Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Measurement of Carbon-Emission Efficiency
2.2. Factors Influencing Carbon-Emission Efficiency
2.3. Innovation and Low Carbon
2.4. Standards and Low Carbon
3. Theoretical Mechanism
4. Research Design
4.1. Panel Regression Method
4.2. Data
4.2.1. The Explanatory Variable
4.2.2. Explanatory Variables
4.2.3. Control Variables
5. Empirical Tests and Results of the Analysis
5.1. Benchmark Regression Analysis
5.2. Robustness Analysis
5.3. Analysis of Heterogeneity
5.4. The Mechanism of Influence
6. Conclusions, Limitations of the Study, and Future Research
6.1. Conclusions
6.2. Limitations of This Study and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.K.; Khan, M.I.; Rehan, M.J. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov. 2020, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.P.; Nie, L.; Sun, H.P.; Sun, W.F.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Ernst, D.; Lee, H.; Kwak, J. Standards, innovation, and latecomer economic development: Conceptual issues and policy challenges. Telecommun. Policy 2014, 38, 853–862. [Google Scholar] [CrossRef]
- Franchetti, M. ISO 14001 and solid waste generation rates in US manufacturing organizations: An analysis of relationship. J. Clean. Prod. 2011, 19, 1104–1109. [Google Scholar] [CrossRef]
- Comoglio, C.; Botta, S. The use of indicators and the role of environmental management systems for environmental performances improvement: A survey on ISO 14001 certified companies in the automotive sector. J. Clean. Prod. 2012, 20, 92–102. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Zhang, C.; Pei, X. Research on environmental management system certification and corporate Environmental Performance. Chin. J. Manag. 2020, 17, 1043–1051. [Google Scholar]
- Kaya, Y.; Yokobori, K. Environment, Energy and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997; pp. 56–59. [Google Scholar]
- Ang, B. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change? Energy Policy 1999, 27, 943–946. [Google Scholar] [CrossRef]
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: Across country comparison. Int. J. Glob. Energy Issues 2002, 17, 214–227. [Google Scholar] [CrossRef]
- Zhang, Z.; QU, J.; Zeng, J. A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission. Acta Geogr. Sin. 2008, 18, 387–399. [Google Scholar] [CrossRef]
- Jun, R.; Florian, F.; Martin, K. Assessing carbon emission savings from corporate resource efficiency investments: An estimation indicator in theory and practice. Environ. Dev. Sustain. 2020, 22, 835–861. [Google Scholar]
- Zaim, O.; Taskin, F. Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach. J. Environ. Manag. 2000, 58, 95–107. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A non-parametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Tone, K. Dealing with undesirable outputs in DEA: A Slacks-Based Measure (SBM) approach. Grips Res. Rep. Ser. 2004, 44–45. [Google Scholar]
- Chang, T.-P.; Hu, J.-L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhu, L.; Fan, Y.; Xie, B. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 2011, 39, 2352–2360. [Google Scholar] [CrossRef]
