Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drying Unit Used
2.2. Drying Procedure and Measurements
2.3. Exergetic Thermal Analyses
2.3.1. Conventional Exergy Analysis
2.3.2. Advanced Exergetic Analysis
2.3.3. Assumptions under Theoretical and Operating Conditions
3. Results and Discussions
3.1. Conventional Exergy Analysis
3.2. Advanced Exergy Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | |
T | temperature (°C) |
Ex | exergy (kJ/kg) |
m | mass flow rate (kg/s) |
Cp | specific heat capacity (kJ/kg. K) |
∆t | difference in temeprature |
IP | improvement potential rate (kJs−1) |
f | exergetic factor (%) |
RI | relative irreversibility (%) |
SI | sustainability index (%) |
η | efficiency |
P | work rate or power (kJ/s or Kw) |
ETC | evacuated tube collector |
Superscripts | |
AV | avoidable |
UN | unavoidable |
EN | endogenous |
EX | exogenous |
Real | actual/emperical |
Subscripts | |
i | inlet position |
o | outlet position |
da | drying air |
dci | drying chamber inlet |
dci | drying chamber outlet |
xd | exergy destruction |
xi | exergy inflow |
xo | exergy outflow |
k | kth component |
References
- Sagar, V.R.; Kumar, P.S. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amjad, W.; Waseem, M.; Munir, A.; Ghafoor, A.; Asghar, F.; Gilani, G.A. Solar Assisted Dehydrator for Decentralized Controlled and Homogeneous Multi-Product Drying. J. Sol. Energy Eng. 2020, 143. [Google Scholar] [CrossRef]
- Jia, C.; Wang, L.; Guo, W.; Liu, C. Effect of swing temperature and alternating airflow on drying uniformity in deep-bed wheat drying. Appl. Therm. Eng. 2016, 106, 774–783. [Google Scholar] [CrossRef]
- Yuan, Y.P.; Sun, D.W. Combined hot-air and microwave-vaccum drying for improving drying uniformity of mango slices based on hyperspecial imaging visualization of moisture content distribution. Biosyst. Eng. 2017, 156, 108–119. [Google Scholar]
- Kong, D.; Wang, Y.; Li, M.; Keovisar, V.; Huang, M.; Yu, Q. Experimental study of solar photovoltaic/thermal (PV/T) air collector drying performance. Sol. Energy 2020, 208, 978–989. [Google Scholar] [CrossRef]
- Sohani, A.; Shahverdian, M.H.; Sayyaadi, H.; Samiezadeh, S.; Doranehgard, M.H.; Nizetic, S.; Karimi, N. Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria. J. Taiwan Inst. Chem. Eng. 2021, 124, 351–358. [Google Scholar] [CrossRef]
- Sogut, Z.; Ilten, N.; Oktay, Z. Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production. Energy 2010, 35, 3821–3826. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A review on exergy analysis of drying processes and systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. [Google Scholar] [CrossRef]
- Şevik, S.; Aktaş, M.; Dolgun, E.C.; Arslan, E.; Tuncer, A.D. Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Sol. Energy 2019, 180, 537–549. [Google Scholar] [CrossRef]
- Aziz, A.; Rehman, S.U.; Rehman, S.U. Exergy analysis of solar cabinet dryer and evaluate the performance enhancement of solar cabinet dryer by addition of solar reflector. Int. J. Renewable Energy Res. 2016, 6, 2016. [Google Scholar]
- Aviara, N.A.; Onuoha, L.N.; Falola, O.E.; Igbeka, J.C. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy 2014, 73, 809–817. [Google Scholar] [CrossRef]
- Sami, S.; Etesami, N.; Rahimi, A. Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Energy 2011, 36, 2847–2855. [Google Scholar] [CrossRef]
- Chowdhury, M.; Bala, B.; Haque, M. Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst. Eng. 2011, 110, 222–229. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Kianmehr, M.H.; Arabhosseini, A. Energy and Exergy Analyses of Thin-Layer Drying of Potato Slices in a Semi-Industrial Continuous Band Dryer. Dry. Technol. 2008, 26, 1501–1508. [Google Scholar] [CrossRef]
- Rabha, D.K.; Muthukumar, P.; Somayaji, C. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew. Energy 2017, 105, 764–773. [Google Scholar] [CrossRef]
