Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Literature Search Strategy, Inclusion Criteria, and Analysis of Study Findings
2.2. Limitations of the Study
3. Results of the Preliminary Paper Selection
3.1. Mapping of the Publications in the Field of Research
3.2. Time Evolution of the Publications
4. Results of the High-Cited Papers
4.1. Energy in the Food System
4.2. Energy Recovery from Food Loss and Waste
4.3. The Water–Energy–Food Nexus in Food Supply Chain
4.4. Life Cycle Assessment as a Methodological Approach
5. Findings of the Study and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
FLW | Food Loss and Waste |
GHG | Greenhouse Gas |
LCA | Life Cycle Assessment |
SDG | Sustainable Development Goals |
WEF | Water–Energy–Food |
References
- Carlsson-Kanyama, A.; Ekström, M.; Shanahan, H. Food and life cycle energy inputs: Consequences of diet and ways to increase efficiency. Ecol. Econ. 2003, 44, 293–307. [Google Scholar] [CrossRef]
- Hoehn, D.; Margallo, M.; Laso, J.; García-Herrero, I.; Bala, A.; Fullana-i-Palmer, P.; Irabien, A.; Aldaco, R. Energy embedded in food loss management and in the production of uneaten food: Seeking a sustainable pathway. Energies 2019, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- Infante-Amate, J.; González de Molina, M. “Sustainable de-growth” in agriculture and food: An agro-ecological perspective on Spain’s agri-food system (Year 2000). J. Clean. Prod. 2013, 38, 27–35. [Google Scholar] [CrossRef]
- Cuellar, D.; Webber, E. Wasted Food, Wasted Energy: The Embedded Energy in Food Waste in the United States. Environ. Sci. Technol. 2010, 44, 6464–6469. [Google Scholar] [CrossRef]
- Lin, B.; Chappell, M.; Vandermeer, J.; Smith, G.; Quintero, E.; Bezner-Kerr, R.; Griffith, D.; Ketcham, S.; Latta, S.; McMichae, P.; et al. Effects of industrial agriculture on global warming and the potential of small-scale agroecological techniques to reverse those effects. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 020. [Google Scholar]
- Vittuari, M.; De Menna, F.; Pagani, M. The Hidden Burden of Food Waste: The Double Energy Waste in Italy. Energies 2016, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Markussen, M.V.; Østergård, H. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency. Energies 2013, 6, 4170–4186. [Google Scholar] [CrossRef] [Green Version]
- OECD. Improving Energy Efficiency in the Agro-Food Chain; OECD Green Growth Studies; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Simpson, G.B.; Jewit, G.P.W. The Development of the Water-Energy-Food Nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Irabien, A.; Darton, R.C. Energy-water-food nexus in the Spanish greenhouse tomato production. Clean. Technol. Environ. Policy 2016, 18, 1307–1316. [Google Scholar] [CrossRef]
- Hoehn, D.; Laso, J.; Cristóbal, J.; Ruiz-Salmón, I.; Butnar, I.; Borrion, A.; Bala, A.; Fullana-i-Palmer, P.; Vázquez-Rowe, I.; Aldaco, R.; et al. Regionalized strategies for food loss and waste management in Spain under a life cycle thinking approach. Foods 2020, 9, 1765. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ríos, A.; Laso, J.; Campos, C.; Ruiz-Salmón, I.; Hoehn, D.; Cristóbal, J.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Puig, R.; et al. Towards a Water-Energy-Food (WEF) nexus index: A review of nutrient profile models as a fundamental pillar of food and nutrition security. Sci. Total Environ. 2021, 789, 147936. [Google Scholar] [CrossRef] [PubMed]
- Raghava, G.P.S. Is citation a good criterion? Nat. India 2009, 133. [Google Scholar] [CrossRef]
- Abeles, T.P.; Ellsworth, D.; Genereux, J.P. Technology assessment of farm scale anaerobic digestion systems. J. Geophys. Res. 1979, 4, 1940–1948. [Google Scholar]