- Lee, M.; Zhang, N. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries. Energy Econ. 2012, 34, 1492–1497. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, C.; Zeng, X.; Jiang, Y.; Liu, W. Carbon emission performance evaluation and allocation in Chinese cities. J. Clean. Prod. 2018, 172, 1254–1272. [Google Scholar] [CrossRef]
- Wang, C. Decomposing energy productivity change: A distance function approach. Energy 2007, 32, 1326–1333. [Google Scholar] [CrossRef]
- Ramanathan, R. A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol. Forecast. Soc. Chang. 2006, 73, 483–494. [Google Scholar] [CrossRef]
- Cason, T.N. Buyer liability and voluntary inspections in international greenhouse gas emissions trading: A laboratory study. Environ. Resour. Econ. 2003, 25, 101–127. [Google Scholar] [CrossRef]
- Buckley, N.J. Short-Run Implications of Cap-and-Trade versus Baseline-and-Credit Emission Trading Plans: Experimental Evidence; Department of Economics Working Papers, McMaster University: Hamilton, ON, Canada, 2004. [Google Scholar]
- Girma, S.; Görg, H.; Strobl, E. Exports, international investment, and plant performance: Evidence from a non-parametric test. Econ. Lett. 2004, 83, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Albornoz, F.; Cole, M.A.; Elliott, R.J.R.; Ercolani, M. In search of environmental spillovers. World Econ. 2009, 32, 136–163. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. 2021, 28, 66914–66929. [Google Scholar] [CrossRef]
- Li, T.; Fu, Q. Study on China’s carbon dioxide emissions efficiency. Stat. Res. 2011, 7, 63–70. [Google Scholar]
- Zha, J.; Tang, F.; Bie, N. Can structural adjustments improve carbon emissions performance? J. Quant. Tech. Econ. 2012, 12, 18–33. [Google Scholar]
- Qu, X. Total factor efficiency differences of CO2 emissions and driving factors in China’s Inter-provincial—Based on the 1995–2010 years of empirical research. Nankai Econ. Stud. 2012, 3, 128–141. [Google Scholar]
- Udemba, E.N.; Magazzino, C.; Bekun, F.V. Modeling the nexus between pollutant emission, energy consumption, foreign direct investment, and economic growth: New insights from China. Environ. Sci. Pollut. Res. 2020, 27, 17831–17842. [Google Scholar] [CrossRef]
- Lewandowska, A.; Stopa, M.; Inglot-Brzęk, E. Innovativeness and entrepreneurship: Socioeconomic remarks on regional development in peripheral regions. Econ. Sociol. 2021, 14, 222–235. [Google Scholar] [CrossRef]
- Strielkowski, W.; Volkova, E.; Pushkareva, L.; Streimikiene, D. Innovative policies for energy efficiency and the use of renewables in households. Energies 2019, 12, 1392. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Lv, K.; Yu, A. China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: An interval slacks-based measure approach. Ann. Oper. Res. 2017, 255, 301–321. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M. On the relationship between transportation infrastructure and economic development in China. Res. Transp. Econ. 2021, 88, 100947. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Miao, Z.; Baležentis, T.; Tian, Z.; Shao, S.; Geng, Y.; Wu, R. Environmental performance and regulation effect of China’s atmospheric pollutant emissions: Evidence from “Three regions and ten urban agglomerations”. Environ. Resour. Econ. 2019, 74, 211–242. [Google Scholar] [CrossRef]
