Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review
Abstract
:1. Introduction
1.1. Theoretical Background
1.2. Aim and Contributions
- ▪
- Being a pioneering systematic review that focuses on energy sustainability in smart cities;
- ▪
- Offering the depiction of the academic publication landscape for smart city and energy sustainability research (Section 3.1);
- ▪
- Providing a critical evaluation of geographical continents’ energy use intensity vs. smart cities’ energy sustainability research outcomes (Section 3.2);
- ▪
- Identifying major research gaps in energy and urban planning areas (Section 3.2.3).
2. Methodology
3. Results and Discussion
3.1. General Observations
3.2. Classification of Categories
3.2.1. Energy Efficiency
3.2.2. Renewable Energy
3.2.3. Energy and Urban Planning
3.3. A Conceptual Model and Further Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ref. | Authors | Title | Year | Categories | Aim | Approach | Continent |
---|---|---|---|---|---|---|---|
[104] | Pol, O., Palensky, P., Kuh, C., Leutgöb, K., Page, J., Zucker, G. | Integration of centralized energy monitoring specifications into the planning process of a new urban development area: a step towards smart cities | 2012 | Energy and urban planning | Other | Theoretical | Oceania |
[105] | Pirisi, A., Grimaccia, F., Mussetta, M., Zich, R.E. | Novel speed bumps design and optimization for vehicles’ energy recovery in smart cities | 2012 | Renewable energy | Energy harvesting devices | Empirical | Europe |
[106] | Rodríguez-Molina, J., Martínez, J.-F., Castillejo, P., De Diego, R. | Smarc: a proposal for a smart, semantic middleware architecture focused on smart city energy management | 2013 | Energy efficiency | Smart grid | Empirical | Europe |
[107] | Yamagata, Y., Seya, H. | Simulating a future smart city: an integrated land use-energy model | 2013 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[108] | Sanchez-Miralles, A., Calvillo, C., Martín, F., Villar, J. | Use of renewable energy systems in smart cities | 2014 | Renewable energy | Hybrid energy system | Theoretical | Europe |
[109] | Battista, G., Evangelisti, L., Guattari, C., Basilicata, C., de Lieto, Vollaro, R. | Building’s energy efficiency: interventions analysis under a smart cities approach | 2014 | Energy efficiency | Smart buildings | Empirical | Europe |
[110] | Moreno, M.V., Zamora, M.A., Skarmeta, A.F. | User-centric smart buildings for energy sustainable smart cities | 2014 | Energy efficiency | Smart buildings | Empirical | Europe |
[111] | Caponio, G., Massaro, V., Mossa, G., Mummolo, G. | Strategic energy planning of residential buildings in a smart city: a system dynamics approach | 2015 | Energy efficiency | Energy saving | Empirical | Europe |
[112] | Sanseverino, E.R., Scaccianoce, G., Vaccaro, V., Carta, M., Sanseverino, R.R. | Smart cities and municipal building regulation for energy efficiency | 2015 | Energy efficiency | Smart buildings | Theoretical | Europe |
[113] | Lützenberger, M., Masuch, N., Küster, T., Freund, D., Voß, M., Hrabia, C.-E., Pozo, D., Fähndrich, J., Trollmann, F., Keiser, J., Albayrak, S. | A common approach to intelligent energy and mobility services in a smart city environment | 2015 | Energy efficiency | Electric vehicle | Empirical | Europe |
[114] | Jablonski, I. | Smart transducer interface-from networked on-site optimization of energy balance in research-demonstrative office building to smart city conception | 2015 | Energy efficiency | Smart buildings | Empirical | Europe |
[115] | Aslam, S., Hasan, N.U., Jang, J.W., Lee, K.-G. | Optimized energy harvesting, cluster-head selection and channel allocation for IoTs in smart cities | 2016 | Energy efficiency | Smart grid | Empirical | Asia |
[116] | Maier, S. | Smart energy systems for smart city districts: case study Reininghaus district | 2016 | Renewable energy | Hybrid energy system | Empirical | Oceania |
[117] | Palomar, E., Chen, X., Liu, Z., Maharjan, S., Bowen, J. | Component-based modelling for scalable smart city systems interoperability: a case study on integrating energy demand response systems | 2016 | Energy efficiency | Smart buildings | Empirical | Europe |
[118] | Wang, S., Wang, X., Wang, Z.L., Yang, Y. | Efficient scavenging of solar and wind energies in a smart city | 2016 | Renewable energy | Hybrid energy system | Empirical | Asia |
