Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides
Abstract
:1. Introduction
2. Numerical Methods and Experimental Details
2.1. Computational Detail
2.2. Material Preparation and Characterization
3. Results and Discussion
3.1. Numerical Study
3.2. Electronic Properties of LaCrO3 and LaCrO3H6
3.3. Mechanical Properties
3.4. Cohesive Energy
3.5. Experimental Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baysal, M.B.; Surucu, G.; Deligoz, E.; Ozısık, H. The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications. Int. J. Hydrogen Energy 2018, 43, 23397–23408. [Google Scholar] [CrossRef]
- Afzal, M.; Mane, R.; Sharma, P. Heat transfer techniques in metal hydride hydrogen storage: A review. Int. J. Hydrogen Energy 2017, 42, 30661–30682. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, J.; Song, Y. Stability and hydrogen adsorption properties of Mg/Mg2Ni interface: A first principles study. Int. J. Hydrogen Energy 2018, 43, 16598–16608. [Google Scholar] [CrossRef]
- Ćirić, K.D.; Koteski, V.J.; Stojić, D.L.j.; Radakovic, J.S.; Ivanovski, V.N. HfNi and its hydrides—First principles calculations. Int. J. Hydrogen Energy 2010, 35, 3572–3577. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; Hou, X.; Zhang, W.; Tang, S.; Sun, H.; Zhang, J. Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. Int. J. Hydrogen Energy 2017, 42, 10099–10108. [Google Scholar] [CrossRef]
- Sharma, A. Investigation on platinum loaded multi-walled carbon nanotubes for hydrogen storage applications. Int. J. Hydrogen Energy 2020, 45, 2967–2974. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- ullah Rather, S. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. Int. J. Hydrogen Energy 2020, 45, 4653–4672. [Google Scholar] [CrossRef]
- Sreedhar, I.; Kamani, K.M.; Kamani, B.M.; Reddy, B.M.; Venugopal, A. A Bird’s Eye view on process and engineering aspects of hydrogen storage. Renew. Sustain. Energy Rev. 2018, 91, 838–860. [Google Scholar] [CrossRef]
- Shiraz, H.G.; Tavakoli, O. Investigation of graphene-based systems for hydrogen storage. Renew. Sustain. Energy Rev. 2017, 74, 104–109. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Kim, H.-T.; Jung, S.; Roh, S.-H.; Park, J.-H.; Jung, H.-Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Mori, D.; Hirose, K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int. J. Hydrogen Energy 2009, 34, 4569–4574. [Google Scholar] [CrossRef]
- Kukkapalli, V.K.; Kim, S. Optimization of Internal Cooling Fins for Metal Hydride Reactors. Energies 2016, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Baptista, A.; Pinho, C.; Pinto, G.; Ribeiro, L.; Monteiro, J.; Santos, T. Assessment of an Innovative Way to Store Hydrogen in Vehicles. Energies 2019, 12, 1762. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.; ul Ain, Q.; Siraj, K.; Raza, R.; Tabish, A.N.; Rafique, M.; Idrees, R.; Khan, F.; Majeed, S.; Ahsan, M. Evaluation of BaZr0.8X0.2 (X = Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method. J. Alloy. Compd. 2020, 815, 152389. [Google Scholar] [CrossRef]
- Sun, C.; Alonso, J.A.; Bian, J. Recent Advances in Perovskite-Type Oxides for Energy Conversion and Storage Applications. Adv. Energy Mater. 2021, 11, 2000459. [Google Scholar] [CrossRef]
- Butenko, D.S.; Li, S.; Kotsyubynsky, V.O.; Boychuk, V.M.; Dubinko, V.I.; Kolkovsky, P.I.; Liedienov, N.A.; Klyui, N.I.; Han, W.; Zatovsky, I.V. Palladium nanoparticles embedded in microporous carbon as electrocatalysts for water splitting in alkaline media. Int. J. Hydrogen Energy 2021, 46, 21462–21474. [Google Scholar] [CrossRef]
- Wei, Z.; Pashchenko, A.V.; Liedienov, N.A.; Zatovsky, I.V.; Butenko, D.S.; Li, Q.; Fesych, I.V.; Turchenko, V.A.; Zubov, E.E.; Polynchuk, P.Y.; et al. Multifunctionality of lanthanum–strontium manganite nanopowder. Phys. Chem. Chem. Phys. 2020, 22, 11817–11828. [Google Scholar] [CrossRef]
- Young, K.-H. Research in Nickel/Metal Hydride Batteries 2016. Batteries 2016, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Webb, C.J.; Gray, E.M. Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications. Int. J. Hydrogen Energy 2016, 41, 3485–3507. [Google Scholar] [CrossRef]
- Inoue, H.; Kotani, N.; Chiku, M.; Higuchi, E. Ti–V–Cr–Ni alloys as high capacity negative electrode active materials for use in nickel–metal hydride batteries. Int. J. Hydrogen Energy 2016, 41, 9939–9947. [Google Scholar] [CrossRef]
- Hydrogen Storage in MgX (X = Cu and Ni) Systems—Is There Still News?—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0378775318310140 (accessed on 31 November 2021).
