Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richter, D.D.; Jenkins, D.H.; Karakash, J.T.; Knight, J.; McCreery, L.R.; Nemestothy, K.P. Resource policy. Wood energy in America. Science 2009, 323, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G. Assessment of potential biomass energy production in China towards 2030 and 2050. Int. J. Sustain. Energy 2018, 37, 47–66. [Google Scholar] [CrossRef] [Green Version]
- van Meerbeek, K.; Muys, B.; Hermy, M. Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- Wicke, B.; Kluts, I.; Lesschen, J.P. Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands. Land 2020, 9, 457. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Suardi, A.; Latterini, F.; Alfano, V.; Palmieri, N.; Bergonzoli, S.; Karampinis, E.; Kougioumtzis, M.A.; Grammelis, P.; Pari, L. Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields. Energies 2020, 13, 1713. [Google Scholar] [CrossRef] [Green Version]
- Suardi, A.; Latterini, F.; Alfano, V.; Palmieri, N.; Bergonzoli, S.; Pari, L. Analysis of the Work Productivity and Costs of a Stationary Chipper Applied to the Harvesting of Olive Tree Pruning for Bio-Energy Production. Energies 2020, 13, 1359. [Google Scholar] [CrossRef] [Green Version]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Steubing, B.; Zah, R.; Ludwig, C. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective. Environ. Sci. Technol. 2012, 46, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Bentsen, N.S.; Felby, C. Biomass for energy in the European Union—A review of bioenery resource assessment. Biotechnol. Biofuels 2012, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, N.S.; Jack, M.W.; Felby, C.; Thorsen, B.J. Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
- Babuka, R.; Sujová, A.; Kupčák, V. Cascade Use of Wood in the Czech Republic. Forests 2020, 11, 681. [Google Scholar] [CrossRef]
- Sikkema, R.; Junginger, M.; McFarlane, P.; Faaij, A. The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy—A case study on available forest resources in Canada. Environ. Sci. Policy 2013, 31, 96–108. [Google Scholar] [CrossRef]
- Haberl, H.; Geissler, S. Cascade utilization of biomass: Strategies for a more efficient use of a scarce resource. Ecol. Eng. 2000, 16, 111–121. [Google Scholar] [CrossRef]
- Höglmeier, K.; Steubing, B.; Weber-Blaschke, G.; Richter, K. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J. Environ. Manag. 2015, 152, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Winder, G.M.; Bobar, A. Responses to stimulate substitution and cascade use of wood within a wood use system: Experience from Bavaria, Germany. Appl. Geogr. 2018, 90, 350–359. [Google Scholar] [CrossRef]
- Pari, L.; Bergonzoli, S.; Cetera, P.; Mattei, P.; Alfano, V.; Rezaei, N.; Suardi, A.; Toscano, G.; Scarfone, A. Storage of Fine Woodchips from a Medium Rotation Coppice Eucalyptus Plantation in Central Italy. Energies 2020, 13, 2355. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef] [Green Version]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel 2015, 140, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Volk, T.; Fortier, M.O. Willow Biomass Crops Are a Carbon Negative or Low-Carbon Feedstock Depending on Prior Land Use and Transportation Distances to End Users. Energies 2020, 13, 4251. [Google Scholar] [CrossRef]
- Vande Walle, I.; van Camp, N.; van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 2007, 31, 276–283. [Google Scholar] [CrossRef]
- EU, D. 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. 2008. Available online: https://www.europeansources.info/record/directive-eu-2018-2001-on-the-promotion-of-the-use-of-energy-from-renewable-sources/ (accessed on 20 September 2021).