[40] | Maltese, I., Mariotti, I., Boscacci, F. | Smart city, urban performance and energy | 2016 | Energy and urban planning | Other | Theoretical | Europe |
[119] | Zambon, I., Monarca, D., Cecchini, M., Bedini, R., Longo, L., Romagnoli, M., Marucci, A. | Alternative energy and the development of local rural contexts: an approach to improve the degree of smart cities in the central-southern Italy | 2016 | Renewable energy | Hybrid energy system | Empirical | Europe |
[120] | Mahapatra, C., Moharana, A.K., Leung, V.C.M. | Energy management in smart cities based on internet of things: peak demand reduction and energy savings | 2017 | Energy efficiency | Smart grid | Empirical | North America |
[121] | Krozer, Y. | Innovative offices for smarter cities, including energy use and energy-related carbon dioxide emissions | 2017 | Energy efficiency | Smart buildings | Theoretical | Europe |
[122] | Chen, Y., Ardila-Gomez, A., Frame, G. | Achieving energy savings by intelligent transportation systems investments in the context of smart cities | 2017 | Energy efficiency | Smart mobility | Theoretical | North America |
[123] | Carli, R., Dotoli, M., Pellegrino, R. | A hierarchical decision-making strategy for the energy management of smart cities | 2017 | Energy and urban planning | Other | Theoretical | Europe |
[124] | Brundu, F.G., Patti, E., Osello, A., Giudice, M.D., Rapetti, N., Krylovskiy, A., Jahn, M., Verda, V., Guelpa, E., Rietto, L., Acquaviva, A. | IoT software infrastructure for energy management and simulation in smart cities | 2017 | Energy efficiency | Smart grid | Empirical | Europe |
[125] | Oldenbroek, V., Verhoef, L.A., van Wijk, A.J.M. | Fuel cell electric vehicle as a power plant: fully renewable integrated transport and energy system design and analysis for smart city areas | 2017 | Renewable energy | Hybrid energy system | Empirical | Europe |
[126] | Nanni, S., Benetti, E., Mazzini, G. | Indoor monitoring in public buildings: workplace wellbeing and energy consumptions. An example of IoT for smart cities application | 2017 | Energy efficiency | Smart grid | Empirical | Europe |
[127] | Kalli, M. | Energy solutions for future smart cities | 2017 | Energy and urban planning | Other | Theoretical | North America |
[128] | Hung, P., Peng, K. | Green-energy, water-autonomous greenhouse system: an alternative-technology approach towards sustainable smart-green vertical greening in smart cities | 2017 | Energy and urban planning | Sustainable environment/vertical greening | Empirical | Asia |
[129] | Bhati, A., Hansen, M., Chan, C.M. | Energy conservation through smart homes in a smart city: a lesson for Singapore households | 2017 | Energy efficiency | Energy saving | Empirical | Asia |
[130] | Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., Jo, M. | Efficient energy management for the internet of things in smart cities | 2017 | Energy efficiency | Smart grid | Empirical | Asia |
[33] | Pezzutto, S., Mosannenzadeh, F., Grilli, G., Sparber, W. | European union research and development funding on smart cities and their importance on climate and energy goals | 2017 | Energy and urban planning | Other | Theoretical | Europe |
[53] | Manshahia, M.S. | Swarm intelligence-based energy-efficient data delivery in WSAN to virtualise IoT in smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[45] | Chui, K.T., Lytras, M.D., Visvizi, A. | Energy sustainability in smart cities: artificial intelligence, smart monitoring, and optimization of energy consumption | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[131] | Barresi, A. | Urban densification and energy efficiency in smart cities: the verge project (Switzerland) | 2018 | Renewable energy | Solar energy | Empirical | Europe |
[132] | Colmenar-Santos, A., Molina-Ibáñez, E.-L., Rosales-Asensio, E., López-Rey, Á. | Technical approach for the inclusion of superconducting magnetic energy storage in a smart city | 2018 | Energy efficiency | Smart grid | Empirical | Europe |
[133] | Cui, J., Yoon, H., Youn, B.D. | An omnidirectional biomechanical energy harvesting (OBEH) sidewalk block for a self-generative power grid in a smart city | 2018 | Renewable energy | Omnidirectional biomechanical energy harvesting | Empirical | Asia |
[134] | Calvillo, C.F., Sanchez-Miralles, A., Villar, J. | Synergies of electric urban transport systems and distributed energy resources in smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Europe |