- Slesser, M. Energy subsidy as a criterion in food policy planning. J. Sci. Food Agric. 1973, 24, 1193–1207. [Google Scholar] [CrossRef]
- Giampietro, M. Energy analysis of agricultural ecosystem management: Human reutrn and sustainability. Agric. Ecosyst. Environ. 1992, 38, 219–244. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Cumulative energy and global warming impact from the production of biomass for biobased products. J. Ind. Ecol. 2004, 7, 147–162. [Google Scholar] [CrossRef]
- Schlich, E.H.; Fleissner, U. The ecology of scale: Assessment of regional energy turnover and comparison with global food. Int. J. LCA 2005, 10, 219–223. [Google Scholar] [CrossRef]
- Piringer, G.; Steinberg, L.J. Reevaluation of energy use in wheat production in the United States. Ind. Ecol. 2006, 10, 149–167. [Google Scholar] [CrossRef]
- Lakshmi, S.; Chakkaravarthi, A.; Subramanian, R.; Singh, V. Energy consumption in microwave cooking of rice and its comparison with other domestic appliances. J. Food Eng. 2007, 78, 715–722. [Google Scholar] [CrossRef]
- Hermes, C.J.L.; Melo, C.; Knabben, F.T.; Gonçalves, J.M. Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation. Appl. Energy 2009, 86, 1311–1319. [Google Scholar] [CrossRef]
- Mushtaq, S.; Maraseni, T.N.; Maroulis, J.; Hafeez, M. Energy and water tradeoffd in enhancing food security: A selective international assessment. Energy Policy 2009, 37, 3635–3644. [Google Scholar] [CrossRef] [Green Version]
- Sogut, Z.; Ilten, N.; Oktay, Z. Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production. Energy 2010, 35, 3821–3826. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. The energy and environmental impacts of Italian households consumptions: An input-output approach. Renew. Sust. Energy Rev. 2011, 15, 3897–3908. [Google Scholar] [CrossRef]
- Bogdanski, A. Integrated food-energy systems for climate-smart agriculture. Agric. Food Secur. 2012, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Comparing energy balances, greenhouse gas balances and biodiversity impacts of constrating farming systems with alternative land uses. Agric. Syst. 2012, 108, 42–49. [Google Scholar] [CrossRef]
- Evans, J.A.; Hammond, E.C.; Gigiel, A.J.; Fostera, A.M.; Reinholdt, L.; Fikiin, K.; Zilio, C. Assessment of methods to reduce the energy consumption of food cold stores. Appl. Therm. Eng. 2014, 62, 697–705. [Google Scholar] [CrossRef]
- Sarauskis, E.; Buragiene, S.; Masilionyte, L.; Romaneckas, K.; Avizienyte, D.; Sakalauskas, A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014, 69, 227–235. [Google Scholar] [CrossRef]
- Pairotti, M.B.; Kim Cerutti, A.; Martini, F.; Vesce, E.; Padovan, D.; Beltramo, R. Energy consumption and GHG emission of the Mediterranean diet: A systematic assessment using a hybrid LCA-IO method. J. Clean. Prod. 2015, 103, 507–516. [Google Scholar] [CrossRef]
- Blancke, M.; Burdick, B. Food (Miles) for thought-energy balance for locally grown versus imported Apple fruit. Environ. Sci. Pollut. Res. 2005, 12, 125–127. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sust. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Daccache, A.; Ciurana, J.S.; Díaz, J.A.R.; Knox, J. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Taner, T.; Sivrioglu, M. Energy-exergy analysis and optimisation of a model sugar factory in Turkey. Energy 2015, 93, 641–654. [Google Scholar] [CrossRef]
- De Nicola, F.; De Pace, P.; Hernandez, M.A. Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Econ. 2016, 57, 28–41. [Google Scholar] [CrossRef]
