Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Research Methodology
- -
- models that use traffic parameters, such as acceleration, braking, continuous driving, and idling (micro and meso scales),
- -
- models that are based on the average speed parameter (macro).
- -
- V0, as a counterfactual scenario, including emissions from the old fleet of buses (no P&R service, additional travel of passenger cars included),
- -
- V1, as a current situation scenario, including emissions from the new low-emission fleet of buses (no additional passenger cars included due to the existing P&R service).
2.1. Description of the Researched Area
2.2. Description of the Analysed Fleet of Vehicles
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CH4 | Methane |
CNG | Compressed natural gas |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
CO2e | Carbon dioxide equivalent |
ΔE | Annual decrease in pollutant emissions resulting from project implementation |
E0 | Pre-project emissions |
E1 | Pollutant emissions after project implementation |
Ei | Emissions of exhaust component i |
EFi,j,m | Emission factor of component i for vehicle category j and fuel m |
EGD | European Green Deal |
FCj,m | Fuel consumption of a given vehicle category j, using fuel m |
GWP | Global warming potential |
LPG | Liquefied petroleum gas |
N2O | Nitrous oxide |
O3 | Ozone |
P&R | Park & Ride |
PM10 | Particulate matter with a diameter of 10 μm or less |
Appendix A
Lp. | Old Bus Type | Production Year | EURO Standard | Curb Weight (t) | Replaced New Bus Type | Production Year | EURO Standard | Curb Weight (t) |
---|---|---|---|---|---|---|---|---|
1 | Bus type 1 | 1996 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
2 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
3 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
4 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
5 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
6 | Bus type 1 | 1997 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
7 | Bus type 1 | 1995 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
8 | Bus type 1 | 1995 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
9 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
10 | Bus type 1 | 2000 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
11 | Bus type 1 | 1997 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
12 | Bus type 1 | 2001 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
13 | Bus type 1 | 2001 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
14 | Bus type 1 | 1997 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
15 | Bus type 1 | 1999 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
16 | Bus type 1 | 1998 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
17 | Bus type 1 | 2001 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
18 | Bus type 1 | 1998 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
19 | Bus type 1 | 2001 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
20 | Bus type 1 | 1995 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
21 | Bus type 1 | 1998 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
22 | Bus type 1 | 1999 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
23 | Bus type 1 | 1998 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
24 | Bus type 1 | 1998 | - | 10.5 | Bus type 7 | 2018 | VI | 10.6 |
25 | Bus type 1 | 2001 | - | 10.5 | Bus type 7 | 2019 | VI | 10.6 |
26 | Bus type 1 | 2002 | - | 10.5 | Bus type 7 | 2019 | VI | 10.6 |
27 | Bus type 1 | 2002 | - | 10.5 | Bus type 7 | 2019 | VI | 10.6 |