- Xu, G.; Schwarz, P.; Yang, H. Adjusting energy consumption structure to achieve China’s CO2 emissions peak. Renew. Sustain. Energy Rev. 2020, 122, 109737. [Google Scholar] [CrossRef]
- Ye, R.K.; Gao, Z.F.; Fang, K.; Liu, K.L.; Chen, J. Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era. Technol. Forecast. Soc. Chang. 2021, 168, 120757. [Google Scholar] [CrossRef]
- Healey, S.; Jaccard, M. Implications of a US electricity standard for final energy demand. Energy Econ. 2016, 60, 469–475. [Google Scholar] [CrossRef]
- Burtraw, D.; Linn, J.; Palmer, K.; Paul, A. The costs and consequences of clean air act regulation of CO2 from Power Plants. Am. Econ. Rev. 2014, 104, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.C.; Pizer, W.A.; Ross, M. Regulating existing power plants under the Clean Air Act: Present and future consequences of key design choices. Energy Policy 2015, 83, 87–98. [Google Scholar] [CrossRef]
- Paul, A.C.; Palmer, K.L.; Woerman, M. Designing by Degrees: Flexibility and Cost Effectiveness in Climate Policy; RFF DP 14-05; Social Science Electronic Publishing: Washington, DC, USA, 2014. [Google Scholar]
- Fischer, C.; Harrington, W.; Parry, I. should automobile fuel economy standards be tightened? Energy 2007, 28, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Papers; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Swann, G.M.P.; Lambert, R. Standards and innovation: A brief survey of empirical evidence and transmission mechanisms. In Handbook of Innovation and Standards; Edward Edgar Publishing: Cheltenham, UK, 2017; Chapter 2; pp. 21–37. [Google Scholar]
- Cheng, H.; Liu, Y.; Li, T. Does the use of international standards increase productivity—Evidence from 2015 China employer-employee survey. J. Int. Trade 2021, 1, 28–38. [Google Scholar]
- Sen, A.; Acharyya, R. Environmental standard and employment: Impact of productivity effect. Environ. Dev. Econ. 2011, 17, 207–225. [Google Scholar] [CrossRef]
- Abad, J.; Lafuente, E.; Vilajosana, J. An assessment of the OHSAS 18001 certification process: Objective drivers and consequences on safety performance and labour productivity. Saf. Sci. 2013, 60, 47–56. [Google Scholar] [CrossRef]
- Popp, D. International innovation and diffusion of air pollution. Energy Econ. 2005, 27, 93–111. [Google Scholar]
- Fisher, V.K.; Jefferson, G.H.; Ma, J.; Xu, J. Technology development and energy productivity in China. Energy Econ. 2006, 28, 119–125. [Google Scholar]
- Huarng, F. Integrating ISO 9000:2000 with TQM spirits: A survey. Ind. Manag. Data Syst. 1998, 8, 373–379. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 2012, 41, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, T. Carbon intensity in production and the effects of climate policy evidence from Swedish industry. Energy Policy 2014, 67, 844–857. [Google Scholar]
- Farrell, J.; Saloner, G. Standardization and variety. Econ. Lett. 1986, 20, 71–74. [Google Scholar] [CrossRef]