[135] | Hayashi, Y., Fujimoto, Y., Ishii, H., Takenobu, Y., Kikusato, H., Yoshizawa, S., Amano, Y., Tanabe, S.-I., Yamaguchi, Y., Shimoda, Y., Yoshinaga, J., Watanabe, M., Sasaki, S., Koike T., Jacobsen H.-A., Tomsovic K. | Versatile modeling platform for cooperative energy management systems in smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[136] | Kai, C., Li, H., Xu, L., Li, Y., Jiang, T. | Energy-efficient device-to-device communications for green smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[137] | Zhou, L., Wu, D., Chen, J., Dong, Z. | Greening the smart cities: energy-efficient massive content delivery via D2D communications | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[138] | Lu, W., Gong, Y., Liu, X., Wu, J., Peng, H. | Collaborative energy and information transfer in green wireless sensor networks for smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Asia |
[62] | Deakin, M., Reid, A. | Smart cities: under-gridding the sustainability of city-districts as energy efficient-low carbon zones | 2018 | Energy and urban planning | Other | Theoretical | Europe |
[139] | Rostirolla, G., Righi, R.D.R., Barbosa, J.L.V., Da Costa, C.A. | Elcity: an elastic multilevel energy saving model for smart cities | 2018 | Energy efficiency | Smart grid | Empirical | Latin America |
[140] | Andreucci, M.B. | Linking future energy systems with heritage requalification in smart cities. On-going research and experimentation in the city of Trento (IT) | 2018 | Energy efficiency | Smart grid | Empirical | Europe |
[43] | Abdullah, M.A., Al-Hadhrami, T., Tan, C.W., Yatim, A.H. | Towards green energy for smart cities: particle swarm optimization based MPPT approach | 2018 | Renewable energy | Wind energy | Empirical | Asia |
[141] | Pieroni, A., Scarpato, N., Di Nunzio, L., Fallucchi, F., Raso, M. | Smarter city: smart energy grid based on blockchain technology | 2018 | Energy efficiency | Smart grid | Theoretical | Europe |
[142] | Causone, F., Sangalli, A., Pagliano, L., Carlucci, S. | Assessing energy performance of smart cities | 2018 | Energy and urban planning | Other | Theoretical | Europe |
[143] | Mutule, A.; Teremranova, J.; Antoskovs, N. | Smart city through a flexible approach to smart energy | 2018 | Energy and urban planning | Other | Theoretical | Europe |
[144] | Condotta, M.; Borga, G. | Urban energy performance monitoring for smart city decision support environments | 2018 | Energy efficiency | Smart grid | Empirical | Europe |
[145] | Barresi, A. | Urban densification and energy efficiency in smart cities—the verge project (Switzerland) | 2018 | Renewable energy | Solar energy | Empirical | Europe |
[146] | Lanini, L.; Barsanti, E.A. | Hybrid building as social and energy hub for smart cities: Unite 2.0, a prototype | 2018 | Energy efficiency | Smart buildings | Empirical | Europe |
[147] | Luo, H., Cai, H., Yu, H., Sun, Y., Bi, Z., Jiang, L. | A short-term energy prediction system based on edge computing for smart city | 2019 | Energy efficiency | Monitoring and energy efficiency | Empirical | Asia |
[148] | Naseer, S., Liu, W., Sarkar, N.I. | Energy-efficient massive data dissemination through vehicle mobility in smart cities | 2019 | Energy efficiency | Network transmission | Empirical | Europe |
[149] | Sato, M., Fukuyama, Y., Iizaka, T., Matsui, T. | Total optimization of energy networks in a smart city by multi-swarm differential evolutionary particle swarm optimization | 2019 | Energy efficiency | Smart grid | Empirical | Asia |
[46] | Yu, Y., Zhang, N. | Does smart city policy improve energy efficiency? Evidence from a quasi-natural experiment in China | 2019 | Energy efficiency | Conceptualization of energy efficiency | Empirical | Asia |
[150] | Le, L.T., Nguyen, H., Dou, J., Zhou, J. | A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning | 2019 | Energy efficiency | Energy planning | Empirical | Asia |
[151] | Abdullah, A., Yusoff, S.H., Zaini, S.A., Midi, N.S., Mohamad, S.Y. | Energy efficient smart street light for smart city using sensors and controller | 2019 | Energy efficiency | LED lighting | Empirical | Asia |
[41] | Haarstad, H., Wathne, M.W. | Are smart city projects catalyzing urban energy sustainability? | 2019 | Renewable energy | Hybrid energy system | Theoretical | Europe |