28 | Bus type 1 | 2002 | - | 10.5 | Bus type 7 | 2019 | VI | 10.6 |
29 | Bus type 1 | 2002 | - | 10.5 | Bus type 7 | 2019 | VI | 10.6 |
30 | Bus type 2 | 1999 | II | 7.7 | Bus type 7 | 2019 | VI | 10.6 |
31 | Bus type 2 | 1999 | II | 7.7 | Bus type 7 | 2019 | VI | 10.6 |
32 | Bus type 2 | 1999 | II | 7.7 | Bus type 7 | 2019 | VI | 10.6 |
33 | Bus type 2 | 1999 | II | 7.7 | Bus type 7 | 2019 | VI | 10.6 |
34 | Bus type 2 | 1999 | II | 7.7 | Bus type 7 | 2019 | VI | 10.6 |
35 | Bus type 3 | 1999 | II | 11.8 | Bus type 7 | 2019 | VI | 10.6 |
36 | Bus type 3 | 2000 | II | 11.8 | Bus type 7 | 2019 | VI | 10.6 |
37 | Bus type 3 | 1999 | II | 11.8 | Bus type 7 | 2019 | VI | 10.6 |
38 | Bus type 3 | 1999 | II | 11.8 | Bus type 7 | 2019 | VI | 10.6 |
39 | Bus type 3 | 2000 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
40 | Bus type 3 | 1999 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
41 | Bus type 3 | 2000 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
42 | Bus type 3 | 2000 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
43 | Bus type 3 | 1999 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
44 | Bus type 3 | 2000 | II | 11.8 | Bus type 7 | 2019 | VI | 10.7 |
45 | Bus type 4 | 2001 | II | 8.5 | Bus type 7 | 2019 | VI | 10.7 |
46 | Bus type 4 | 2001 | II | 8.5 | Bus type 7 | 2019 | VI | 10.7 |
47 | Bus type 4 | 2001 | II | 8.5 | Bus type 7 | 2019 | VI | 10.7 |
48 | Bus type 4 | 2001 | II | 8.5 | Bus type 7 | 2019 | VI | 10.7 |
49 | Bus type 4 | 2001 | II | 8.5 | Bus type 7 | 2019 | VI | 10.7 |
50 | Bus type 5 | 2000 | II | 10.9 | Bus type 7 | 2019 | VI | 10.7 |
51 | Bus type 6 | 2000 | II | 10.9 | Bus type 7 | 2019 | VI | 10.7 |
52 | Bus type 6 | 2000 | II | 10.9 | Bus type 7 | 2019 | VI | 10.7 |
References
- Nazarko, Ł.; Žemaitis, E.; Wróblewski, Ł.K.; Šuhajda, K.; Zajączkowska, M. The Impact of Energy Development of the European Union Euro Area Countries on CO2 Emissions Level. Energies 2022, 15, 1425. [Google Scholar] [CrossRef]
- Wałdykowski, P.; Adamczyk, J.; Dorotkiewicz, M. Sustainable Urban Transport—Why a Fast Investment in a Complete Cycling Network Is Most Profitable for a City. Sustainability 2022, 14, 119. [Google Scholar] [CrossRef]
- Mądziel, M.; Campisi, T.; Jaworski, A.; Kuszewski, H.; Woś, P. Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool. Energies 2021, 14, 4399. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M.; Chlopek, Z.; Merkisz, J.; Pielecha, J. Research on Exhaust Emissions in Dynamic Operating States of a Combustion Engine in a Real Driving Emissions Test. Energies 2021, 14, 5684. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, H.; Mundorf, N.; Redding, C.; Ye, Y. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China. Int. J. Environ. Res. Public Health 2017, 14, 1593. [Google Scholar] [CrossRef] [Green Version]
- Csonka, B. Optimization of Static and Dynamic Charging Infrastructure for Electric Buses. Energies 2021, 14, 3516. [Google Scholar] [CrossRef]
- Corazza, M.; Musso, A.; Guida, U.; Tozzi, M. From EBSF to EBSF_2: A Compelling Agenda for the Bus of the Future. A decade of research for more attractive and sustainable buses. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016. [Google Scholar]
- UITP—Union International des Transports Public. Position Paper–A Comprehensive Approach for Bus Systems and CO2 Emission Reduction. Available online: http://www.uitp.org/sites/default/files/cck-focus-papersfiles/20111122_UITP%20EU%20position%20paper_comprehensive%20approach%20for%20bus%20systems%20and%20CO2%20emission%2 (accessed on 25 December 2021).
