska, K.; Mroczek, K.; Nowińska, K.; Gołombek, K.; Kalisz, S. The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration. Energy 2019, 183, 854–868. [Google Scholar] [CrossRef]
- Sobieraj, J.; Gądek, W.; Jagodzińska, K.; Kalisz, S. Investigations of optimal additive dose for Cl-rich biomasses. Renew. Energy 2021, 163, 2008–2017. [Google Scholar] [CrossRef]
- Pronobis, M.; Kalisz, S.; Majcher, J.; Wasylów, J.; Sołtys, J. Possibilities of using biomass in heating with particular emphasis on AGRO biomass as a fuel replacing coal, taking into account economic and technical aspects. Instalation 2020, 3, 17–25. [Google Scholar] [CrossRef]
- Sakiewicz, P.; Piotrowski, K.; Boryń, D.; Kruk, M.; Mścichecka, J.; Korus, I.; Barbusiński, K. Use of the halloysite sorbent for the removal of the synthetic azo dyes Acid Red 27 and Reactive Black 5 from aqueous solutions. Przem. Chem. 2020, 99, 1142–1148. [Google Scholar] [CrossRef]
- Sakiewicz, P.; Lutynski, M.; Soltys, J.; Pytlinski, A. Purification of halloysite by magnetic separation. Physicochem. Probl. Miner. Process. 2016, 52, 991–1001. [Google Scholar] [CrossRef]
- ISO:18122:2016-01; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2016.
- ISO 18134-2:2017-03; Solid Biofuels—Determination of Moisture Content—Dryer Method—Part 2: Total moisture. ISO: Geneva, Switzerland, 2017.
- ISO 18123:2016-01; Solid Biofuels—Determination of the Volatile Matter. ISO: Geneva, Switzerland, 2016.
- ISO 18125:2017-07; Solid Biofuels—Determination of the Heating Value. ISO: Geneva, Switzerland, 2017.
- ISO 16948:2015-07; Solid Biofuels—Determination of the Total Carbon, Hydrogen and Nitrogen Content. ISO: Geneva, Switzerland, 2015.
- G-04584:2001; Solid Fuels—Determination of the Total and Ash Sulphur Content with Analyzers. ISO: Geneva, Switzerland, 2001.
- ISO 1171:2002; Solid Fuels—Ash Content Determination. ISO: Geneva, Switzerland, 2002.
- ISO 16994:2016-10; Solid Biofuels—Determination of the Total Sulphur and Chlorine Content. ISO: Geneva, Switzerland, 2016.
- ISO 16967:2015-06; Solid Biofuels—Determination of the Al, Ca, Fe, Mg, P, K, Si, Na, Ti Elements. ISO: Geneva, Switzerland, 2015.
- Ortiz-Vega, D.O.; Hall, K.R.; Holste, J.C.; Arp, V.D.; Harvey, A.H.; Lemmon, E.W. Equation of State for Helium-4. Coeff. REPROP 2019. with permission. [Google Scholar]
- Span, R.; Wagner, W.A. New equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.R.G.; Moreno-Piraján, J.C.; Gutierrez, L.G. Kinetic and equilibrium study of the adsorption of CO2 in ultramicropores of resorcinol-formaldehyde aerogels obtained in acidic and basic medium. J. Carb. Res. 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, N.A.; Yusup, S.; Borhan, A. Isotherm and thermodynamic analysis of carbon dioxide on activated carbon. Procedia Eng. 2016, 148, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. Synthesis and characterization of halloysite–cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain. Chem. Eng. 2017, 5, 3346–3352. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Zhang, B.; Zhao, Y.; Wang, J.; Zhang, H.; Liu, J. Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes. Korean J. Chem. Eng. 2011, 28, 800–807. [Google Scholar] [CrossRef]