- First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Perovskite-Type KMgH3 Crystals: Novel Hydrogen Storage Material | The Journal of Physical Chemistry B. Available online: https://pubs.acs.org/doi/10.1021/jp111382h (accessed on 31 November 2021).
- Ikeda, K.; Kato, S.; Ohoyama, K.; Nakamori, Y.; Takeshita, H.T.; Orimo, S. Formation of perovskite-type hydrides and thermal desorption processes in Ca–T–H (T=3d transition metals). Scr. Mater. 2006, 55, 827–830. [Google Scholar] [CrossRef]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar] [CrossRef]
- Pottmaier, D.; Pinatel, E.R.; Vitillo, J.G.; Garroni, S.; Orlova, M.; Baró, M.D.; Vaughan, G.B.M.; Fichtner, M.; Lohstroh, W.; Baricco, M. Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study. Chem. Mater. 2011, 23, 2317–2326. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Bououdina, M.; Fenineche, N.; Boudouma, Y. Elastic properties of perovskite-type hydride NaMgH3 for hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 1484–1489. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Hatakeyama, K.; Kobayashi, S.; Esaka, T. Hydrogenation characteristics of the proton conducting oxide–hydrogen storage alloy composite. Mater. Res. Bull. 2002, 37, 1547–1556. [Google Scholar] [CrossRef]
- Esaka, T.; Sakaguchi, H.; Kobayashi, S. Hydrogen storage in proton-conductive perovskite-type oxides and their application to nickel–hydrogen batteries. Solid State Ion. 2004, 166, 351–357. [Google Scholar] [CrossRef]
- Deng, G.; Chen, Y.; Tao, M.; Wu, C.; Shen, X.; Yang, H.; Liu, M. Study of the electrochemical hydrogen storage properties of the proton-conductive perovskite-type oxide LaCrO3 as negative electrode for Ni/MH batteries. Electrochim. Acta 2010, 55, 884–886. [Google Scholar] [CrossRef]
- Gencer, A.; Surucu, G.; Al, S. MgTiO3Hx and CaTiO3Hx perovskite compounds for hydrogen storage applications. Int. J. Hydrogen Energy 2019, 44, 11930–11938. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, K.; Blaha, P.; Madsen, G.K.H. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Lutterotti, L.; Dell’Amore, F.; Angelucci, D.E.; Carrer, F.; Gialanella, S. Combined X-ray diffraction and fluorescence analysis in the cultural heritage field. Microchem. J. 2016, 126, 423–430. [Google Scholar] [CrossRef]
- Song, Q.; Du, Q.; Song, L.; Zhao, H.; Guo, Y. The Structural Stabilities and Electronic Properties of Orthorhombic and Rhombohedral LaCrO3—A First-Principles Study. Int. J. Nanomanuf. 2014, 10, 13–25. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Parey, V.; Shukla, A.; Parveen, A.; Bano, A.; Khare, P.; Gaur, N.K. Thermal properties of solid oxide fuel cell perovskite LaCrO3. AIP Conf. Proc. 2016, 1728, 020026. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Yang, X.-S.; Liu, Z.; Shi, S.-Q.; Ma, X. The Effects of Hydrogen Distribution on the Elastic Properties and Hydrogen-Induced Hardening and Softening of α-Fe. Appl. Sci. 2020, 10, 8958. [Google Scholar] [CrossRef]