- Sundari, A.U.; Neelamegam, P.; Subramanian, C.V. An Experimental Study and Analysis on Solar Drying of Bitter Gourd Using an Evacuated Tube Air Collector in Thanjavur, Tamil Nadu, India. Conf. Pap. Energy 2013, 2013, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Amjad, W.; Gilani, G.A.; Munir, A.; Asghar, F.; Ali, A.; Waseem, M. Energetic and exergetic thermal analysis of an inline-airflow solar hybrid dryer. Appl. Therm. Eng. 2019, 166, 114632. [Google Scholar] [CrossRef]
- Lamnatou, C.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl. Energy 2012, 94, 232–243. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Morosuk, T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas. Energy 2010, 35, 820–829. [Google Scholar] [CrossRef]
- Erbay, Z.; Hepbasli, A. Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Dry. Technol. 2013, 31, 802–810. [Google Scholar] [CrossRef]
- Erbay, Z.; Hepbasli, A. Application of conventional and advanced exergy analyses to evaluate the performance of a ground-source heat pump (GSHP) dryer used in food drying. Energy Convers. Manag. 2014, 78, 499–507. [Google Scholar] [CrossRef]
- Gungor, A.; Erbay, Z.; Hepbasli, A.; Gunerhan, H. Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values. Energy Convers. Manag. 2013, 73, 309–316. [Google Scholar] [CrossRef]
- Tinoco-Caicedo, D.; Lozano-Medina, A.; Blanco-Marigorta, A. Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador. Energies 2020, 13, 5622. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I.; Kanoglu, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008, 36, 128–137. [Google Scholar] [CrossRef]
- Kelly, S. Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction. Ph.D. Thesis, Institutfür Energie-Technik, Technische Universtät Berlin, Berlin, Germany, 2008. [Google Scholar]
- Almutairi, A.; Pilidis, P.; Al-Mutawa, N. Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance. Energies 2015, 8, 14118–14135. [Google Scholar] [CrossRef]
Parameter | Equation | Remarks | Equation No. |
---|---|---|---|
Exergy balance | Useful amount of energy (kJ/kg) for the air entering, utilizing and outflowing in a system or a subcomponent | (1) | |
Exergetic rate | Exergy flow rate | (2) | |
Exergy inflow and outflow | General equation of exergy flow for a respective component or positions as marked in Figure 2 (Tk and Ta stand for temperatures of kth component and ambient air respectively. | (3) | |
Exergy inflow to the drying chamber (Tdci stands for temperatures at the inlet of drying chamber). | (4) | ||
Exergy outflow of the drying chamber (Tdco stands for temperatures at the outlet of drying chamber). | (5) | ||
Performance parameters | |||
Exergy efficiency | It is for heating part of the system. In solar heating case, calculations of exergy inflow for solar collector used in denominator and energy used by fan and water pump which is similar in case heating source (quantity of gas used and its heating value) | (6) | |
It is used for drying chamber. Energy required by exhaust blower is also considered. | (7) | ||
Improvement potential | exergy outflow of respective component | (8) | |
Exergetic factor | total exergy inflow in the system | (9) | |
Relative irreversibility | total exergy destruction in the system | (10) | |
Sustainability index | (11) |
Parameters | Equation | Equation No. |
---|---|---|
Unavoidable (UN) | (12) | |
Avoidable (AV) | (13) | |
Endogenous (EN) | (14) | |
Exogenous (EX) | (15) | |
Unavoidable Endogenous (UN-EN) | (16) | |
Unavoidable Exogenous (UN-EX) | (17) | |
Avoidable Endogenous (AV-EN) | (18) | |
Avoidable Exogenous (AV-EX) | (19) | |
Efficiency | (20) |
Component | Theoretical/Ideal Operating Conditions (without Irreversibilities) | Unavoidable/Actual Operating Conditions |
---|---|---|
Drying chamber | T = 60 °C, Δt = 35 °C | T = 55 °C, Δt = 25 °C |
Heat exchanger | = 79% Δt air = 35 °C Δt water = 40 °C | = 70% Δt air = 32 °C Δt water = 35 °C |