- Bristow, A.; Nellthorp, J. Transport project appraisal in the European Union. Transp. Policy 2000, 7, 51–60. [Google Scholar] [CrossRef]
- Eckhause, J.; Herolds, J. Using real options to determine optimal funding strategies for CO2 capture, transport and storage projects in the European Union. Energy Policy 2014, 66, 115–134. [Google Scholar] [CrossRef]
- Buberger, J.; Kersten, A.; Kuder, M.; Eckerle, R.; Weyh, T.; Torbjorn, T. Total CO2-equivalent life-cycle emissions from commercially available passenger cars. Renew. Sustain. Energy Rev. 2022, 159, 112158. [Google Scholar] [CrossRef]
- Helmers, E.; Leitao, J.; Butler, T. CO2-equivalent emissions from European passenger vehicles in the years 1995–2015 based on real-world use: Assessing the climate benefit of the European “diesel boom”. Atmos. Environ. 2019, 198, 122. [Google Scholar] [CrossRef]
- Jurkovič, M. Environmental impacts of introducing LNG as alternative fuel for urban buses–case study in Slovakia. Prome Traffic Transp. 2020, 32, 837–847. [Google Scholar] [CrossRef]
- Chang, C.; Liao, Y.; Chang, Y. Life Cycle Assessment of Carbon Footprint in Public Transportation—A Case Study of Bus Route NO. 2 in Tainan City, Taiwan. Procedia Manuf. 2019, 30, 388–395. [Google Scholar] [CrossRef]
- Mądziel, M.; Campisi, T.; Jaworski, A.; Tesoriere, G. The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet. Energies 2021, 14, 1046. [Google Scholar] [CrossRef]
- Mądziel, M.; Jaworski, A.; Kuszewski, H.; Woś, P.; Campisi, T.; Lew, K. The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques. Energies 2022, 15, 142. [Google Scholar] [CrossRef]
- Li, F.; Zhuang, J.; Cheng, X.; Li, M.; Wang, J.; Yan, Z. Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model. Atmosphere 2019, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Kamal, M.D.; Tahir, A.; Atif, S. Fuel Consumption Monitoring through COPERT Model—A Case Study for Urban Sustainability. Sustainability 2021, 13, 11614. [Google Scholar] [CrossRef]
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019–Update October 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjzqYzjlOruAhXSxIsKHRrvCaYQFjAJegQIEBAC&url=https%3A%2F%2Fwww.eea.europa.eu%2Fds_resolveuid%2FSHNJDK8413&usg=AOvVaw3BehO2yHr4qJMuN70yvPal (accessed on 15 January 2022).
- Guide to Calculating Air Pollutant Emissions EMEP/EEA. Available online: https://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook/emep (accessed on 18 January 2022).
- Polish Local Data Bank. Available online: https://bdl.stat.gov.pl (accessed on 21 January 2022).
- Emission Factors for Greenhouse Gases, Environmental Protection Agency, Department of Transportation. Available online: https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf (accessed on 18 January 2022).
- Tang, H.; Li, C.; Shi, L.; Cheng, K.; Wen, L.; Li, W.; Xiao, X. Effects of Short-Term Tillage Managements on CH4 and N2O Emissions from a Double-Cropping Rice Field in Southern of China. Agronomy 2022, 12, 517. [Google Scholar] [CrossRef]
- Arrigoni, A.; Arosio, V.; Basso Peressut, A.; Latorrata, S.; Dotelli, G. Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment. Clean Technol. 2022, 4, 132–148. [Google Scholar] [CrossRef]
- Wei, X.; Ye, M.; Yuan, L.; Bi, W.; Lu, W. Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong. Int. J. Environ. Res. Public Health 2022, 19, 2318. [Google Scholar] [CrossRef]
- Global Warming Potential Values. Available online: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf (accessed on 20 January 2022).
- Fuglestvedt, J.S.; Isaksen, I.S.A.; Wang, W.C. Estimates of Indirect Global Warming Potentials for CH4, CO and NOx. Clim. Chang. 1996, 34, 405–437. [Google Scholar] [CrossRef]
- Chang, C.; Liao, Y.; Chang, Y. Life cycle assessment of alternative energy types–including hydrogen–for public city buses in Taiwan. Int. J. Hydrog. Energy 2022, 44, 18742. [Google Scholar] [CrossRef]
- Chong, U.; Tim, S.; Barrett, S.; Boises, A. Air Quality and Climate Impacts of Alternative Bus Technologies in Greater London. Environ. Sci. Technol. 2014, 48, 4613–4622. [Google Scholar] [CrossRef] [PubMed]
- Aber, J. Electric Bus Analysis for New York City Transit. Report. Columbia University, 2016. Available online: http://www.columbia.edu/~ja3041/Electric%20Bus%20Analysis%20for%20NYC%20Transit%20by%20J%20Aber%20Columbia%20University%20-%20May%202016.pdf (accessed on 2 February 2022).
