Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach
Abstract
:1. Introduction
- Ranking VAR cooling systems that use solar thermal collectors for heat supply. This includes flat plate water heating collectors (forced circulation), flat plate air heating collectors (forced circulation), evacuated tube collectors, parabolic trough collectors and collector with compound parabolic concentrators. These collectors have different fluid outlet temperatures under different climate zones which affect the VAR cooling system performance. The cost factors of each type of solar collector varies, and this also affects the ranking.
- Conducting the study for single effect and double effect VAR cooling systems only. Because single effect and double effect methods have different temperature requirements and cooling performance, they were separately analyzed.
- Considering three climatic zones as per the Koppen climate classification with different cooling load requirements. The solar radiation level and the ambient temperature of the climate zones affects the output of the solar thermal collectors and hence on the VAR system performance.
- To compare the performance of the VAR cooling systems with conventional vapor compression refrigeration (VCR) cooling systems and to identify the relative performance in terms of technical, economic and environmental issues.
2. Materials and Methods
- This study is based on a VAR cooling system operated during six hours of active sunshine hours with solar collector.
- The total energy required by the VAR cooling system for 24 h is to be supplied by the solar collector with the help of a storage tank.
- The collector supplies heat to the storage system in order to meet the total heat required at the required temperature.
- Three different climatic zones from the Koppen classification are considered based on the cooling load requirements.
- Only single effect and double effect VAR cooling systems are considered due to their successful performance.
- Only the efficiency of the equipment is considered during calculations, and the heat loss during fluid transport is considered negligible.
2.1. Single Effect
2.2. Double Effect
2.3. Climatic Zones
- Subtropical steppe climate zone (Bsh) in Niger
- Dry desert hot arid climate (BWh) in Riyadh
- Hot summer continental climate (Dwa) in Beijing
2.4. Cooling Load and Thermal Energy Requirements
2.5. Solar Collector Area
3. Solar Collectors
3.1. Flat Plate Water Heating Collector (SWH)
3.2. Flat Plate Air Heating Collector (SAH)
3.3. Evacuated Tube Collector (ETC)
3.4. Parabolic trough Type Collectors (PTC)
3.5. Compound Parabolic Air Heating Collector (CPC)
4. Performance of Conventional Vapor Compression Cooling System
5. Calculation Procedure of Basic Attributes
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakravarty, K.H.; Sadi, M.; Chakravarty, H.; Alsagri, A.S.; Howard, T.J.; Arabkoohsar, A. A review on integration of renewable energy processes in vapor absorption chiller for sustainable cooling. Sustain. Energy Technol. Assess. 2022, 50, 101822. [Google Scholar] [CrossRef]
- Nikbakhti, R.; Wang, X.; Hussein, A.K.; Iranmanesh, A. Absorption cooling systems—Review of various techniques for energy performance enhancement. Alex. Eng. J. 2020, 59, 707–738. [Google Scholar] [CrossRef]
- Wu, S.; Eames, I. Innovations in vapor-absorption cycles. Appl. Energy 2000, 66, 251–266. [Google Scholar] [CrossRef]
- Domínguez-Inzunza, L.A.; Hernández-Magallanes, J.A.; Sandoval-Reyes, M.; Rivera, W. Comparison of the performance of single-effect, half-effect, double-effect in series and inverse and triple-effect absorption cooling systems operating with the NH3–LiNO3 mixture. Appl. Therm. Eng. 2014, 66, 612–620. [Google Scholar] [CrossRef]
- Wonchala, J.; Hazledine, M.; Boulama, K.G. Solution procedure and performance evaluation for a Water–LiBr absorption refrigeration machine. Energy 2014, 65, 272–284. [Google Scholar] [CrossRef]
- Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C. Design and construction of a LiBr–Water absorption machine. Energy Convers. Manag. 2003, 44, 2483–2508. [Google Scholar] [CrossRef]
- Wang, J.; Yan, R.; Wang, Z.; Zhang, X.; Shi, G. Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies 2018, 11, 2679. [Google Scholar] [CrossRef] [Green Version]
- Yattara, A.; Zhu, Y.; Mosa Ali, M. Comparison between solar single-effect and single-effect double-lift absorption machines (Part I). Appl. Therm. Eng. 2003, 23, 1981–1992. [Google Scholar] [CrossRef]