ETC | = 73%, Δt = 35 °C | = 64%, Δt = 27 °C |
Pump circulation | m = 0.52 kg/s | m = 0.5 kg/s |
Air inflow | Flow = 0.061 m3/s | 0.059 m3/s |
Combination | Exi (kW) | Exo (kW) | Exd (kW) | ηex (%) | f (%) | IP (kW) | RI (%) | SI | |
---|---|---|---|---|---|---|---|---|---|
Case-I | Drying chamber | 15.73 | 13.35 | 2.38 | 84.87 | 47.91 | 0.36 | 54.34 | 6.61 |
Gas heating | 17.10 | 15.10 | 2.00 | 47.51 | 52.09 | 1.05 | 45.66 | 1.90 | |
Overall system | 32.83 | 28.45 | 4.38 | 86.66 | 100.00 | 0.58 | 100.00 | 7.50 | |
Case-II | Drying chamber | 14.55 | 12.42 | 2.13 | 85.36 | 46.41 | 0.31 | 42.94 | 6.83 |
Dual heating | 16.80 | 13.97 | 2.83 | 54.32 | 53.59 | 1.29 | 57.06 | 2.19 | |
Overall System | 31.35 | 26.39 | 4.96 | 84.18 | 100.00 | 0.78 | 100.00 | 6.32 | |
Case-III | Drying chamber | 12.95 | 11.10 | 1.85 | 85.71 | 45.28 | 0.26 | 39.78 | 7.00 |
Solar heating | 15.65 | 12.85 | 2.80 | 34.10 | 54.72 | 1.85 | 60.22 | 1.52 | |
Overall system | 28.60 | 23.95 | 4.65 | 83.74 | 100.00 | 0.76 | 100.00 | 6.15 |
Combination | Theoretical Operating Conditions | Favourable Operating Conditions | |||||||
---|---|---|---|---|---|---|---|---|---|
Exi (kW) | Exo (kW) | Exd (kW) | ηex (%) | Exf (kW) | Exp (kW) | Exd (kW) | ηex (%) | ||
Case-I | Drying chamber | 15.23 | 13.15 | 2.08 | 86.34 | 14.97 | 13.46 | 1.51 | 89.91 |
Gas heating | 16.44 | 14.9 | 1.54 | 36.57 | 16.98 | 15.48 | 1.50 | 35.63 | |
Overall system | 31.67 | 28.05 | 3.62 | 88.56 | 31.95 | 28.94 | 3.01 | 90.58 | |
Case-II | Drying chamber | 14.25 | 12.35 | 1.90 | 86.67 | 14.53 | 12.98 | 1.55 | 89.33 |
Dual heating | 16.48 | 13.96 | 2.52 | 48.37 | 16.43 | 14.50 | 1.93 | 37.04 | |
Overall System | 30.73 | 26.31 | 4.42 | 85.62 | 30.96 | 27.48 | 3.48 | 88.76 | |
Case-III | Drying chamber | 12.85 | 11.09 | 1.76 | 86.30 | 14.31 | 12.80 | 1.51 | 89.45 |
Solar heating | 14.85 | 12.56 | 2.29 | 27.89 | 15.94 | 13.90 | 2.04 | 24.85 | |
Overall system | 27.70 | 23.65 | 4.05 | 85.38 | 30.25 | 26.70 | 3.55 | 88.26 |
Combination | ηex Modified (%) | (kW) | (kW) | (kW) | (kW) | (KW) | (KW) | |||
---|---|---|---|---|---|---|---|---|---|---|
(KW) | (KW) | (KW) | (KW) | |||||||
Case-I | Drying chamber | 95.45 | 2.11 | 0.26 | 1.49 | 0.88 | 1.47 | 0.022 | 0.63 | 0.24 |
Heating chamber (Gas) | 99.23 | 1.56 | 0.43 | 1.46 | 0.53 | 1.44 | 0.019 | 0.11 | 0.42 | |
Overall system | 97.41 | 3.67 | 0.70 | 2.95 | 1.42 | 2.91 | 0.042 | 0.75 | 0.66 | |
Case-II | Drying chamber | 96.61 | 1.91 | 0.22 | 1.48 | 0.65 | 1.47 | 0.008 | 0.44 | 0.21 |
Heating chamber (Dual) | 95.46 | 2.52 | 0.31 | 1.86 | 0.97 | 1.86 | 0.001 | 0.66 | 0.31 | |
Overall System | 95.99 | 4.43 | 0.53 | 3.34 | 1.62 | 3.33 | 0.010 | 1.10 | 0.52 | |
Case-III | Drying chamber | 96.08 | 1.76 | 0.09 | 1.31 | 0.54 | 1.31 | 0.001 | 0.45 | 0.09 |
Heating chamber (Solar) | 96.26 | 2.34 | 0.46 | 1.89 | 0.91 | 1.84 | 0.043 | 0.50 | 0.41 | |
Overall system | 96.16 | 4.10 | 0.55 | 3.18 | 1.47 | 3.14 | 0.040 | 0.96 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amjad, W.; Raza, M.A.; Asghar, F.; Munir, A.; Mahmood, F.; Husnain, S.N.; Hussain, M.I.; Kim, J.-T. Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator. Energies 2022, 15, 1505. https://doi.org/10.3390/en15041505
Amjad W, Raza MA, Asghar F, Munir A, Mahmood F, Husnain SN, Hussain MI, Kim J-T. Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator. Energies. 2022; 15(4):1505. https://doi.org/10.3390/en15041505
Chicago/Turabian StyleAmjad, Waseem, Muhammad Ali Raza, Furqan Asghar, Anjum Munir, Faisal Mahmood, Syed Nabeel Husnain, Muhammad Imtiaz Hussain, and Jun-Tae Kim. 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator" Energies 15, no. 4: 1505. https://doi.org/10.3390/en15041505
APA StyleAmjad, W., Raza, M. A., Asghar, F., Munir, A., Mahmood, F., Husnain, S. N., Hussain, M. I., & Kim, J. -T. (2022). Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator. Energies, 15(4), 1505. https://doi.org/10.3390/en15041505