- Baral, A.; Malins, C. Assessing the Climate Mitigation Potential of Biofuels Derived from Residues and Wastes in the European Context; International Council on Clean Transportation: Washington, DC, USA, 2014. [Google Scholar]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; JRC science for policy report JRC122719; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Fu, T.; Ke, J.H.; Zhou, S.; Xie, G.H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour. Conserv. Recycl. 2020, 162, 104993. [Google Scholar] [CrossRef]
- Battuvshin, B.; Matsuoka, Y.; Shirasawa, H.; Toyama, K.; Hayashi, U.; Aruga, K. Supply potential and annual availability of timber and forest biomass resources for energy considering inter-prefectural trade in Japan. Land Use Policy 2020, 97, 104780. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, K.; Liu, P. Possibilities and challenges of China’s forestry biomass resource utilization. Renew. Sustain. Energy Rev. 2015, 41, 368–378. [Google Scholar] [CrossRef]
- Yamamoto, T.; Aruga, K.; Shirasawa, H. Availability for small-scale woody biomass power generation from the view of forest resources in Tochigi Prefecture, Japan. Int. J. For. Eng. 2019, 30, 210–217. [Google Scholar] [CrossRef]
- Gejdoš, M.; Lieskovský, M. Wood Chip Storage in Small Scale Piles as a Tool to Eliminate Selected Risks. Forests 2021, 12, 289. [Google Scholar] [CrossRef]
- Durocher, C.; Thiffault, E.; Achim, A.; Auty, D.; Barrette, J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy 2019, 120, 376–386. [Google Scholar] [CrossRef]
- Müller, D.B.; Bader, H.P.; Baccini, P. Long-term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis. J. Ind. Ecol. 2004, 8, 65–88. [Google Scholar] [CrossRef]
- Yoshioka, T.; Hirata, S.; Matsumura, Y.; Sakanishi, K. Woody biomass resources and conversion in Japan: The current situation and projections to 2010 and 2050. Biomass Bioenergy 2005, 29, 336–346. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Faaij, A.P.C. Bioenergy potentials from forestry in 2050. Clim. Chang. 2007, 81, 353–390. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 573–593. [Google Scholar]
- Wertz, B.; Bembenek, M.; Karaszewski, Z.; Ochał, W.; Skorupski, M.; Strzeliński, P.; Węgiel, A.; Mederski, P.S. Impact of Stand Density and Tree Social Status on Aboveground Biomass Allocation of Scots Pine Pinus sylvestris L. Forests 2020, 11, 765. [Google Scholar] [CrossRef]
- Li, W.; Bi, H.; Watt, D.; Li, Y.; Ghaffariyan, M.R.; Ximenes, F. Estimation and Spatial Mapping of Residue Biomass following CTL Harvesting in Pinus radiata Plantations: An Application of Harvester Data Analytics. Forests 2022, 13, 428. [Google Scholar] [CrossRef]
- State Forests. Information on Sales of Selected Groups of Wood in Forest Districts State Forests. Available online: http://drewno.zilp.lasy.gov.pl/drewno/ (accessed on 15 July 2021).
- State Forests. The National Forest Inventory; State Forests: Sękocin Stary, Poland, 2021; Available online: https://www.bdl.lasy.gov.pl/portal/Media/Default/Publikacje/WISL2016_2020.pdf (accessed on 15 August 2021).
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—A comparative study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. Manag. 2004, 188, 211–224. [Google Scholar] [CrossRef]
- Krejza, J.; Světlík, J.; Bednář, P. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- The Enginering ToolBox. Densites of Various Species. Available online: https://www.engineeringtoolbox.com/wood-density-d_40.html (accessed on 15 August 2021).