- Soltani, N.; Hosseini, S.M.; Kompany, A. Nanoscale ab-initio calculations of optical and electronic properties of LaCrO3 in cubic and rhombohedral phases. Phys. B Condens. Matter 2009, 404, 4007–4014. [Google Scholar] [CrossRef]
- Huang, Z.W.; Zhao, Y.H.; Hou, H.; Han, P.D. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Phys. B Condens. Matter 2012, 407, 1075–1081. [Google Scholar] [CrossRef]
- Aamir, M.; Bibi, I.; Ata, S.; Majid, F.; Kamal, S.; Alwadai, N.; Sultan, M.; Iqbal, S.; Aadil, M.; Iqbal, M. Graphene oxide nanocomposite with Co and Fe doped LaCrO3 perovskite active under solar light irradiation for the enhanced degradation of crystal violet dye. J. Mol. Liq. 2021, 322, 114895. [Google Scholar] [CrossRef]
- Khattak, C.P.; Cox, D.E. Structural studies of the (La, Sr)CrO/sub 3/ system. Mater. Res. Bull. (USA) 1977, 12, 463–471. [Google Scholar] [CrossRef]
- Al, S.; Iyigor, A. Structural, electronic, elastic and thermodynamic properties of hydrogen storage magnesium-based ternary hydrides. Chem. Phys. Lett. 2020, 743, 137184. [Google Scholar] [CrossRef]
- Surucu, G.; Gencer, A.; Candan, A.; Gullu, H.H.; Isik, M. CaXH3 (X = Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications. Int. J. Energy Res. 2020, 44, 2345–2354. [Google Scholar] [CrossRef]
- Yukawa, H.; Takahashi, Y.; Morinaga, M. Electronic structures of hydrogen storage compound, TiFe. Comput. Mater. Sci. 1999, 14, 291–294. [Google Scholar] [CrossRef]
- Liang, L.; Yang, Q.; Zhao, S.; Wang, L.; Liang, F. Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature. Int. J. Hydrogen Energy 2021, 46, 38733–38740. [Google Scholar] [CrossRef]
Compound and Space Group | Wyckoff Notation and Positions | Lattice Parameters | |
---|---|---|---|
(Fd3m) | 1b | La (0.5,0.5,0.5) | a = b = c 4.43 () |
1a | Cr (0,0,0) | ||
3c | O (0.0, 0.5, 0.5) | ||
6f | H (0.088, 0.05, 0.5) | ||
(Fd3m) | 1a | La (0.5,0.5,0.5) | a = b = c 3.92 () |
1a | Cr (0,0,0) | ||
3c | O (0.0, 0.5, 0.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahlou Nabil, M.A.; Fenineche, N.; Popa, I.; Sunyol, J.J. Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides. Energies 2022, 15, 1463. https://doi.org/10.3390/en15041463
Lahlou Nabil MA, Fenineche N, Popa I, Sunyol JJ. Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides. Energies. 2022; 15(4):1463. https://doi.org/10.3390/en15041463
Chicago/Turabian StyleLahlou Nabil, Mohamed Amine, Nouredine Fenineche, Ioana Popa, and Joan Josep Sunyol. 2022. "Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides" Energies 15, no. 4: 1463. https://doi.org/10.3390/en15041463
APA StyleLahlou Nabil, M. A., Fenineche, N., Popa, I., & Sunyol, J. J. (2022). Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides. Energies, 15(4), 1463. https://doi.org/10.3390/en15041463