- Dincer, I.; Hussain, A.; Tahir, R. Solar Thermal Power Systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: New York, NY, USA, 2013; pp. 1–14. [Google Scholar]
- Liu, Y.; Chung, K.; Chang, K.; Lee, T. Performance of Thermosyphon Solar Water Heaters in Series. Energies 2012, 5, 3266–3278. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.J. A Novel Design Method for Optimizing an Indirect Forced Circulation SWH System Based on Life Cycle Cost Using a Genetic Algorithm. Energies 2015, 8, 11592–11617. [Google Scholar] [CrossRef]
- Siuta-Olcha, A.; Cholewa, T.; Dopieralska-Howoruszko, K. Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions. Environ. Sci. Pollut. Res. 2021, 28, 14319–14328. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Abas, N.; Dilshad, S.; Saleem, M.S. A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Stud. Therm. Eng. 2021, 26, 101008. [Google Scholar] [CrossRef]
- Sridhar, K.; Lingaiah, G.; Vinod Kumar, G. Performance of Cylindrical Parabolic Collector with Automated Tracking System. Appl. Sol. Energy 2018, 54, 134–138. [Google Scholar] [CrossRef]
- Xu, S.M.; Huang, X.D.; Du, R. An investigation of the solar powered absorption refrigeration system with advanced energy storage technology. Sol. Energy 2011, 85, 1794–1804. [Google Scholar] [CrossRef]
- Christopher, S.S.; Santosh, R.; Vikram, M.P.; Prabakaran, R.; Thakur, A.K.; Xu, H. Optimization of a SWH system for vapor absorption refrigeration system. Sustain. Energy 2020, 40, e13489. [Google Scholar]
- Arora, S.; Chitkara, S.; Udayakumar, R.; Ali, M. Thermal analysis of evacuated solar tube collectors. J. Pet. Gas Eng. 2011, 2, 74–82. [Google Scholar]
- Shirazi, A.; Taylor, R.A.; Morrison, G.L.; White, S.D. A comprehensive multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications. Energy Convers. Manag. 2017, 132, 281–306. [Google Scholar] [CrossRef]
- Bohanec, M.; Rajkovic, V. Multi-Attribute Decision Modeling: Industrial Applications of DEXi. Informatica 1999, 23, 487–491. [Google Scholar]
- Li, Y. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making. Environ. Sci. Pollut. Int. J. 2019, 26, 17866–17874. [Google Scholar] [CrossRef]
- Lu, H.; Ren, L.; Chen, Y.; Tian, P.; Liu, J. A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes. J. Hydrol. 2017, 555, 881–893. [Google Scholar] [CrossRef]
- Saracoglu, B.O. An Experimental Research of Small Hydropower Plant Investments Selection in Turkey. J. Invest. Manag. 2015, 4, 47–60. [Google Scholar]
- Dereje, S.; Ayou, D.S.; Coronas, A. New Developments and Progress in Absorption Chillers for Solar Cooling Applications. Appl. Sci. 2020, 10, 4073. [Google Scholar]
- Fujiia, T.; Takeda, N.; Miyauchi, H.; Kawamura, M.; Uchida, M. Cycle simulation and prototyping of single-effect double-lift absorption chiller. In Proceedings of the 12th IEA Heat Pump Conference, Rotterdam, The Netherlands, 15–18 May 2017. [Google Scholar]
- Gomri, R.; Hakimi, R. Second law analysis of double effect vapor absorption cooler system. Energy Convers. Manag. 2008, 49, 3343–3348. [Google Scholar] [CrossRef]
- Arora, A.; Kaushik, S.C. Theoretical analysis of LiBr-Water absorption refrigeration system. Int. J. Energy Res. 2009, 33, 1321–1340. [Google Scholar] [CrossRef]
- Xu, G.P.; Dai, Y.Q. Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller. Appl. Therm. Eng. 1997, 17, 157–170. [Google Scholar] [CrossRef]
- Farshi, L.G.; Mahmoudi, S.; Rosen, M.A. Analysis of crystallization risk in double effect absorption refrigeration systems. Appl. Therm. Eng. 2011, 31, 1712–1717. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Golmohammadi, H.; Shojaei, A.F. Performance analysis and optimization of new double effect lithium bromide-water absorption chiller with series and parallel flows. Int. J. Refrig. 2019, 97, 73–87. [Google Scholar] [CrossRef]
- Gomri, R. Second law comparison of single effect and double effect vapor absorption refrigeration system. Energy Convers. Manag. 2009, 50, 1279–1287. [Google Scholar] [CrossRef]
- Meraj, M.; Khan, M.; Imam, R. Thermodynamic Analysis of Single Effect Vapor Absorption Refrigeration Cycle. Int. J. Sci. Res. 2016, 5, 755–758. [Google Scholar]
- Aman, J.; Henshaw, P.; Ting, D. Modelling and Analysis of Bubble Pump Parameters for Vapor Absorption Refrigeration Systems. In Proceedings of the Conference: 2016 ASHRAE Annual Conference, St. Louis, MO, USA, 25–29 June 2016. [Google Scholar]
- Koppen Climate Classification. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 18 January 2022).