- Günther, B.; Gebauer, K.; Barkowski, R.; Rosenthal, M.; Bues, C.T. Calorific value of selected wood species and wood products. Eur. J. Wood Prod. 2012, 70, 755–757. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Suardi, A.; Alfano, V.; Bergonzoli, S.; Palmieri, N.; Pari, L. A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs. Energies 2020, 13, 3385. [Google Scholar] [CrossRef]
- Routa, J.; Kellomäki, S.; Kilpeläinen, A.; Peltola, H.; Strandman, H. Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 2011, 3, 483–497. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K.; Zięba, S.; Janeczko, K. Assessing the Technical Efficiency of Timber Production during the Transition from a Production-Oriented Management Model to a Multifunctional One: A Case from Poland 1990–2019. Forests 2021, 12, 1287. [Google Scholar] [CrossRef]
- Lippke, B.; Oneil, E.; Harrison, R.; Skog, K.; Gustavsson, L.; Sathre, R. Life cycle impacts of forest management and wood utilization on carbon mitigation: Knowns and unknowns. Carbon Manag. 2011, 2, 303–333. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- State Forests. Principles of Forest Silviculture; State Forests: Warsaw, Poland, 2012. (In Polish) [Google Scholar]
- Karjalainen, T.; Asikainen, A.; Ilavsky, J.; Zamboni, R.; Hotari, K.E.; Röser, D. Estimation of Energy Wood Potential in Europe; Finnish Forest Research Institute: Nurmes, Finland, 2004. [Google Scholar]
- Kärkkäinen, L.; Kurttila, M.; Salminen, O.; Viiri, H. Effects of Energy Wood Harvesting on Timber Production Potential and Biological Diversity in North Karelia, Finland. For. Sci. 2014, 60, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, É.; Thiffault, E.; Barrette, J.; Adjallé, K.; Martineau, C. Bioenergy Conversion Potential of Decaying Hardwoods. Energies 2021, 14, 93. [Google Scholar] [CrossRef]
Species | WB1 | W0 | S2B | S2A | S2AP | S4 | Total |
---|---|---|---|---|---|---|---|
Pine | 69.22 | 10,754.60 | 3026.92 | 9405.52 | 830.22 | 1110.00 | 25,196.48 |
Spruce | 0.00 | 1936.82 | 176.60 | 2008.94 | 526.44 | 305.00 | 4953.80 |
Oak | 0.00 | 547.26 | 140.72 | 794.32 | 178.38 | 350.00 | 2010.68 |
Beech | 40.04 | 1018.78 | 40.16 | 928.66 | 161.88 | 450.00 | 2639.52 |
Birch | 93.70 | 347.24 | 104.68 | 1474.60 | 141.68 | 720.00 | 2881.90 |
Alder | 55.24 | 146.30 | 42.26 | 418.82 | 58.80 | 209.00 | 930.42 |
Total | 258.20 | 14,751.00 | 3531.34 | 15,030.86 | 1897.40 | 3144.00 | 38,612.80 |
Per Total Area | Per 1 ha | |
---|---|---|
Total area (ha) | 7.11 × 106 | - |
Standing volume * (m3) | 2.07 × 109 | 290 |
Volume increment (m3) | 6.56 × 107 | 9.21 |
Removal (m3) | 4.96 × 107 | 6.96 |
Dead wood (m3) | 6.14 × 107 | 8.63 |
Species | Volume (m3) | Biomass (Tonnes) | |
---|---|---|---|
Branches | Stumps | ||
Pine | 2.52 × 107 | 2.04 × 106 | 1.19 × 106 |
Spruce | 4.95 × 106 | 4.92 × 105 | 2.42 × 105 |
Oak | 2.01 × 106 | 2.51 × 105 | 9.65 × 104 |
Beech | 2.64 × 106 | 3.30 × 105 | 1.27 × 105 |
Birch | 2.88 × 106 | 3.07 × 105 | 1.38 × 105 |
Alder | 9.30 × 105 | 9.90 × 104 | 4.47 × 104 |
Total | 3.86 × 107 | 3.52 × 106 | 1.84 × 106 |
Biomass (Thousand Tonnes) | Energy Available (PJ y−1) | ||||||
---|---|---|---|---|---|---|---|
Low-Quality Wood | Firewood | Residues | Low-Quality Wood | Firewood | Residues | Total | |
Softwood | 814.00 | 849.00 | 2026.26 | 14.00 | 14.60 | 34.85 | 63.46 |
Hardwood | 419.53 | 1283.85 | 789.15 | 6.96 | 21.31 | 13.10 | 41.38 |
Total | 1233.53 | 2132.85 | 2815.41 | 20.96 | 35.91 | 47.95 | 104.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaś, J.; Utnik-Banaś, K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies 2022, 15, 2264. https://doi.org/10.3390/en15062264
Banaś J, Utnik-Banaś K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies. 2022; 15(6):2264. https://doi.org/10.3390/en15062264
Chicago/Turabian StyleBanaś, Jan, and Katarzyna Utnik-Banaś. 2022. "Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management" Energies 15, no. 6: 2264. https://doi.org/10.3390/en15062264
APA StyleBanaś, J., & Utnik-Banaś, K. (2022). Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies, 15(6), 2264. https://doi.org/10.3390/en15062264