[152] | Corsini, F., Certomà, C., Dyer, M., Frey, M. | Participatory energy: research, imaginaries and practices on people’ contribute to energy systems in the smart city | 2019 | Energy and urban planning | Network transmission | Theoretical | Europe |
[153] | Aujla, G.S., Kumar, N., Singh, M., Zomaya, A.Y. | Energy trading with dynamic pricing for electric vehicles in a smart city environment | 2019 | Energy efficiency | Electric vehicles | Empirical | Asia |
[154] | Hati, S., Dey, P., De, D. | WLAN based energy efficient smart city design | 2019 | Energy efficiency | Energy saving | Empirical | Asia |
[155] | Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y. | Intelligent edge computing for IoT-based energy management in smart cities | 2019 | Energy efficiency | Smart grid | Empirical | Asia |
[156] | Petritoli, E., Leccese, F., Pizzuti, S., Pieroni, F. | Smart lighting as basic building block of smart city: an energy performance comparative case study | 2019 | Energy efficiency | LED lighting | Empirical | Europe |
[157] | Muhammad, K., Lloret, J., Baik, S.W. | Intelligent and energy-efficient data prioritization in green smart cities: current challenges and future directions | 2019 | Energy efficiency | Smart grid | Theoretical | Asia |
[158] | Ahuja, K., Khosla, A. | Network selection criterion for ubiquitous communication provisioning in smart cities for smart energy system | 2019 | Energy efficiency | Smart grid | Empirical | Asia |
[159] | Vázquez-Canteli, J.R., Ulyanin, S., Kämpf, J., Nagy, Z. | Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities | 2019 | Energy efficiency | Smart grid | Empirical | North America |
[160] | Cioara, T., Anghel, I., Salomie, I., Antal, M., Pop, C., Bertoncini, M., Arnone, D., Pop, F. | Exploiting data centres energy flexibility in smart cities: business scenarios | 2019 | Energy efficiency | Smart grid | Empirical | Europe |
[161] | Parks, D. | Energy efficiency left behind? Policy assemblages in Sweden’s most climate-smart city | 2019 | Energy efficiency | Smart grid | Theoretical | Europe |
[162] | Gitelman, L.D., Kozhevnikov, M.V., Adam, L.A. | Sustainable energy for smart city | 2019 | Energy and urban planning | Other | Theoretical | Europe |
[163] | Al-Nory, M.T. | Optimal decision guidance for the electricity supply chain integration with renewable energy: aligning smart cities research with sustainable development goals | 2019 | Renewable energy | Electricity supply chain | Theoretical | Asia |
[164] | Nagy, Z., Sebestyén Szép, T., Szendi, D. | Regional disparities in Hungarian urban energy consumption—a link between smart cities and successful cities | 2019 | Energy and urban planning | Other | Theoretical | Europe |
[165] | Aymen, F., Mahmoudi, C. | A novel energy optimization approach for electrical vehicles in a smart city | 2019 | Energy efficiency | Smart grid | Empirical | Africa |
[166] | Wei, L., Hu, Y. | Research on new and old kinetic energy transformation supported by smart city construction in big data era | 2019 | Energy and urban planning | Urban experimentation | Empirical | Asia |
[167] | Sato, M., Fukuyama, Y., Iizaka, T., Matsui, T. | Total optimization of energy networks in a smart city by multi-population global-best modified brain storm optimization with migration | 2019 | Energy efficiency | Smart grid | Empirical | Asia |
[168] | O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. | Smart energy systems for sustainable smart cities: current developments, trends and future directions | 2019 | Energy and urban planning | Other | Theoretical | Europe |
[169] | Huang, X., Huang, P., Huang, T. | Multi-objective optimization of digital management for renewable energies in smart cities | 2020 | Renewable energy | Hybrid energy system | Empirical | Asia |
[170] | Khattak, H.A., Tehreem, K., Almogren, A., Ameer, Z., Din, I.U., Adnan, M. | Dynamic pricing in industrial internet of things: blockchain application for energy management in smart cities | 2020 | Energy efficiency | Energy saving | Theoretical | Asia |
[42] | Pilipczuk, O. | Sustainable smart cities and energy management: the labor market perspective | 2020 | Energy and urban planning | Energy manager profession | Theoretical | Europe |
[75] | Lewandowska, A., Chodkowska-Miszczuk, J., Rogatka, K., Starczewski, T. | Smart energy in a smart city: utopia or reality? Evidence from Poland | 2020 | Renewable energy | Hybrid energy system | Theoretical | Europe |