- Niemczyk, J.; Sus, A.; Borowski, K.; Jasiński, B.; Jasińska, K. The Dominant Motives of Mergers and Acquisitions in the Energy Sector in Western Europe from the Perspective of Green Economy. Energies 2022, 15, 1065. [Google Scholar] [CrossRef]
- Gatta, V.; Marcucci, E.; Nigro, M.; Patella, S.M.; Serafini, S. Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts. Sustainability 2019, 11, 145. [Google Scholar] [CrossRef] [Green Version]
Bus Fleet before Replacement | Bus Fleet after Replacement | ||
---|---|---|---|
Number of buses | EURO standard | Number of buses | EURO standard |
29 | - | 52 | VI |
23 | II |
Line | Annual Mileage (km) | Average Speed (km/h) | Load (%) |
---|---|---|---|
1 | 94,097 | 27.8 | 11 |
2 | 39,398 | 33.4 | 6 |
3 | 116,657 | 26.5 | 8 |
4 | 85,188 | 28.1 | 11 |
5 | 82,186 | 30.2 | 8 |
6 | 64,976 | 28.5 | 5 |
7 | 93,263 | 28.1 | 13 |
8 | 193,972 | 23.6 | 11 |
9 | 39,197 | 31.6 | 14 |
10 | 95,098 | 32.3 | 22 |
11 | 112,724 | 27.1 | 12 |
12 | 62,215 | 27.5 | 10 |
13 | 48,549 | 26.2 | 9 |
No. | Number of Vehicles | Average Estimated Distance Traveled by Drivers (km) |
---|---|---|
Parking 1 | 26,006 | 10.0 |
Parking 2 | 14,235 | 22.4 |
Parking 3 | 32,205 | 13.0 |
Parking 4 | 2872 | 14.0 |
P&R | Fuel Type | Number of Vehicles | ||||||
---|---|---|---|---|---|---|---|---|
No Euro | Euro 1 | Euro 2 | Euro 3 | Euro 4 | Euro 5 | Euro 6 | ||
Parking 1 | Petrol | 1144 | 715 | 1001 | 1144 | 2289 | 4005 | 4005 |
Diesel | 666 | 416 | 583 | 666 | 1332 | 2330 | 2330 | |
LPG | 270 | 169 | 237 | 270 | 541 | 947 | 947 | |
Sum | 26,006 | |||||||
Parking 2 | Petrol | 626 | 391 | 548 | 626 | 1253 | 2192 | 2192 |
Diesel | 364 | 228 | 319 | 364 | 729 | 1275 | 1275 | |
LPG | 148 | 93 | 130 | 148 | 296 | 518 | 518 | |
Sum | 14,235 | |||||||
Parking 3 | Petrol | 1417 | 886 | 1240 | 1417 | 2834 | 4960 | 4960 |
Diesel | 824 | 515 | 721 | 824 | 1649 | 2886 | 2886 | |
LPG | 335 | 209 | 293 | 335 | 670 | 1172 | 1172 | |
Sum | 32,205 | |||||||
Parking 4 | Petrol | 115 | 72 | 101 | 115 | 230 | 402 | 402 |
Diesel | 76 | 47 | 66 | 76 | 152 | 265 | 265 | |
LPG | 39 | 24 | 34 | 39 | 78 | 137 | 137 | |
Sum | 2872 |
Line | Emission (t) | ||||
---|---|---|---|---|---|
CO2 | N2O | CH4 | CO | CO2e | |
1 | 76.531 | 0.002 | 0.014 | 0.343 | 78.583 |
2 | 30.636 | 0.001 | 0.006 | 0.134 | 31.438 |
3 | 96.015 | 0.003 | 0.017 | 0.434 | 98.627 |
4 | 69.086 | 0.002 | 0.012 | 0.310 | 70.994 |
5 | 65.528 | 0.002 | 0.012 | 0.291 | 67.369 |