- Heating and Cooling Degree Days-Free Worldwide Data. Available online: https://www.degreedays.net/#generate (accessed on 18 January 2022).
- Klein, S.A. Calculation of flat-plate loss coefficients. Sol. Energy 1975, 17, 79. [Google Scholar] [CrossRef]
- Alrwashdeh, S.S.; Ammari, H. Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Stud. Therm. Eng. 2019, 16, 10. [Google Scholar] [CrossRef]
- Klein, S.; Duffie, J.; Beckman, W. Transient considerations of flat-plate solar collectors. Trans. ASME J. Eng. Power 1974, 96, 109–113. [Google Scholar] [CrossRef]
- Technical Note on Solar Thermal Capacity. Available online: https://view.officeapps.live.com/op/view.aspx?src=http%3A%2F%2Fwww.estif.org%2Ffileadmin%2Festif%2Fcontent%2Fpress%2Fdownloads%2FTechnical_note_solar_thermal_capacity-4.doc&wdOrigin=BROWSELINK (accessed on 18 January 2022).
- Montoya-Márquez, O.; Flores-Prieto, J.J. Heat Removal Factor in Flat Plate Solar Collectors: Indoor Test Method. Energies 2018, 11, 2783. [Google Scholar] [CrossRef] [Green Version]
- Nahar, N.M. Capital cost and economic viability of thermos syphon solar water heaters manufactured from alternate materials in India. Renew. Energy 2002, 26, 623–635. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Baruah, D.C. Solar air heater for residential space heating. Energy Ecol. Environ. 2017, 2, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Badar, A.W.; Buchholz, R.; Ziegler, F. Single and two-phase flow modeling and analysis of a coaxial vacuum tube solar collector. Sol. Energy 2012, 86, 175–189. [Google Scholar] [CrossRef]
- Zambolin, E.; Del Col, D. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 2010, 84, 1382–1396. [Google Scholar] [CrossRef]
- Zambolin, E.; Del Col, D. An improved procedure for the experimental characterization of optical efficiency in evacuated tube solar collectors. Renew. Energy 2012, 43, 37–46. [Google Scholar] [CrossRef]
- Evacuated Tube Solar Thermal Hot Water Systems. Available online: https://www.thegreenage.co.uk/article/how-do-evacuated-tube-solar-thermal-hot-water-systems-work/ (accessed on 18 January 2022).
- Yang, M.; Moghimi, M.A.; Zhu, Y.; Qiao, R.; Wang, Y.; Taylor, R.A. Optical and thermal performance analysis of a micro parabolic trough collector for building integration. Appl. Energy 2020, 260, 114234. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S. Year-round performance assessment of a solar parabolic trough collector under climatic condition of Bhiwani, India: A case study. Energy Convers. Manag. 2015, 106, 224–234. [Google Scholar] [CrossRef]
- Torres, H.M.; Carrillo, R.A.M.; Torres, N.M. Design and Construction of an Experimental Parabolic Trough Collector Using Low Cost Alternative Materials. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2021. [Google Scholar]
- Principle of Cylindrical Concentrators for Solar Energy. Available online: https://www.osti.gov/servlets/purl/5063714n (accessed on 18 January 2022).
- Hsieh, C.K. Thermal analysis of CPC collectors. Sol. Energy 1981, 27, 19–29. [Google Scholar] [CrossRef]
- Nashine, E.K.; Pisipaty, S.K. Thermal Analysis of a Compound Parabolic Collector. Int. J. Eng. Res. 2017, 6, 24–29. [Google Scholar]
- Gilani, H.A.; Hoseinzadeh, S. Techno-economic study of compound parabolic collector in SWH system in the northern hemisphere. Appl. Therm. Eng. 2021, 190, 116756. [Google Scholar] [CrossRef]
- García-Pabón, J.J.; Méndez-Méndez, D.; Belman-Flores, J.M.; Barroso-Maldonado, J.M.; Khosravi, A. A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle. Sustainability 2021, 13, 5864. [Google Scholar] [CrossRef]
- Electrical Energy Equipment: Refrigeration and Air Conditioning URL. Available online: https://www.academia.edu/16887222/Refrigeration_and_Air_Conditioning (accessed on 18 January 2022).
- Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. Eco-energetic Comparison of HVAC Systems in Data Centers. Climate 2021, 9, 42. [Google Scholar] [CrossRef]
- De Gouw, D.D.; Parrish, G.J.; Frost, M. Trainer. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future 2014, 2, 17. [Google Scholar] [CrossRef]
- Latif, S.N.A.; Chiong, M.S.; Rajoo, S.; Takada, A.; Chun, Y.; Tahara, K.; Ikegami, Y. The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix. Energies 2021, 14, 2200. [Google Scholar] [CrossRef]
- Hajny, K.D.; Salmon, O.E.; Rudek, J.; Lyon, D.R.; Stuff, A.A.; Stirm, B.H.; Kaeser, R.; Floerchinger, C.R.; Conley, S.; Smith, M.L.; et al. Observations of Methane Emissions from Natural Gas-Fired Power Plants. Environ. Sci. Technol. 2019, 53, 8976–8984. [Google Scholar] [CrossRef]
- Rubin, E.S. Toxic Releases from Power Plants. Environ. Sci. Technol. 1999, 33, 3062–3067. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.A.; Ali, O.M.; Noor, M.M. Mechanical vapor compression refrigeration system: Review part 1: Environment challenge. Int. J. Appl. Mech. Eng. 2020, 25, 30–147. [Google Scholar] [CrossRef]
- Chinnaraj, C.; Vijayan, R.; Govindarajan, P. Analysis of Ecofriendly Refrigerants Usage in Air-Conditioner. Am. J. Environ. Sci. 2011, 7, 510–514. [Google Scholar]
- Sukatme, S.P. ISolar Energy-Principles of Thermal Collection and Storage; Tata McGraw Hill: New Delhi, India, 1996. [Google Scholar]
- Land Prices in Nigeria. Available online: https://businessday.ng/real-estate/article/land-prices-to-rise-on-new-governments-housing-infrastructure-programmes/ (accessed on 14 February 2022).
- Real Estate Prices in Riyadh. Available online: https://www.argaam.com/en/article/articledetail/id/1494538 (accessed on 13 February 2022).
- Land Price-Beijing. Available online: https://www.ceicdata.com/en/china/land-price-city/cn-land-price-beijing#:~:text=Land%20Price%3A%20Beijing%20data%20was,Sep%202021%2C%20with%2071%20observations (accessed on 14 February 2022).
Main Attributes | Dependent Attribute | Basic Attribute | Units | ||||
---|---|---|---|---|---|---|---|
C1 | Thermal requirements (MINOR) | C11 | COP | C111 | Generator temperature (min) | K | |
C112 | Condenser temperature (max) | K | |||||
C113 | Evaporator temperature (min) | K | |||||
C12 | Absorber temp. | C121 | Absorber temperature (min) | K | |||
C13 | Heat rate | C131 | Generator Heat supplied (min) | kW | |||
C132 | Condenser heat rejection (max) | kW | |||||
C133 | Absorber heat rejection (min) | kW | |||||
C2 | Area and volume requirement (MINOR) | C21 | Installation Area | C211 | Solar collector area (min) | m2 | |
C212 | Cooling machine area (min) | m2 | |||||
C22 | Volume Requirements | C221 | Total machine volume (min) | m3 | |||
C222 | Thermal storage volume (min) | m3 | |||||
C3 | Costs (MAJOR) | C31 | Fixed cost | C311 | Installation cost cooler (min) | $ | |
C312 | Collector installation cost (min) | $ | |||||
C313 | Land cost (min) | $ | |||||
C32 | Variable cost | C321 | Maintenance cost (min) | $/year | |||
C33 | NPV | C331 | Net Present Value (min) | $ | |||
C4 | Auxiliary power (MINOR) | C41 | Pump power | C411 | Pumping power (min) | kW | |
C42 | Fan power | C421 | Fan Power (min) | kW | |||
C5 | Environmental effects (During 15-year life time) (MAJOR) | C51 Primary | C511 | Primary emissions 1 | C5111 | CO2 (min) | kg |
C5112 | CO (min) | kg | |||||
C512 | Primary emissions 2 | C5121 | SO2 (min) | kg | |||
C5122 | NOX (min) | kg | |||||
C52 Secondary | C521 | Secondary emissions 1 | C5211 | N2O (min) | kg | ||
C5212 | Particulate matter (min) | kg | |||||