- Eriksson, M.; Spangberg, J. Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets. Waste Manag. 2017, 60, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K.W. Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. J. Clean. Prod. 2019, 217, 742–756. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; van der Meer, T. The water footprint and energy from biomass: A quantitative assessment and consequences of increasing share of bio-energy in energy supply. Ecol Econ. 2009, 68, 1052–1060. [Google Scholar] [CrossRef]
- Cooper, J.M.; Butler, G.; Leifert, C. Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, with and without bio-energy options. NJAS Wagen. J. Life Sc. 2011, 58, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Banks, C.J.; Salter, A.M.; Heaven, S.; Riley, K. Energetic and environmental benefits of co-digestion of food waste and cattle slurry: A preliminary assessment. Resour. Conserv. Recycl. 2011, 56, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Ramzan, N.; Ashraf, A.; Naveed, S.; Malik, A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy 2011, 35, 3962–3969. [Google Scholar] [CrossRef]
- Shie, J.L.; Chang, C.Y.; Chen, C.S.; Shaw, D.G.; Chen, Y.H.; Kuan, W.H. Energy life cycle assessment of rice Straw bio-energy derived from potential gasification technologies. Bioresour. Technol. 2011, 102, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Norén, O.; Hansson, P.A. Biomass from agriculture in small-scale combined heat and power plants—A comparative life cycle assessment. Biomass Bioenergy 2011, 35, 1572–1581. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestión of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, G.M.; Howe, J. Energy from waste and the food processing industry. Process. Saf. Environ. 2012, 90, 203–212. [Google Scholar] [CrossRef]
- Bernstad, A.; La Cour-Jansen, J. Separate collection of household food waste for anaerobic degradation—Comparison of different techniques from a systems perspective. Waste Manag. 2012, 32, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Zubaryeva, A.; Zaccarelli, N.; Del Giudice, C.; Zurlini, G. Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion—Mediterranean case study. Renew. Energy 2012, 39, 261–270. [Google Scholar] [CrossRef]
- Rajagopal, R.; Saady, N.M.C.; Torrijos, M.; Thanikal, J.V.; Hung, Y.T. Sustainable Agro-Food industrial wastewater treatment using high rate anaerobic process. Water 2013, 5, 292–311. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Song, H.B.; Song, Y.; Jeong, I.T.; Kim, J.W. Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. Int. J. Energy Environ. 2013, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Ebner, J.; Babbitt, C.; Winer, M.; Hilton, B.; Williamson, A. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl. Energy 2014, 130, 86–93. [Google Scholar] [CrossRef]
- Vandermeersch, T.; Alverenga, R.A.F.; Ragaert, P.; Dewulf, J. Environmental sustainability assessment of food waste valorization options. Resour. Conserve Recycl. 2014, 87, 57–64. [Google Scholar] [CrossRef]
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- Angelonidi, E.; Smith, S.R. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015, 29, 549–557. [Google Scholar] [CrossRef]
- Styles, D.; Gibbons, J.; Williams, A.P.; Dauber, J.; Stichnothe, H.; Urban, B.; Chadwick, D.R.; Joens, D.L. Consequential life cycle assessment of biogas, biofuel and biomass energy options within an arable crop rotation. GCB Bioenergy 2015, 7, 1305–1320. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Shi, W.; Hong, J.; Zhang, F.; Chen, W. Life cycle assessment of food waste-based biogas generation. Renew. Sustain. Energy Rev. 2015, 49, 169–177. [Google Scholar] [CrossRef]