- Chen, S.; Gao, J. Research on the Interaction between technological innovation and standards under the background of high quality development. Soft Sci. 2019, 33, 1–6. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lin, Y. Panel Estimation for Urbanization. Energy Consumption and CO2 Emissions: A Regional Analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction—Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Qian, L.; Xiao, R.; Chen, Z. Research on the industrial enterprise’s technology innovation, efficiency and regional disparities in China. Econ. Theory Bus. Manag. 2015, 1, 26–43. [Google Scholar]
- Zhang, Y.J. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy 2011, 39, 2197–2203. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, X.; Sun, C. Do financial development, urbanization and trade affect environmental quality? Evidence from China. J. Clean. Prod. 2020, 259, 120892. [Google Scholar] [CrossRef]
- Sun, H.P.; Kporsu, A.K.; Taghizadeh-Hesary, F.; Edziah, B.K. Estimating environmental efficiency and convergence: 1980 to 2016. Energy 2020, 208, 118224. [Google Scholar] [CrossRef]
- Du, K.; Zou, C. Regional disparity, affecting factors and convergence analysis of carbon dioxide emission efficiency in China: On stochastic frontier model and panel unit root. Zhejiang Soc. Sci. 2011, 11, 32–43. [Google Scholar]
- Sun, H.P.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [Google Scholar] [CrossRef]
Variable | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
carbon | 480 | 0.8253 | 0.2022 | 0.3868 | 3.0173 |
nsindex | 480 | 1.7429 | 3.2723 | 0.0000 | 35.8570 |
isindex | 480 | 1.9943 | 3.3271 | 0.0184 | 27.5472 |
nsl | 480 | 0.7449 | 1.5847 | 0.0000 | 19.5600 |
isl | 480 | 1.2263 | 2.1230 | 0.0100 | 17.2300 |
nsp | 480 | 2.2055 | 3.1071 | 0.0000 | 31.6300 |
isp | 480 | 2.8419 | 3.9035 | 0.0300 | 27.6500 |
stru | 480 | 0.4586 | 0.0792 | 0.1901 | 0.5905 |
open | 480 | 6.5666 | 1.6724 | 2.4772 | 10.3248 |
inno | 480 | 8.8934 | 1.6684 | 4.2485 | 12.7149 |
urban | 480 | 0.5123 | 0.1470 | 0.2507 | 0.8960 |
gov | 480 | 7.2280 | 0.9167 | 4.5447 | 9.2860 |
prod | 480 | 10.3474 | 5.5270 | 1.5151 | 28.8134 |
size | 480 | 2.5397 | 2.1684 | 0.4159 | 14.2327 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
OLS | FE | SYS-GMM | OLS | FE | SYS-GMM | |
nsindex | 0.0087 *** | 0.0080 *** | 0.0153 ** | - | - | - |
(0.0033) | (0.0028) | (0.0071) | - | - | - | |
isindex | - | - | - | 0.0123 *** | 0.0112 *** | 0.0231 *** |
- | - | - | (0.0034) | (0.0024) | (0.0049) | |
stru | 0.1779 | 0.1618 | 0.3881 *** | 0.1900 | 0.1768 | 0.2449 *** |
(0.1172) | (0.1571) | (0.0657) | (0.1164) | (0.1598) | (0.0669) | |
inno | −0.0496 *** | −0.0477 ** | −0.0777 *** | −0.0573 *** | −0.0541 *** | −0.0544 *** |
(0.0190) | (0.0203) | (0.0111) | (0.0191) | (0.0208) | (0.0129) | |
urban | 0.3132 *** | 0.4160 *** | 0.2920 *** | 0.2650 *** | 0.3685 *** | 0.2700 *** |
(0.0923) | (0.1006) | (0.1092) | (0.0930) | (0.1089) | (0.0763) | |
open | 0.0255 ** | 0.0077 | 0.0172 | 0.0283 ** | 0.0106 | 0.0004 |
(0.0129) | (0.0138) | (0.0156) | (0.0128) | (0.0140) | (0.0129) | |
gov | −0.0132 | 0.0341 | 0.0492 ** | −0.0092 | 0.0357 | 0.0304 |
(0.0244) | (0.0389) | (0.0223) | (0.0243) | (0.0389) | (0.0231) | |
cons | 0.9973 *** | 0.7057 *** | 0.8071 *** | 1.0322 *** | 0.7463 *** | 0.7764 *** |