- Ghorbanian, S.A.; Bagheri, N.; Khakpay, A. Investigation of adsorption isotherms of benzoic acid on activated carbon. In Proceedings of the 1st National Conference on Industrial Water and Wastewater Treatment, Bandar Mahshahr, Iran, 29 November 2012. [Google Scholar]
- Panahi, R.; Vasheghani-Farahani, E.; Shojosadati, S.A. Determination of adsorption isotherm for L-Lysine imprinted polymer. Iran. J. Chem. Chem. Eng. 2008, 5, 49–55. [Google Scholar]
- Bharathi, A.; Arivoli, S. Thermodynamics and isotherms analyses on the removal of methylene blue dye using activated nano-porous carbon. Int. J. Pharm. Sci. Res. 2017, 8, 3–17. [Google Scholar]
- Jaroniec, M. Adsorption of gas mixtures on homogeneous surfaces. Extension of Jovanović equation on adsorption from gaseous mixtures. Chem. Zvesti 1975, 29, 512–516. [Google Scholar]
- Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, S.A.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep. 2020, 10, 13068. [Google Scholar] [CrossRef] [PubMed]
- Said, K.A.M.; Ismail, N.Z.; Jama’In, R.L.; Alipah, N.A.M.; Sutan, N.M.; Gadung, G.G.; Baini, R.; Zauzi, N.S.A. Application of freundlich and temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. Int. J. Eng. Technol. 2018, 7, 91–93. [Google Scholar] [CrossRef]
- Piccin, J.S.; Dotto, G.L.; Pinto, L.A.A. Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by Chitosan. Braz. J. Chem. Eng. 2011, 28, 295–304. [Google Scholar]
- Jakobek, L.; Matić, P.; Kraljević, Š.; Ukić, Š.; Benšić, M.; Barron, A.R. Adsorption between quercetin derivatives and β-glucan studied with a novel approach to modeling adsorption isotherms. Appl. Sci. 2020, 10, 1637. [Google Scholar] [CrossRef] [Green Version]
- CAVS—Adsorption Evaluation. Available online: http://www.prppg.ufpr.br/site/posalim/aplicativos/. (accessed on 5 February 2022).
- Sarmah, M.; Baruah, B.P.; Khare, P. A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA. Fuel Process. Technol. 2013, 106, 490–497. [Google Scholar] [CrossRef]
- Ghazali, A.A.; Rahman, S.A.; Abu, S.R. Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review. Green Process. Synth. 2020, 9, 219–229. [Google Scholar] [CrossRef]
- Sulyman, M.; Namiesnik, J.; Gierak, A. Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: A review. Pol. J. Environ. Stud. 2017, 26, 479–510. [Google Scholar] [CrossRef]
- Danish, M.; Parthasarthy, V.; Al Mesfer, M. CO2 capture by low-cost date pits-based activated carbon and silica gel. Materials 2021, 14, 3885. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Mishra, A.; Singhal, S. Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. Int. J. Environ. Sci. Technol. 2013, 11, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Annane, K.; Lemlikchi, W.; Tingry, S. Efficiency of eggshell as a low-cost adsorbent for removal of cadmium: Kinetic and isotherm studies. Biomass Convers. Biore. 2021, 1–12. [Google Scholar] [CrossRef]