- Bacenetti, J.; Duca, D.; Negri, M.; Fusi, A.; Fiala, M. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Sci. Total Environ. 2015, 526, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, T.; Chen, X.; Yu, Z. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Appl. Energy 2015, 151, 227–236. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Astrup, T.F. Environmental implications of the use of agro-industrial residues for biorefineries: Application of a deterministic model for indirect land-use changes. GCB Bioenergy 2015, 8, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Voelklein, M.A.; Jacob, A.; O’Shea, R.; Murphy, J.D. Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 2016, 202, 172–180. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Moreira, M.T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Waqas, M.; Nizami, A.S.; Aburiazaiza, A.S.; Barakat, M.A.; Ismail, I.M.I.; Rashid, M.I. Optimization of food waste compost with the use of biochar. J. Environ. Manag. 2018, 215, 70–81. [Google Scholar] [CrossRef]
- Ingrao, C.; Faccilongo, N.; Di Goia, L.; Messineo, A. Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment. J. Clean. Prod. 2018, 184, 869–892. [Google Scholar] [CrossRef]
- Xiao, B.; Qin, Y.; Zhang, W.; Wu, J.; Qiang, H.; Liu, J.; Li, Y.Y. Temperature-phased anaerobic digestión of food waste: A comparison with single-stage digestions based on performance and energy balance. Bioresour. Technol. 2018, 249, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, G.; Selvaggi, R.; D´Amico, M.; Pecorino, B. Assessment of the potential energy supply and biomethane from the anaerobic digestion of agro-food feedstocks in Sicily. Renew. Sustain. Energy Rev. 2018, 83, 6–13. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestión of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef] [PubMed]
- Rajaeifar, M.A.; Hemayati, S.S.; Tabatabaei, M.; Aghbashlo, M.; Mahmoudi, S.B. A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. Renew. Sustain. Energy Rev. 2019, 103, 423–442. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food waste valorization advocating Circular Bioeconomy—A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Hermann, S.; Welsch, M.; Segerstrom, R.E.; Howells, M.I.; Young, C.; Alfstad, T.; Rogner, H.H.; Steduto, P. Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: An analysis of agricultural intensification and bioenergy production. Nat. Resour. Forum. 2012, 36, 245–262. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency. Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Burkinshaw, R.; Azapagic, A. Environmental sustainability issues in the food-energy-water nexus: Breakfast cereals and snacks. Sustain. Prod. Consum. 2015, 2, 17–28. [Google Scholar] [CrossRef]
- Pacetti, T.; Lombardi, L.; Federici, G. Water-energy Nexus: A case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 2015, 101, 278–291. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Wi, S.; Ray, P.A.; Brown, C.M.; Khalil, A.F. The future nexus of the Brahmaputre River Basin: Climate, water, energy and food trajectories. Glob. Environ. Chang. 2016, 37, 16–30. [Google Scholar] [CrossRef] [Green Version]
- De Laurentiis, V.; Hunt, D.V.L.; Rogers, C.D.F. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Al-Saidi, M.; Elagib, N.A. Towards understanding the integrative approach of the water, energy and food nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus un Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef]
- Giupponi, C.; Gain, A.K. Integrated spatial assessment of the water, energy and food dimensions of the Sustainable Development Goals. Reg. Environ. Chang. 2017, 17, 1881–1893. [Google Scholar] [CrossRef]
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Integration of greenhouse gas control technologies within the energy. Water and food nexus to enhance the environmental performance of food production systems. J. Clean. Prod. 2017, 162, 1592–1606. [Google Scholar] [CrossRef]