C5213 | Mercury (min) | mg | |||||
C522 | Secondary emissions 2 | C5221 | Other heavy metals (min) | mg | |||
C5222 | CH4 (min) | mg | |||||
C53 Others | C531 | ODP (min) | μg/kW-h | ||||
C532 | GWP (min) | - | |||||
C533 | Noise produced | dB/kW |
Minimization Attributes | Maximization Attributes |
---|---|
Technical Requirement | Single Effect | Double Effect |
---|---|---|
Generator temperature | 60 to 80 °C | 120 to 140 °C |
Absorber temperature | 33 °C | 33 °C |
Condenser temperature | 30 °C | 30 °C |
Evaporator temperature | 5 °C | 5 °C |
COP | 0.7 to 0.8 | 1.2 to 1.5 |
Operating period | 24 h or day time only | 24 h or day time only |
Energy requirement (steam) | 8.164 kg/TR per hour | 4.53 kg/TR per hour |
Energy requirement (Natural gas) | 0.1 kg/h/TR | 0.3 kg/h/TR |
Auxiliary power requirement | 160 W/TR | 220 W/TR |
Cost | 1898→$/kW | 2600→$/kW |
Average Monthly Solar Radiation (W/m2) | Average Temperature (°C) | CDD at 18.3 °C Base Temperature | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Apr | May | Jun | Jul | Aug | Sep | Mar | Apr | May | Jun | Jul | Aug | Sep | Mar | Apr | May | Jun | Jul | Aug | Sep | |
Niger (Bsh) | 940 | 930 | 925 | 833 | 800 | - | - | 31.3 | 34.4 | 34.5 | 35.9 | 29.4 | - | - | 403 | 482 | 502 | 408 | 344 | - | - |
Riyadh (BWh) | - | - | 893 | 983 | 948 | 893 | 792 | - | - | 32.3 | 34.9 | 36.2 | 36 | 32.9 | - | - | 434 | 498 | 554 | 548 | 438 |
Beijing (Dwa) | - | - | 750 | 694 | 607 | 578 | 491 | - | - | 20.4 | 24.9 | 26.6 | 25.6 | 20.7 | - | - | 79 | 197 | 256 | 224 | 81 |
SWHSE | SAHSE | ETCSE | PTCSE | CPCSE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa |
C111 | 327.83 | 334.67 | 358 | 378.65 | 356.04 | 332.09 | 342.7 | 367.84 | 398.44 | 369.04 | 307.8 | 317.93 | 340.10 | 359.71 | 338.23 |
C112 | 305 | 308 | 320 | 329 | 318 | 308 | 312 | 324 | 338 | 325 | 290 | 293 | 304 | 313 | 302 |
C113 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 |
C121 | 305 | 308 | 320 | 329 | 318 | 308 | 312 | 324 | 338 | 325 | 290 | 293 | 304 | 313 | 302 |
C131 | 5.17 | 4.43 | 4.31 | 3.98 | 4.08 | 5.98 | 5.12 | 4.98 | 4.6 | 4.72 | 3.36 | 2.88 | 2.8 | 2.59 | 2.65 |
C132 | 7.6 | 7.675 | 7.89 | 7.81 | 7.34 | 7.8 | 7.90 | 8.1 | 8.13 | 7.5 | 7.26 | 7.67 | 7.89 | 7.81 | 7.34 |
C133 | 1.68 | 0.86 | 0.52 | 0.27 | 0.84 | 2.77 | 1.81 | 1.47 | 1.05 | 1.81 | 1.31 | 0.42 | 0.12 | 0.01 | 0.52 |
C211 | 22.55 | 24.92 | 20.78 | 24.24 | 22.1 | 28.19 | 38.68 | 25.66 | 28.91 | 25.82 | 14.65 | 25.94 | 13.50 | 15.75 | 14.36 |
C212 | 0.23 | 0.19 | 0.19 | 0.17 | 0.18 | 0.26 | 0.22 | 0.21 | 0.202 | 0.208 | 0.148 | 0.127 | 0.123 | 0.114 | 0.117 |
C221 | 0.121 | 0.14 | 0.115 | 0.118 | 0.115 | 0.121 | 0.14 | 0.115 | 0.12 | 0.11 | 0 | 0.14 | 0 | 0 | 0 |
C222 | 8.02 | 6.87 | 6.68 | 6.17 | 6.33 | 9.27 | 7.94 | 7.72 | 7.13 | 7.32 | 0 | 0 | 0 | 0 | 0 |
C311 | 2991.4 | 3150 | 2991.45 | 2905.9 | 2905.9 | 2991.45 | 3150 | 2991.45 | 2905.98 | 2905.98 | 3150.21 | 2991.45 | 2905.98 | 2905.98 | 3500.15 |
C312 | 4510 | 4790.4 | 8400.80 | 6762.9 | 3094 | 5638 | 5841.6 | 7661.5 | 8065.9 | 3614.8 | 2931.5 | 3113.76 | 4560.55 | 4395.92 | 2011.1 |
C313 | 42,226 | 39,341 | 44,782 | 45,303 | 34,897 | 60,759 | 53,624 | 40,528 | 62,214 | 48,283 | 23,175 | 55,762 | 25,276 | 24,864 | 30,937 |
C321 | 225.5 | 239.52 | 320.04 | 338.14 | 154.7 | 281.9 | 292.08 | 383.07 | 403.29 | 180.74 | 158 | 169 | 145 | 167 | 153 |
C331 | 23,550 | 40,920 | 21,780 | 25,240 | 23,100 | 40,873 | 40,745 | 61,703 | 71,668 | 45,068 | 43,247 | 41,687 | 68,571 | 37,442 | 34,933 |
C411 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