(0.0815) | (0.1711) | (0.1006) | (0.0821) | (0.1689) | (0.0970) | |
L.carbon | - | - | 0.0295 | - | - | 0.1294 |
- | - | (0.0822) | - | - | (0.1019) | |
Obs | 480 | 480 | 464 | 480 | 480 | 464 |
R-squared | 0.1500 | 0.1763 | - | 0.1611 | 0.1852 | - |
AR(1) | - | - | 0.0428 | - | - | 0.0252 |
AR(2) Sargan | - | - | 0.1771 1.0000 | - | - | 0.0730 1.0000 |
7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|
OLS | FE | SYS-GMM | OLS | FE | SYS-GMM | |
nsl | 0.0135 ** | 0.0103 * | −0.0071 | - | - | - |
(0.0064) | (0.0052) | (0.0195) | - | - | - | |
nsp | - | - | - | 0.0097 *** | 0.0105 *** | 0.0129 *** |
- | - | - | (0.0037) | (0.0037) | (0.0046) | |
stru | 0.1703 | 0.1511 | 0.4097 *** | 0.1703 | 0.1566 | 0.3577 *** |
(0.1175) | (0.1572) | (0.0552) | (0.1170) | (0.1561) | (0.1089) | |
inno | −0.0471 ** | −0.0434 ** | −0.0698 *** | −0.0506 *** | −0.0505 ** | −0.0776 *** |
(0.0190) | (0.0203) | (0.0106) | (0.0191) | (0.0202) | (0.0111) | |
urban | 0.3311 *** | 0.4500 *** | 0.3201 ** | 0.3221 *** | 0.4133 *** | 0.3110 *** |
(0.0931) | (0.1022) | (0.1269) | (0.0912) | (0.0966) | (0.0939) | |
open | 0.0264 ** | 0.0071 | 0.0244 ** | 0.0244* | 0.0064 | 0.0152 |
(0.0129) | (0.0139) | (0.0106) | (0.0129) | (0.0137) | (0.0115) | |
gov | −0.0144 | 0.0330 | 0.0470 | −0.0153 | 0.0348 | 0.0457 * |
(0.0245) | (0.0391) | (0.0315) | (0.0244) | (0.0388) | (0.0264) | |
L.carbon | - | - | 0.0081 | - | - | 0.0758 |
- | - | (0.0864) | - | - | (0.0956) | |
Cons | 0.9744 *** | 0.6699 *** | 0.7289 *** | 1.0189 *** | 0.7273 *** | 0.7962 *** |
(0.0806) | (0.1724) | (0.1692) | (0.0837) | (0.1738) | (0.1023) | |
Obs | 480 | 480 | 464 | 480 | 480 | 464 |
R-squared | 0.1452 | 0.1711 | - | 0.1496 | 0.1785 | - |
AR(1) | - | - | 0.0297 | - | - | 0.0501 |
AR(2) Sargan | - | - | 0.1456 1.0000 | - | - | 0.1735 1.0000 |
13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|
OLS | FE | SYS-GMM | OLS | FE | SYS-GMM | |
isl | 0.0166 *** | 0.0137 *** | 0.0245 *** | - | - | - |
(0.0051) | (0.0036) | (0.0079) | - | - | - | |
isp | - | - | - | 0.0107 *** | 0.0104 *** | 0.0130 *** |
- | - | - | (0.0031) | (0.0024) | (0.0039) | |
stru | 0.1902 | 0.1733 | 0.3621 *** | 0.1699 | 0.1600 | 0.2612 *** |
(0.1169) | (0.1586) | (0.0929) | (0.1162) | (0.1581) | (0.0611) | |
inno | −0.0534 *** | −0.0497 ** | −0.0612 *** | −0.0579 *** | −0.0554 *** | −0.0549 *** |
(0.0190) | (0.0204) | (0.0109) | (0.0192) | (0.0206) | (0.0123) | |
urban | 0.2713 *** | 0.3818 *** | 0.2750 *** | 0.2784 *** | 0.3782 *** | 0.3086 *** |
(0.0944) | (0.1089) | (0.0995) | (0.0928) | (0.1054) | (0.0854) | |
open | 0.0277 ** | 0.0108 | 0.0111 | 0.0283 ** | 0.0093 | 0.0005 |
(0.0128) | (0.0141) | (0.0103) | (0.0128) | (0.0139) | (0.0136) | |
gov | −0.0090 | 0.0324 | 0.0348 | −0.0133 | 0.0360 | 0.0308 |
(0.0244) | (0.0392) | (0.0278) | (0.0242) | (0.0388) | (0.0252) | |
L.carbon | - | - | −0.0070 | - | - | 0.1214 |
- | - | (0.0605) | - | - | (0.0962) | |
Cons | 1.0009 *** | 0.7288 *** | 0.8407 *** | 1.0570 *** | 0.7543 *** | 0.7655 *** |
(0.0808) | (0.1729) | (0.1254) | (0.0851) | (0.1713) | (0.1146) | |
Obs | 480 | 480 | 464 | 480 | 480 | 464 |
R-squared | 0.1565 | 0.1788 | - | 0.1579 | 0.1847 | - |
AR(1) | - | - | 0.0673 | - | - | 0.0320 |