[171] | Anthony Jnr, B. | Smart city data architecture for energy presumption in municipalities: concepts, requirements, and future directions | 2020 | Energy efficiency | Energy distribution | Theoretical | Asia |
[172] | Chithaluru, P., Al-Turjman, F., Kumar, M., Stephan, T. | I-AREOR: an energy-balanced clustering protocol for implementing green IoT in smart cities | 2020 | Energy efficiency | Energy planning | Empirical | Asia |
[173] | Gonçalves, D., Sheikhnejad, Y., Oliveira, M., Martins, N. | One step forward toward smart city utopia: smart building energy management based on adaptive surrogate modelling | 2020 | Energy efficiency | Smart building | Empirical | Europe |
[174] | Giourka, P., Apostolopoulos, V., Angelakoglou, K., Kourtzanidis, K., Nikolopoulos, N., Sougkakis, V., Fuligni, F., Barberis, S., Verbeek, K., Costa, J.M., Formiga, J. | The nexus between market needs and value attributes of smart city solutions towards energy transition. An empirical evidence of two European Union (EU) smart cities, Evora and Alkmaar | 2020 | Energy and urban planning | Urban energy planning | Empirical | Europe |
[175] | Angelakoglou, K., Kourtzanidis, K., Giourka, P., Apostolopoulos, V., Nikolopoulos, N., Kantorovitch, J. | From a comprehensive pool to a project-specific list of key performance indicators for monitoring the positive energy transition of smart cities—an experience-based approach | 2020 | Energy and urban planning | Other | Theoretical | Europe |
[176] | Kumar, D. | Urban energy system management for enhanced energy potential for upcoming smart cities | 2020 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[177] | Parks, D. | Promises and techno-politics: renewable energy and Malmö’s vision of a climate-smart city | 2020 | Energy efficiency | Energy planning | Theoretical | Europe |
[178] | Gaska, K., Generowicz, A. | Smart computational solutions for the optimization of selected technology processes as an innovation and progress in improving energy efficiency of smart cities—a case study | 2020 | Energy efficiency | Smart grid | Empirical | Europe |
[179] | Palanca, J., Jordán, J., Bajo, J., Botti, V. | An energy-aware algorithm for electric vehicle infrastructures in smart cities | 2020 | Energy efficiency | Electric vehicle | Empirical | Europe |
[180] | Li, L., Zheng, Y., Zheng, S., Ke, H. | The new smart city programme: evaluating the effect of the internet of energy on air quality in China | 2020 | Energy and urban planning | Internet of energy | Empirical | Asia |
[181] | Pei, P., Huo, Z., Martínez, O.S., Crespo, R.G. | Minimal green energy consumption and workload management for data centers on smart city platforms | 2020 | Renewable energy | Hybrid energy system | Empirical | Asia |
[182] | Jettanasen, C., Songsukthawan, P., Ngaopitakkul, A. | Energy harvesting for smart city applications | 2020 | Renewable energy | Hybrid energy system | Empirical | Asia |
[183] | Ye, H., Li, F.M., Liu, Z.X., Deng, X.D. | A green energy consumption policy of Bluetooth mobile devices for smart cities | 2020 | Energy and urban planning | Green computing mode | Empirical | Asia |
[184] | Anthony Jnr, B., Abbas Petersen, S., Ahlers, D., Krogstie, J. | API deployment for big data management towards sustainable energy presumption in smart cities-a layered architecture perspective | 2020 | Energy efficiency | Smart grid | Empirical | Europe |
[185] | Gitelman, L.D., Kozhevnikov, M.V., Starikov, E.M., Gamburg, A.V. | Sustainable energy in smart cities | 2020 | Energy efficiency | Smart grid | Theoretical | Asia |
[186] | Deakin, M., Reid, A., Mora, L. | Smart cities: the metrics of future Internet-based developments and renewable energies of urban and regional innovation | 2020 | Renewable energy | Hybrid energy system | Theoretical | Europe |
[187] | Serban, A.C., Lytras, M.D. | Artificial intelligence for smart renewable energy sector in Europe—smart energy infrastructures for next generation smart cities | 2020 | Renewable energy | Hybrid energy system | Empirical | Europe |
[188] | Mekhum, W. | Smart cities: impact of renewable energy consumption, information and communication technologies and e-governance on CO2 emission | 2020 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[34] | Sayah, Z., Kazar, O., Lejdel, B., Laouid, A., Ghenabzia, A. | An intelligent system for energy management in smart cities based on big data and ontology | 2020 | Energy efficiency | Energy saving | Theoretical | Africa |