- Hutnik, N.; Piotrowski, K.; Gluzinska, J.; Matynia, A. Effect of selected inorganic impurities present in real phosphate(V) solutions on the quality of struvite crystals produced in continuous reaction crystallization process. Progress in Environmental Science and Technology. In Proceedings of the 2011 International Symposium on Environmental Science and Technology, Singapore, 26–28 February 2011; Volume II, pp. 559–566. [Google Scholar]
Element | wt.% |
---|---|
Silica | 73.60 (as SiO2) |
Calcium | 8.54 (as CaO) |
Potassium | 8.53 (as K2O) |
Phosphorus | 1.46 (as P2O5) |
Aluminum | 1.30 (as Al2O3) |
Sulfur | 1.17 (as SO3) |
Magnesium | 0.99 (as MgO) |
Iron | 0.73 (as Fe2O3) |
Sodium | 0.21 (as Na2O) |
Titanium | 0.10 (as TiO2) |
Manganese | 0.05 (as Mn3O4) |
Strontium | 0.04 (as SrO) |
Barium | 0.03 (as BaO) |
Freundlich | Langmuir | Jovanović | Temkin | Hill | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | KF | n | R2 | qL | KL | R2 | qJ | KJ | R2 | BT | KT | R2 | qH | KH | nH | R2 | |
mmol barn/g | - | - | mmol/g | 1/bar | - | mmol/g | 1/bar | - | (kJ g)/(kg mmol) | 1/bar | - | mmol/g | barn | - | - | ||
1 | S-UPS | 0.01 | 1.04 | 0.981 | 1.79 | 0.008 | 0.982 | 0.92 | 0.016 | 0.982 | 34,700 | 0.57 | 0.975 | 0.34 | 30.81 | 1.29 | 0.983 |
2 | HalRaw2 | 0.02 | 1.01 | 0.994 | 5.04 | 0.005 | 0.995 | 2.54 | 0.010 | 0.995 | 22,300 | 0.66 | 0.958 | 0.54 | 31.04 | 1.36 | 0.998 |
3 | HalRaw4 | 0.03 | 0.99 | 0.995 | 13.62 | 0.002 | 0.995 | 7.99 | 0.004 | 0.995 | 16,400 | 0.66 | 0.957 | 0.71 | 32.04 | 1.40 | 0.999 |
4 | HalCalc2 | 0.02 | 1.04 | 0.982 | 1.75 | 0.012 | 0.984 | 0.89 | 0.023 | 0.984 | 29,300 | 0.66 | 0.997 | 0.20 | 18.99 | 1.86 | 0.996 |
5 | HalCalc4 | 0.04 | 1.19 | 0.998 | 1.15 | 0.034 | 0.999 | 0.65 | 0.060 | 0.999 | 19,200 | 0.83 | 0.970 | 0.77 | 21.44 | 1.11 | 0.999 |
6 | HalDry2 | 0.02 | 1.15 | 0.993 | 0.77 | 0.028 | 0.995 | 0.43 | 0.050 | 0.996 | 29,100 | 0.64 | 0.991 | 0.33 | 20.08 | 1.31 | 0.998 |
7 | HalDry4 | 0.04 | 1.22 | 0.996 | 1.04 | 0.039 | 0.998 | 0.65 | 0.060 | 0.999 | 17,500 | 0.69 | 0.989 | 0.69 | 19.16 | 1.14 | 0.999 |
8 | Kao2 | 0.03 | 1.04 | 0.988 | 2.83 | 0.011 | 0.990 | 1.45 | 0.021 | 0.990 | 18,400 | 0.67 | 0.972 | 0.46 | 26.72 | 1.59 | 0.998 |
9 | Kao4 | 0.03 | 1.02 | 0.993 | 47.43 | 0.001 | 0.995 | 2.89 | 0.012 | 0.994 | 16,000 | 0.67 | 0.966 | 0.64 | 28.58 | 1.45 | 0.999 |
Mean R2 | 0.991 | Mean R2 | 0.993 | Mean R2 | 0.993 | Mean R2 | 0.975 | Mean R2 | 0.997 |
True Density, g/cm3 | SSA, m2/g | |
---|---|---|
S-UPS | 2.42 | 12.31 |
HalRaw4 | 2.54 | 63.55 |
Kao4 | 2.49 | 65.84 |
Freundlich | Langmuir | Jovanović | Temkin | Hill | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | KF | n | qL | KL | qJ | KJ | BT | KT | qH | KH | nH | |
mmol ⋅barn/g | - | mmol/g | 1/bar | mmol/g | 1/bar | (kJ g)/(kg mmol) | 1/bar | mmol/g | barn | - | ||
1 | S-UPS | 0.003 | 0.09 | 3.00 | 0.014 | 1.48 | 0.027 | 2751 | 0.058 | 0.37 | 20.917 | 0.49 |
2 | HalRaw2 | 0.002 | 0.05 | 7.20 | 0.007 | 3.48 | 0.014 | 2095 | 0.087 | 0.15 | 5.045 | 0.15 |