- Ramaswami, A.; Boyer, D.; Nagpure, A.S.; Fang, A.; Bogra, S.; Bakshi, B.; Cohen, E.; Rao-Ghorpade, A. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environ. Res. Lett. 2017, 12, 025008. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.A.; Crenna, E.; Sala, S.; Udias, A. A proposal for integration of the ecosystem-water-food-land. J. Clean. Prod. 2018, 172, 3874–3889. [Google Scholar] [CrossRef]
- Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamat catchment, UK. Resour. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- De Amorim, W.S.; Valduga, I.B.; Ribeiro, J.M.P.; Williamson, V.G.; Krauser, G.E.; Magtoto, M.K.; de Andrade Guerra, J.B.S.O. The nexus between water, energy, and food in the context of the global risks: An analysis of the interactions between food, water, and energy security. Environ. Impact Assess. Rev. 2018, 72, 1–11. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Nhamo, L.; Ndlela, B.; Nhemachena, C.; Mabhaudhi, T.; Mpandeli, S.; Matchaya, G. The Water-Energy-Food Nexus: Climate risks opportunities in Southern Africa. Water 2018, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Nie, Y.; Avraamidou, S.; Xiao, X.; Pistikopoulos, E.N.; Li, J.; Zeng, Y.; Song, F.; Yu, J.; Zhu, M. A Food-Energy-Water Nexus approach for land use optimization. Sci. Total Environ. 2019, 659, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Pastor, A.V.; Palazzo, A.; Havlik, P.; Biemands, H.; Wada, Y.; Obersteiner, M.; Kabat, P.; Ludwig, F. The global nexus of food-trade-water sustaining environmental flows by 2050. Nature 2019, 2, 499–507. [Google Scholar] [CrossRef] [Green Version]
Publication Year | Paper Reference | Scope | Methodology | Food Assessment | ||||
---|---|---|---|---|---|---|---|---|
Global | International | National | Regional | Local | ||||
1973 | Slesser [16] | x | Energy subsidy | General | ||||
1992 | Giampietro [17] | x | Energy analysis | General | ||||
2004 | Kim and Dale [18] | x | LCA | Corn/soybean/alfalfa | ||||
2005 | Schlich and Fleissner [19] | x | LCA | General | ||||
2006 | Piringer and Steinberg [20] | x | Input/output model | Wheat production | ||||
2007 | Lakshmi et al. [21] | x | Experiments | Rice cooking | ||||
2008 | Hernes et al. [22] | x | Model | General | ||||
2009 | Mushtaq et al. [23] | x | Energy balance | Rice cultivation | ||||
2010 | Sogut [24] | x | Energy/exergy | Tomato paste | ||||
2011 | Cellura et al. [25] | x | LCA | General | ||||
2012 | Bogdanski [26] | x | Review | General | ||||
Tuomisto et al. [27] | x | LCA | General | |||||
2013 | Evans et al. [28] | x | Energy audits | General | ||||
2014 | Sarauskis et al. [29] | x | Energy/cost/CO2 | Maize | ||||
Pairotti et al. [30] | x | LCA | General | |||||
Blanke and Burdich [31] | x | Energy balance | Apple fruit | |||||
Popp et al. [32] | x | Meta-analysis | General | |||||
Daccache et al. [33] | x | Water/CO2 | Mediterranean crops | |||||
2015 | Taner and Sivrioglu [34] | x | Energy/exergy | Sugar | ||||
2016 | De Nicola et al. [35] | x | Time series | 8 food commodities | ||||
2017 | Eriksson and Spångberg [36] | x | Energy use/CO2 | Fresh fruit and vegetables | ||||
2019 | Nabavi–Pelesaraei et al. [37] | x | LCA | Rice milling |
Publication Year | Paper Reference | Scope | Methodology | Food Assessment | ||||
---|---|---|---|---|---|---|---|---|
Global | International | National | Regional | Local | ||||
2009 | Gerbens–Leenes et al. [38] | x | Water footprint | General | ||||
2011 | Cooper and Leifert [39] | x | LCA | General | ||||
Banks et al. [40] | x | Data/modelling | Dairy cattle slurry | |||||
Ramzan et al. [41] | x | ASPEN Plus | General | |||||