[189] | Petrović, N., Kocić, D. | Data-driven framework for energy-efficient smart cities | 2020 | Energy efficiency | Electric vehicle | Theoretical | Europe |
[190] | Fadeyi, O., Krejcar, O., Maresova, P., Kuca, K., Brida, K., Selamat, A. | Opinions on sustainability of smart cities in the context of energy challenges posed by cryptocurrency mining | 2020 | Energy efficiency | Energy saving | Theoretical | Europe |
[191] | Strielkowski, W., Veinbender, T., Tvaronavičienė, M., Lace, N. | Economic efficiency and energy security of smart cities | 2020 | Energy efficiency | LED lighting | Theoretical | Europe |
[192] | Abbas, S., Khan, M.A., Falcon-Morales, L.E., Rehman, A., Saeed, Y., Zareei, M., Zeb, A., Mohamed, E.M. | Modeling, simulation and optimization of power plant energy sustainability for IoT enabled smart cities empowered with deep extreme learning machine | 2020 | Energy efficiency | Energy planning | Empirical | Central America |
[193] | Oldenbroek, V., Smink, G., Salet, T., van Wijk, A.J.M. | Fuel cell electric vehicle as a power plant: techno-economic scenario analysis of a renewable integrated transportation and energy system for smart cities in two climates | 2020 | Renewable energy | Hydrogen | Empirical | Europe |
[194] | Shu, M.; Wu, S.Z.; Wu, T.; Qiao, Z.L.; Wang, N.; Xu, F.; Shanthini, A.; Muthu, B.A. | Efficient energy consumption system using heuristic renewable demand energy optimization in smart city | 2020 | Renewable energy | Hybrid energy system | Empirical | Asia |
[195] | Tanwar, S.; Popat, A.; Bhattacharya, P.; Gupta, R.; Kumar, N. | A taxonomy of energy optimization techniques for smart cities: architecture and future directions | 2020 | Energy efficiency | Decentralized systems | Theoretical | Asia |
[196] | Arif, A.; Barrigon, F.A.; Gregoretti, F.; Iqbal, J.; Lavagno, L.; Lazarescu, M.T.; Ma, L.; Palomino, M.; Segura, J.L.L. | Performance and energy-efficient implementation of a smart city application on FPGAs | 2020 | Energy efficiency | Smart grid | Empirical | Europe |
[72] | Biancardi, M., Di Bari, A., Villani, G. | R&D investment decision on smart cities: energy sustainability and opportunity | 2021 | Energy and urban planning | Renewable energy and urban planning | Empirical | Europe |
[197] | Cho, K., Yang, J., Kim, T., Jang, W. | Influence of building characteristics and renovation techniques on the energy-saving performances of EU smart city projects | 2021 | Energy and urban planning | Smart buildings | Theoretical | Asia |
[58] | Duan, P., Askari, M., Hemat, K., Ali, Z.M. | Optimal operation and simultaneous analysis of the electric transport systems and distributed energy resources in the smart city | 2021 | Energy efficiency | Energy distribution | Empirical | Asia |
[67] | Kuznetsov, P., Rimar, M., Yakimovich, B., Kulikova, O., Lopusniak, M., Voronin, D., Evstigneev, V. | Parametric optimization of combined wind-solar energy power plants for sustainable smart city development | 2021 | Renewable energy | Combined wind-solar energy power plants | Theoretical | Europe |
[6] | Hussain, M.M., Akram, R., Memon, Z.A., Nazir, M.H., Javed, W., Siddique, M. | Demand side management techniques for home energy management systems for smart cities | 2021 | Energy efficiency | Combined energy sources | Theoretical | Europe |
[198] | Sabory, N.R., Senjyu, T., Danish, M.S.S., Hosham, A., Noorzada, A., Amiri, A.S., Muhammdi, Z. | Applicable smart city strategies to ensure energy efficiency and renewable energy integration in poor cities: Kabul case study | 2021 | Energy and urban planning | Urban energy planning | Theoretical | Asia |
[199] | Ghadami, N., Gheibi, M., Kian, Z., Faramarz, M.G., Naghedi, R., Eftekhari, M., Fathollahi-Fard, A.M., Dulebenets, M.A., Tian, G. | Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods | 2021 | Renewable energy | Solar energy | Empirical | Asia |
[200] | Boeri, A., Boulanger, S.O.M., Turci, G., Pagliula, S. | Enabling strategies for mixed-used PEDs: energy efficiency between smart cities and Industry 4.0 (strategie e tecnologie abilitanti per ped misti: efficienza tra smart cities e industria 4.0) | 2021 | Energy and urban planning | Urban energy planning | Empirical | Europe |
[201] | Xia, X., Wu, X., BalaMurugan, S., Marimuthu, K. | Effect of environmental and social responsibility in energy-efficient management models for smart cities infrastructure | 2021 | Energy efficiency | LED lighting | Theoretical | Asia |