3 | HalRaw4 | 0.003 | 0.04 | 48.84 | 0.009 | 26.22 | 0.014 | 1568 | 0.087 | 0.13 | 3.292 | 0.11 |
4 | HalCalc2 | 0.004 | 0.12 | 3.35 | 0.024 | 1.61 | 0.045 | 1075 | 0.029 | 0.06 | 5.262 | 0.50 |
5 | HalCalc4 | 0.003 | 0.04 | 0.11 | 0.004 | 0.05 | 0.006 | 1512 | 0.104 | 0.14 | 2.890 | 0.07 |
6 | HalDry2 | 0.002 | 0.06 | 0.19 | 0.008 | 0.43 | 0.013 | 1366 | 0.042 | 0.08 | 2.581 | 0.18 |
7 | HalDry4 | 0.003 | 0.05 | 0.11 | 0.005 | 0.05 | 0.008 | 900 | 0.052 | 0.19 | 3.472 | 0.12 |
8 | Kao2 | 0.004 | 0.07 | 2.61 | 0.011 | 1.24 | 0.020 | 1391 | 0.071 | 0.06 | 2.459 | 0.14 |
9 | Kao4 | 0.004 | 0.05 | 671.37 | 0.010 | 3.58 | 0.015 | 1352 | 0.079 | 0.10 | 2.318 | 0.11 |
Freundlich | Langmuir | Jovanović | Temkin | Hill | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | MD | MSD | RMSD | MD | MSD | RMSD | MD | MSD | RMSD | MD | MSD | RMSD | MD | MSD | RMSD | |
×10−5 | ×10−5 | ×10−4 | ×10−5 | ×10−5 | ×10−4 | ×10−5 | ×10−5 | ×10−4 | ×10−11 | ×10−5 | ×10−4 | ×10−5 | ×10−5 | ×10−4 | ||
1 | S-UPS | −19.38 | 2.73 | 52.22 | −27.45 | 2.64 | 51.35 | −27.65 | 2.64 | 51.34 | −2.98 | 3.51 | 59.24 | −9.11 | 2.37 | 48.66 |
2 | HalRaw2 | −42.78 | 2.70 | 51.92 | −67.35 | 2.50 | 49.98 | −68.05 | 2.49 | 49.94 | −1.43 | 20.30 | 142.47 | 1.97 | 0.99 | 31.42 |
3 | HalRaw4 | −65.05 | 4.46 | 66.75 | −104.22 | 4.38 | 66.17 | −106.70 | 4.39 | 66.24 | 5.41 | 38.38 | 195.91 | 2.00 | 0.91 | 30.14 |
4 | HalCalc2 | −3.33 | 3.19 | 56.47 | −39.59 | 2.61 | 51.07 | −40.54 | 2.60 | 51.00 | −0.36 | 15.00 | 123.20 | −3.32 | 3.19 | 56.47 |
5 | HalCalc4 | −45.13 | 2.59 | 50.94 | −34.22 | 0.82 | 28.71 | −31.76 | 0.75 | 27.45 | −7.10 | 24.18 | 155.51 | −3.00 | 0.48 | 21.84 |
6 | HalDry2 | −21.38 | 1.50 | 38.71 | −27.41 | 0.96 | 30.97 | −27.98 | 0.93 | 30.45 | −1.04 | 1.83 | 42.74 | −4.31 | 0.47 | 21.72 |
7 | HalDry4 | −24.07 | 2.31 | 48.08 | −20.83 | 0.99 | 31.51 | −19.03 | 0.94 | 30.64 | −4.04 | 6.21 | 78.83 | −4.09 | 0.71 | 26.58 |
8 | Kao2 | −93.67 | 9.10 | 95.40 | −143.41 | 7.86 | 88.65 | −146.45 | 7.81 | 88.37 | 0.87 | 21.27 | 145.85 | 0.76 | 1.35 | 36.79 |
9 | Kao4 | −88.44 | 6.97 | 83.50 | −175.94 | 6.79 | 82.42 | −138.73 | 6.32 | 79.50 | −0.16 | 35.37 | 188.07 | −5.14 | 1.15 | 33.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakiewicz, P.; Lutyński, M.; Sobieraj, J.; Piotrowski, K.; Miccio, F.; Kalisz, S. Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission. Energies 2022, 15, 1352. https://doi.org/10.3390/en15041352
Sakiewicz P, Lutyński M, Sobieraj J, Piotrowski K, Miccio F, Kalisz S. Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission. Energies. 2022; 15(4):1352. https://doi.org/10.3390/en15041352
Chicago/Turabian StyleSakiewicz, Piotr, Marcin Lutyński, Jakub Sobieraj, Krzysztof Piotrowski, Francesco Miccio, and Sylwester Kalisz. 2022. "Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission" Energies 15, no. 4: 1352. https://doi.org/10.3390/en15041352
APA StyleSakiewicz, P., Lutyński, M., Sobieraj, J., Piotrowski, K., Miccio, F., & Kalisz, S. (2022). Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission. Energies, 15(4), 1352. https://doi.org/10.3390/en15041352