6 | 52.558 | 0.002 | 0.010 | 0.351 | 54.347 |
7 | 75.641 | 0.002 | 0.014 | 0.340 | 77.521 |
8 | 164.770 | 0.004 | 0.029 | 0.756 | 169.113 |
9 | 26.855 | 0.001 | 0.006 | 0.111 | 27.578 |
10 | 74.925 | 0.016 | 0.014 | 0.330 | 81.230 |
11 | 92.253 | 0.002 | 0.016 | 0.415 | 94.589 |
12 | 50.727 | 0.001 | 0.009 | 0.228 | 52.095 |
13 | 40.076 | 0.001 | 0.007 | 0.181 | 41.069 |
Sum | 915.601 | 0.039 | 0.171 | 4.224 | 944.553 |
P&R | Emission (t) | ||||
---|---|---|---|---|---|
CO2 | N2O | CH4 | CO | CO2e | |
Parking 1 | 59.5 | 0.0015 | 0.006 | 0.396 | 61.372 |
Parking 2 | 73.0 | 0.0019 | 0.0074 | 0.486 | 75.295 |
Parking 3 | 97.3 | 0.0025 | 0.0099 | 0.645 | 100.350 |
Parking 4 | 9.1 | 0.0002 | 0.0009 | 0.060 | 9.387 |
Sum | 238.9 | 0.0610 | 0.0242 | 1.587 | 246.404 |
Line | Emission (t) | ||||
---|---|---|---|---|---|
CO2 | N2O | CH4 | CO | CO2e | |
1 | 60.83 | 0.0038 | 0.0005 | 0.018 | 62.040 |
2 | 24.42 | 0.0020 | 0.0002 | 0.007 | 25.043 |
3 | 76.16 | 0.0049 | 0.0006 | 0.024 | 77.738 |
4 | 54.91 | 0.0039 | 0.0004 | 0.017 | 56.121 |
5 | 52.16 | 0.0034 | 0.0039 | 0.015 | 53.320 |
6 | 41.75 | 0.0029 | 0.0004 | 0.012 | 42.655 |
7 | 60.11 | 0.0039 | 0.0005 | 0.018 | 61.327 |
8 | 129.99 | 0.0077 | 0.0010 | 0.041 | 132.436 |
9 | 21.99 | 0.0019 | 0.0002 | 0.005 | 22.590 |
10 | 59.70 | 0.0038 | 0.0048 | 0.018 | 61.021 |
11 | 73.23 | 0.0048 | 0.0006 | 0.022 | 74.748 |
12 | 40.29 | 0.0029 | 0.0003 | 0.012 | 41.190 |
13 | 31.78 | 0.0019 | 0.0003 | 0.010 | 32.399 |
Sum | 727.32 | 0.0478 | 0.0137 | 0.219 | 742.617 |
Data for the Analysed Scenarios | CO2e (t) |
---|---|
Estimated emissions reduction from buses replacement | 201.9 |
Estimated reduction in emissions due to drivers using P&R car parks | 246.4 |
Total estimated emissions reduction | 448.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, A.; Mądziel, M.; Kuszewski, H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies 2022, 15, 2238. https://doi.org/10.3390/en15062238
Jaworski A, Mądziel M, Kuszewski H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies. 2022; 15(6):2238. https://doi.org/10.3390/en15062238
Chicago/Turabian StyleJaworski, Artur, Maksymilian Mądziel, and Hubert Kuszewski. 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions" Energies 15, no. 6: 2238. https://doi.org/10.3390/en15062238
APA StyleJaworski, A., Mądziel, M., & Kuszewski, H. (2022). Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies, 15(6), 2238. https://doi.org/10.3390/en15062238