[202] | Shen, X., Yu, H., Liu, X., Bin, Q., Luhach, A.K., Saravanan, V. | The optimized energy-efficient sensible edge processing model for the internet of vehicles in smart cities | 2021 | Energy efficiency | Electric vehicle | Empirical | Asia |
[203] | Lu, C.-W., Huang, J.-C., Chen, C., Shu, M.-H., Hsu, C.-W., Tapas Bapu, B.R. | An energy-efficient smart city for sustainable green tourism industry | 2021 | Energy and urban planning | Tourism | Theoretical | Asia |
[204] | Wang, C., Gu, J., Sanjuán Martínez, O., González Crespo, R. | Economic and environmental impacts of energy efficiency over smart cities and regulatory measures using a smart technological solution | 2021 | Energy efficiency | Conceptualization of energy efficiency | Theoretical | Asia |
[205] | Sami, M.S., Abrar, M., Akram, R., Hussain, M.M., Nazir, M.H., Khan, M.S., Raza, S. | Energy management of microgrids for smart cities: a review | 2021 | Energy efficiency | Micro-grids | Theoretical | Europe |
[63] | Govindarajan, H.K., Ganesh, L.S. | Renewable energy for electricity use in India: evidence from India’s smart cities mission | 2021 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[49] | Carrera, B., Peyrard, S., Kim, K. | Meta-regression framework for energy consumption prediction in a smart city: a case study of Songdo in South Korea | 2021 | Energy efficiency | Energy planning | Theoretical | Asia |
[56] | Zhang, X., Manogaran, G., Muthu, B. | IoT enabled integrated system for green energy into smart cities | 2021 | Energy efficiency | Energy saving | Empirical | Asia |
[206] | Ashwin, M., Alqahtani, A.S., Mubarakali, A. | IoT based intelligent route selection of wastage segregation for smart cities using solar energy | 2021 | Energy efficiency | Solar energy | Empirical | Asia |
[207] | Abu-Rayash, A., Dincer, I. | Development and analysis of an integrated solar energy system for smart cities | 2021 | Renewable energy | Solar energy | Empirical | North America |
[208] | Gorla, P., Chamola, V. | Battery lifetime estimation for energy efficient telecommunication networks in smart cities | 2021 | Energy efficiency | Solar energy | Empirical | Asia |
[209] | Khalil, M.I., Jhanjhi, N.Z., Humayun, M., Sivanesan, S., Masud, M., Hossain, M.S. | Hybrid smart grid with sustainable energy efficient resources for smart cities | 2021 | Renewable energy | Hybrid energy system | Empirical | Asia |
[210] | Abdel-Basset, M., Hawash, H., Chakrabortty, R.K., Ryan, M. | Energy-net: a deep learning approach for smart energy management in IoT-based smart cities | 2021 | Energy and urban planning | Internet-of-things | Empirical | Africa |
[57] | Zhang, W., Yue, M. | The application of building energy management system based on IoT technology in smart city | 2021 | Energy efficiency | Hybrid energy system | Empirical | Asia |
[44] | Hoang, A.T., Pham, V.V., Nguyen, X.P. | Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process | 2021 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[211] | Mutule, A., Domingues, M., Ulloa-Vásquez, F., Carrizo, D., García-Santander, L., Dumitrescu, A.-M., Issicaba, D., Melo, L. | Implementing smart city technologies to inspire change in consumer energy behaviour | 2021 | Energy efficiency | Energy consumer | Empirical | Europe |
[212] | Miyasawa, A., Akira, S., Fujimoto, Y., Hayashi, Y. | Spatial demand forecasting based on smart meter data for improving local energy self-sufficiency in smart cities | 2021 | Energy and urban planning | Urban energy planning | Theoretical | Asia |
[213] | Bachanek, K.H., Tundys, B., Wiśniewski, T., Puzio, E., Maroušková, A. | Intelligent street lighting in a smart city concepts: a direction to energy saving in cities: an overview and case study | 2021 | Renewable energy | Hybrid energy system | Empirical | Europe |
[68] | Mahmood, D., Javaid, N., Ahmed, G., Khan, S., Monteiro, V. | A review on optimization strategies integrating renewable energy sources focusing uncertainty factor—paving path to eco-friendly smart cities | 2021 | Renewable energy | Hybrid energy system | Theoretical | Asia |
[214] | Zekić-Sušac, M., Mitrović, S., Has, A. | Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities | 2021 | Energy efficiency | Energy planning | Empirical | Europe |
[215] | Hajduk, S., Jelonek, D. | A decision-making approach based on TOPSIS method for ranking smart cities in the context of urban energy | 2021 | Energy and urban planning | Energy planning | Theoretical | Europe |