C421 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 7.268 | 7.675 | 7.896 | 7.814 | 7.346 |
C5111 | 676.5 | 718.5 | 935.1 | 872.6 | 729.3 | 1626.6 | 845.7 | 876.24 | 1154.7 | 1040.7 | 236.775 | 0 | 0 | 0 | 0 |
C5112 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.04 | 0 | 0 | 0 | 0 |
C5121 | 0.216 | 0.134 | 0.575 | 0.239 | 0.256 | 0.251 | 0.271 | 0.162 | 0.701 | 0.296 | 0.041 | 0 | 0 | 0 | 0 |
C5122 | 0.441 | 0.244 | 1.078 | 0.449 | 0.48 | 0.5 | 0.55 | 0.304 | 1.314 | 0.554 | 0.086 | 0 | 0 | 0 | 0 |
C5211 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5212 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0.055 | 0.095 | 0.05 | 0.056 | 0 | 0 | 0 | 0 | 0 |
C5213 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5222 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.015 | 0.027 | 0.014 | 0.017 | 0.015 |
C531 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C532 | 0 | 0 | 1300 | 0 | 0 | 0 | 0 | 0 | 1300 | 0 | 0 | 0 | 0 | 0 | 0 |
C533 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 |
SWHDE | SAHDE | ETCDE | PTCDE | CPCDE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa |
C111 | 344.72 | 352.24 | 352.21 | 378.65 | 376.44 | 353.38 | 368.52 | 384.64 | 398.44 | 391.8 | 387.484 | 334.62 | 353.59 | 359.71 | 357.61 |
C112 | 305 | 310 | 315 | 316 | 318 | 307 | 312 | 318 | 322 | 320 | 290 | 294 | 299 | 300 | 302 |
C113 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 | 278 |
C121 | 305 | 310 | 315 | 316 | 318 | 307 | 312 | 318 | 322 | 320 | 289 | 294 | 299 | 300 | 302 |
C131 | 3.65 | 3.45 | 2.82 | 2.39 | 2.59 | 4.22 | 3.99 | 3.26 | 2.76 | 2.99 | 2.37 | 2.24 | 1.83 | 1.55 | 1.68 |
C132 | 7.289 | 7.725 | 7.723 | 7.624 | 7.648 | 7.368 | 7.927 | 7.951 | 7.797 | 7.752 | 7.289 | 7.725 | 7.723 | 7.624 | 7.648 |
C133 | 0.97 | 0.33 | 0.30 | 0.63 | 0.46 | 1.94 | 1.15 | 0.40 | 0.05 | 0.32 | 0.80 | 0.23 | 0.23 | 0.04 | 0.15 |
C211 | 31.45 | 32.46 | 24.6 | 23.42 | 25.14 | 37.00 | 39.11 | 30.00 | 28.91 | 31.42 | 20.44 | 21.099 | 15.99 | 15.22 | 16.34 |
C212 | 0.16 | 0.15 | 0.12 | 0.10 | 0.11 | 0.19 | 0.17 | 0.14 | 0.12 | 0.13 | 0.10 | 0.10 | 0.08 | 0.07 | 0.07 |
C221 | 0.118 | 0.118 | 0.115 | 0.112 | 0.113 | 0.118 | 0.136 | 0.133 | 0.129 | 0.131 | 0 | 0.046 | 0.045 | 0.044 | 0.044 |
C222 | 5.66 | 5.35 | 4.37 | 3.7 | 4.01 | 6.54 | 6.18 | 5.06 | 4.28 | 4.63 | 0 | 0 | 0 | 0 | 0 |
C311 | 3500 | 3600 | 3500 | 3500 | 3500 | 3500 | 3600 | 3500 | 3500 | 3500 | 3600 | 3500 | 3500 | 3500 | 3500 |
C312 | 6290.00 | 3895.20 | 2658.8 | 6534.18 | 3519.60 | 7400.0 | 4693.2 | 32,340 | 8065.89 | 4398.80 | 4088.5 | 2531.88 | 17,237.22 | 4247.217 | 2287.74 |
C313 | 38,000 | 40,110 | 31,000 | 29,910 | 30,420 | 38,000 | 40,110 | 31,000 | 29,910 | 30,420 | 20,442 | 26,594 | 86,186 | 21,236 | 23,872 |
C321 | 314.5 | 194.7 | 1325.94 | 326.70 | 175.98 | 370 | 234.66 | 1617 | 403.29 | 219.94 | 214 | 220 | 169 | 162 | 173 |
C331 | 32,450 | 33,460 | 25,600 | 24,420 | 26,140 | 52,740 | 50,839 | 83,624 | 45,662 | 42,602 | 47,572 | 45,857 | 75,429 | 41,187 | 38,427 |
C411 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
C421 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 7.289 | 7.725 | 7.723 | 7.624 | 7.648 |
C5111 | 943.5 | 584.2 | 1107 | 843.1 | 829.6 | 1110 | 703.98 | 1350 | 1040.76 | 1036.86 | 0 | 0 | 0 | 0 | 0 |
C5112 | 0.022 | 0.013 | 0.025 | 0.019 | 0.019 | 0.026 | 0.016 | 0.031 | 0.024 | 0.024 | 0 | 0 | 0 | 0 | 0 |
C5121 | 0.212 | 0.181 | 0.467 | 0.283 | 0.247 | 0.248 | 0.213 | 0.563 | 0.346 | 0.305 | 0 | 0 | 0 | 0 | 0 |
C5122 | 0.398 | 0.34 | 0.876 | 0.531 | 0.464 | 0.465 | 0.4 | 1.056 | 0.648 | 0.572 | 0 | 0 | 0 | 0 | 0 |