AR(2) Sargan | - | - | 0.2483 1.0000 | - | - | 0.0954 1.0000 |
19 | 20 | 21 | 22 | |
---|---|---|---|---|
Coastal | Inland | Coastal | Inland | |
nsindex | −0.0050 * | 0.0214 *** | - | - |
(0.0027) | (0.0051) | - | - | |
isindex | - | - | 0.0120 *** | 0.0003 |
- | - | (0.0033) | (0.0041) | |
stru | 0.4334 *** | 0.7184 *** | 0.2587 *** | 0.7801 *** |
(0.0358) | (0.2710) | (0.0489) | (0.1265) | |
inno | −0.0031 | −0.0293 | −0.0023 | −0.0649** |
(0.0211) | (0.0409) | (0.0203) | (0.0303) | |
urban | −0.2274 *** | −0.4075 | −0.1394 ** | −0.0310 |
(0.0417) | (0.4063) | (0.0695) | (0.2796) | |
open | 0.0283 *** | 0.0455 *** | 0.0298 *** | 0.0418 *** |
(0.0095) | (0.0155) | (0.0079) | (0.0136) | |
gov | 0.0254 | −0.2103 | −0.0176 | −0.1131 |
(0.0345) | (0.1377) | (0.0330) | (0.0974) | |
L.carbon | 0.2409 *** | 0.3010 *** | 0.1190 *** | 0.2343 ** |
(0.0391) | (0.1027) | (0.0395) | (0.0947) | |
Cons | 0.7628 *** | 2.6291 *** | 0.8992 *** | 2.0445 *** |
(0.1574) | (0.7417) | (0.1377) | (0.5286) | |
Obs | 144 | 320 | 144 | 320 |
AR(1) | 0.9519 | 0.0723 | 0.3813 | 0.0171 |
AR(2) | 0.2127 | 0.2450 | 0.7730 | 0.0807 |
Sargan | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
23 | 24 | 25 | |
---|---|---|---|
Carbon | Prod | Carbon | |
isindex | 0.0246 *** | 0.1876 *** | 0.0230 *** |
(0.0027) | (0.0221) | (0.0049) | |
prod | - | - | 0.0209 *** |
- | - | (0.0009) | |
Control variable | Yes | Yes | Yes |
Cons | 1.2423 *** | −10.8515 *** | 1.2587 *** |
(0.0622) | (0.8531) | (0.1249) | |
Obs | 464 | 464 | 464 |
AR(1) | 0.0410 | 0.0029 | 0.0336 |
AR(2) | 0.1008 | 0.8064 | 0.0743 |
Sargan | 1.0000 | 1.0000 | 1.0000 |
26 | 27 | 28 | |
---|---|---|---|
Carbon | Stru | Carbon | |
isindex | 0.0246 *** | 0.0100 *** | 0.0185 *** |
(0.0027) | (0.0009) | (0.0047) | |
stru | - | - | 0.2723 *** |
- | - | (0.0682) | |
Control variable | Yes | Yes | Yes |
Cons | 1.2423 *** | −0.0675 *** | 0.8158 *** |
(0.0622) | (0.0259) | (0.1065) | |
Obs | 464 | 464 | 464 |
AR(1) | 0.0410 | 0.0003 | 0.0273 |
AR(2) | 0.1008 | 0.4278 | 0.0904 |
Sargan | 1.0000 | 1.0000 | 1.0000 |
29 | 30 | 31 | |
---|---|---|---|
Carbon | Size | Carbon | |
isindex | 0.0246 *** | 0.2808 *** | 0.0226 *** |
(0.0027) | (0.0170) | (0.0037) | |
size | - | - | 0.0147 *** |
- | - | (0.0028) | |
Control variable | Yes | Yes | Yes |
Cons | 1.2423 *** | −0.2129 | 1.1060 *** |
(0.0622) | (0.1297) | (0.0495) | |
Obs | 464 | 464 | 464 |
AR(1) | 0.0410 | 0.0004 | 0.0361 |
AR(2) | 0.1008 | 0.1011 | 0.0950 |
Sargan | 1.0000 | 1.0000 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Liu, F.; Sun, H. Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China. Energies 2022, 15, 2300. https://doi.org/10.3390/en15062300
Sun Y, Liu F, Sun H. Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China. Energies. 2022; 15(6):2300. https://doi.org/10.3390/en15062300
Chicago/Turabian StyleSun, Ying, Fengqin Liu, and Huaping Sun. 2022. "Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China" Energies 15, no. 6: 2300. https://doi.org/10.3390/en15062300
APA StyleSun, Y., Liu, F., & Sun, H. (2022). Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China. Energies, 15(6), 2300. https://doi.org/10.3390/en15062300