Shie et al. [42] | x | LCA | ||||||
Kimming et al. [43] | x | LCA | General | |||||
Banks et al. [44] | x | Experimental plant | General | |||||
2012 | Hall and Howe [45] | x | LCA | General | ||||
Bernstad and la Cour Jansen [46] | x | LCA | General | |||||
Zubaryeva et al. [47] | x | Multicriteria Analysis | General | |||||
2013 | Rajagopal et al. [48] | x | Review | General | ||||
Kim et al. [49] | x | LCA | General | |||||
Ebner et al. [50] | x | LCA | General | |||||
Vandermeersch et al. [51] | x | LCA | General | |||||
Hamelin et al. [52] | x | LCA | Six co-substrates | |||||
2015 | Angelondi and Smith [53] | x | Data/Interviews | General | ||||
Styles et al. [54] | x | LCA | General | |||||
Xu et al. [55] | x | LCA | General | |||||
Bacenetti et al. [56] | x | LCA | Tomato purée products | |||||
Jin et al. [57] | x | LCA | General | |||||
Tonini et al. [58] | x | LCA | General | |||||
2016 | Voelklein et al. [59] | x | Experimental lab | General | ||||
2017 | Lijó et al. [60] | x | LCA | General | ||||
2018 | Wapas et al. [61] | x | Experimental setup | General | ||||
Ingrao et al. [62] | x | Review | General | |||||
Xiao et al. [63] | x | Experimental setup | General | |||||
Chinnici et al. [64] | x | Estimations | General | |||||
2019 | Slorach et al. [65] | x | LCA | General | ||||
Ali Rajaeifar et al. [66] | x | LCA | Beet sugar industry | |||||
Zabaniotou and Kamaterou [67] | x | Review | Coffee grounds |
Publication Year | Paper Reference | Scope | Methodology | Food Assessment | ||||
---|---|---|---|---|---|---|---|---|
Global | International | National | Regional | Local | ||||
2012 | Hermann et al. [68] | x | Review | General | ||||
2013 | Ringler et al. [69] | x | Review | General | ||||
2015 | Jeswani et al. [70] | x | LCA | Cereals/snacks | ||||
Pacetti et al. [71] | x | LCA | Maize/sorghum/wheat | |||||
2016 | Keairns et al. [72] | x | LCA | General | ||||
Yang et al. [73] | x | Water system model | General | |||||
De Laurentiis et al. [74] | x | LCA | General | |||||
2017 | Al-Saidi and Elagib [75] | x | Review | General | ||||
Miller–Robbie et al. [76] | x | LCA | General | |||||
Giupponi and Gain [77] | x | Indicator-based approach | General | |||||
Al-Ansari et al. [78] | x | LCA | General | |||||
Ramaswami et al. [79] | x | Environmental footprint | General | |||||
2018 | Karabulut et al. [80] | x | LCA | General | ||||
Salmoral and Yan [81] | x | LCA | General | |||||
De Amorim et al. [82] | x | WEF Global Risks Report | General | |||||
Albrecht et al. [83] | x | Review | General | |||||
Nhamo et al. [84] | x | Review | General | |||||
Zhang et al. [85] | x | Review | General | |||||
2019 | Nie et al. [86] | x | Multi-objective optimization | General | ||||
Pastor et al. [87] | x | GBM Model | General | |||||
Simpson and Jewitt [9] | x | Review | General |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoehn, D.; Margallo, M.; Laso, J.; Fernández-Ríos, A.; Ruiz-Salmón, I.; Aldaco, R. Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review. Energies 2022, 15, 2234. https://doi.org/10.3390/en15062234
Hoehn D, Margallo M, Laso J, Fernández-Ríos A, Ruiz-Salmón I, Aldaco R. Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review. Energies. 2022; 15(6):2234. https://doi.org/10.3390/en15062234
Chicago/Turabian StyleHoehn, Daniel, María Margallo, Jara Laso, Ana Fernández-Ríos, Israel Ruiz-Salmón, and Rubén Aldaco. 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review" Energies 15, no. 6: 2234. https://doi.org/10.3390/en15062234
APA StyleHoehn, D., Margallo, M., Laso, J., Fernández-Ríos, A., Ruiz-Salmón, I., & Aldaco, R. (2022). Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review. Energies, 15(6), 2234. https://doi.org/10.3390/en15062234