C5211 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5212 | 0 | 0 | 0 | 0 | 0 | 0.072 | 0.076 | 0.059 | 0.056 | 0.061 | 0 | 0 | 0 | 0 | 0 |
C5213 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C5222 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021 | 0.022 | 0.017 | 0.016 | 0.017 |
C531 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C532 | 0 | 0 | 1300 | 0 | 0 | 0 | 0 | 1300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C533 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 0 | 0 | 0 | 0 | 0 |
Attribute | Niger (Bsh) | Riyadh (BWh) | Beijing (DWA) |
---|---|---|---|
C111 | 0 | 0 | 0 |
C112 | 323 | 303 | 298 |
C113 | 278 | 278 | 278 |
C121 | 0 | 0 | 303 |
C131 | 0 | 0 | 0 |
C132 | 7.5 | 7.5 | 6 |
C133 | 0 | 0 | 0 |
C211 | 0 | 0 | 0 |
C212 | 0 | 0 | 0 |
C221 | 0.5 | 0.5 | 0 |
C222 | 0 | 0 | 0 |
C311 | 1585 | 1995 | 2453 |
C312 | 0 | 0 | 0 |
C313 | 1000 | 1200 | 704 |
C321 | 858.4 | 1150 | 820 |
C331 | 11,479.9 | 13,776 | 11,296 |
C411 | 0 | 0 | 0 |
C421 | 0.5 | 1 | 6 |
C5111 | 3636.6 | 4364 | 1044 |
C5112 | 0.6 | 1 | 0 |
C5121 | 0.75 | 1 | 0 |
C5122 | 0.15 | 0 | 0 |
C5211 | 5.55 | 7 | 1 |
C5212 | 10.2 | 12 | 0 |
C5213 | 11.4 | 14 | 0 |
C5221 | 409.65 | 492 | 99 |
C5222 | 27.31 | 33 | 3 |
C531 | 1 × 10−5 | 0 | 9 |
C532 | 1300 | 1560 | 336 |
C533 | 14.25 | 17 | 22 |
Attribute | SWHSE | SAHSE | ETCSE | PTCSE | CPCSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa |
C111 | VGD | VGD | VGD | GDD | GDD | VGD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C112 | VGD | GDD | GDD | GDD | ACC | GDD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C113 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C121 | VGD | GDD | GDD | ACC | ACC | GDD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C131 | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C132 | GDD | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | VGD | GDD | GDD |
C133 | UNC | UNC | UNC | UNC | UNC | UNC | ACC | UNC | UNC | VGD | UNC | UNC | UNC | UNC | UNC |
C211 | GDD | ACC | ACC | UNC | UNC | ACC | VGD | VGD | VGD | UNC | UNC | UNC | GDD | GDD | GDD |
C212 | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | ACC | UNC | UNC | ACC | UNC | UNC |
C221 | UNC | ACC | ACC | GDD | UNC | ACC | GDD | VGD | VGD | ACC | GDD | GDD | VGDD | VGD | VGD |
C222 | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C311 | ACC | GDD | GDD | UNC | ACC | GDD | GDD | GDD | GDD | GDD | VGD | VGD | UNC | VGD | VGD |
C312 | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | VGD | VGD | VGD |
C313 | UNC | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | VGD | VGD | VGD |
C321 | ACC | ACC | ACC | UNC | UNC | ACC | VGD | VGD | VGD | UNC | UNC | UNC | GDD | GDD | GDD |
C331 | GDD | GDD | GDD | UNC | UNC | GDD | UNC | UNC | UNC | ACC | ACC | ACC | VGD | VGD | VGD |
C411 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C421 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5111 | GDD | GDD | GDD | UNC | UNC | GDD | UNC | UNC | UNC | UNC | UNC | UNC | ACC | ACC | ACC |
C5112 | ACC | ACC | ACC | GDD | GDD | ACC | UNC | UNC | UNC | UNC | UNC | UNC | GDD | GDD | GDD |
C5121 | ACC | ACC | ACC | VGD | VGD | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C5122 | UNC | UNC | UNC | VGD | VGD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C5211 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5212 | GDD | GDD | GDD | UNC | UNC | GDD | VGD | VGD | VGD | UNC | UNC | UNC | VGD | VGD | VGD |
C5213 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5221 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5222 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C531 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C532 | VGD | VGD | VGD | VGD | VGD | VGD | GDD | GDD | GDD | VGD | VGD | VGD | VGD | VGD | VGD |
C533 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
Attribute | SWHDE | SAHDE | ETCDE | PTCDE | CPCDE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ci | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa | Bsh | BWh | DWa |
C111 | ACC | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C112 | GDD | VGD | VGD | ACC | ACC | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C113 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C121 | GDD | VGD | VGD | ACC | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | GDD | GDD |
C131 | ACC | UNC | UNC | GDD | UNC | UNC | GDD | ACC | ACC | VGD | VGD | VGD | VGD | GDD | GDD |
C132 | VGD | VGD | VGD | ACC | UNC | UNC | ACC | UNC | UNC | GDD | UNC | UNC | UNC | ACC | ACC |
C133 | UNC | UNC | UNC | GDD | UNC | UNC | GDD | ACC | ACC | UNC | VGD | VGD | ACC | GDD | GDD |
C211 | UNC | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC |
C212 | ACC | UNC | UNC | GDD | UNC | UNC | GDD | ACC | ACC | VGD | GDD | GDD | VGD | VGD | VGD |
C221 | UNC | GDD | GDD | UNC | UNC | UNC | GDD | UNC | UNC | VGD | UNC | UNC | GDD | VGD | VGD |
C222 | ACC | UNC | UNC | ACC | UNC | UNC | GDD | ACC | ACC | VGD | VGD | VGD | GDD | GDD | GDD |
C311 | UNC | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | VGD | VGD |
C312 | UNC | UNC | UNC | GDD | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | GDD | GDD | GDD |
C313 | UNC | UNC | UNC | GDD | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | GDD | GDD | GDD |
C321 | UNC | UNC | UNC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C331 | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C411 | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD | GDD |
C421 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5111 | UNC | UNC | UNC | VGD | VGD | VGD | UNC | UNC | UNC | UNC | UNC | UNC | VGD | VGD | VGD |
C5112 | UNC | UNC | UNC | VGD | VGD | VGD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C5121 | UNC | UNC | UNC | GDD | GDD | GDD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C5122 | ACC | ACC | ACC | GDD | GDD | GDD | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
C5211 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5212 | UNC | UNC | UNC | VGD | VGD | VGD | UNC | UNC | UNC | ACC | ACC | ACC | UNC | UNC | UNC |
C5213 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5221 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C5222 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C531 | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD | VGD |
C532 | VGD | VGD | VGD | VGD | VGD | VGD | GDD | GDD | GDD | VGD | VGD | VGD | VGD | VGD | VGD |
C533 | ACC | ACC | ACC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC | UNC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneesamkandi, Z.; Almujahid, A.; Salim, B. Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach. Energies 2022, 15, 1882. https://doi.org/10.3390/en15051882
Kaneesamkandi Z, Almujahid A, Salim B. Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach. Energies. 2022; 15(5):1882. https://doi.org/10.3390/en15051882
Chicago/Turabian StyleKaneesamkandi, Zakariya, Abdulaziz Almujahid, and Basharat Salim. 2022. "Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach" Energies 15, no. 5: 1882. https://doi.org/10.3390/en15051882
APA StyleKaneesamkandi, Z., Almujahid, A., & Salim, B. (2022). Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach. Energies, 15(5), 1882. https://doi.org/10.3390/en15051882