[216] | Vrabie, C. | Converting municipal waste to energy through the biomass chain, a key technology for environmental issues in (smart) cities | 2021 | Renewable energy | Biomass | Theoretical | Europe |
[217] | Xiaoyi, Z., Dongling, W., Yuming, Z., Manokaran, K.B., Benny Antony, A. | IoT driven framework based efficient green energy management in smart cities using multi-objective distributed dispatching algorithm | 2021 | Renewable energy | Hybrid energy system | Empirical | Asia |
[218] | Babar, M., Khattak, A.S., Jan, M.A., Tariq, M.U. | Energy aware smart city management system using data analytics and internet of things | 2021 | Energy efficiency | Energy planning | Empirical | Asia |
[219] | Tantau, A., Şanta, A.-M.I. | New energy policy directions in the European Union developing the concept of smart cities | 2021 | Energy and urban planning | Other | Theoretical | Europe |
[220] | Swain, A., Salkuti, S.R., Swain, K. | An optimized and decentralized energy provision system for smart cities | 2021 | Energy efficiency | Hybrid energy system | Empirical | Asia |
[221] | Kim, D., Kwon, D., Park, L., Kim, J., Cho, S. | Multiscale LSTM-based deep learning for very-short-term photovoltaic power generation forecasting in smart city energy management | 2021 | Renewable energy | Solar energy | Empirical | Asia |
[222] | Uspenskaia, D., Specht, K., Kondziella, H., Bruckner, T. | Challenges and barriers for net-zero/positive energy buildings and districts—empirical evidence from the smart city project Sparcs | 2021 | Energy efficiency | Hybrid energy system | Empirical | Europe |
[223] | Elkamel, M., Ahmadian, A., Diabat, A., Zheng, Q.P. | Stochastic optimization for price-based unit commitment in renewable energy-based personal rapid transit systems in sustainable smart cities | 2021 | Energy efficiency | Hybrid energy system | Empirical | North America |
[224] | Avotins, A., Adrian, L.R., Porins, R., Apse-Apsitis, P., Ribickis, L. | Smart city street lighting system quality and control issues to increase energy efficiency and safety | 2021 | Energy and urban planning | Street lighting | Empirical | Europe |
[225] | Vukovic, N., Koriugina, U., Illarionova, D., Pankratova, D., Kiseleva, P., Gontareva, A. | Towards smart green cities: analysis of integrated renewable energy use in smart cities | 2021 | Energy and urban planning | Energy planning | Theoretical | Europe |
[226] | Nesmachnow, S., Colacurcio, G., Rossit, D.G., Toutouh, J., Luna, F. | Optimizing household energy planning in smart cities: a multiobjective approach (optimización de la planificación energética en hogares inteligentes: un enfoque multi-objetivo) | 2021 | Energy efficiency | Energy planning | Empirical | Latin America |
[73] | Martín, C., Castillo-Calzadilla, T., Zabala, K., Arrizabalaga, E., Hernández, P., Mabe, L., López, J.R., Casado, J.M., Santos, M.N., Guardo, J., Molinete, B. | The opportunity for smart city projects at municipal scale: implementing a positive energy district in Zorrozaurre | 2021 | Energy and urban planning | Urban energy planning | Empirical | Europe |
[227] | Chen, L., Han, P. | The construction of a smart city energy efficiency management system oriented to the mobile data aggregation of the internet of things | 2021 | Energy efficiency | Energy saving | Theoretical | Asia |
[69] | Meenakshi, Mothi Kumar, K.E., Kumari, N. | A geo-spatial approach for quantifying rooftop photovoltaic energy potential in Karnal smart city, Haryana-a case study | 2021 | Renewable energy | Solar energy | Empirical | Asia |
[228] | Wang, X., Chen, Q., Wang, J. | Fuzzy rough set based sustainable methods for energy efficient smart city development | 2021 | Energy and urban planning | Solar energy | Empirical | Asia |
[229] | Farid, A.M., Alshareef, M., Badhesha, P.S., Boccaletti, C., Cacho, N.A.A., Carlier, C.-I., Corriveau, A., Khayal, I., Liner, B., Martins, J.S.B., Rahimi, F., Rossetti, R., Schoonenberg, W.C.H., Stillwell, A., Wang, Y. | Smart city drivers and challenges in energy and water systems | 2021 | Energy efficiency | Electric vehicle | Theoretical | North America |
[230] | V E S., Shin, C., Cho, Y. | Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city | 2021 | Energy efficiency | Energy consumer | Empirical | Asia |
[231] | Martins, F.; Patrao, C.; Moura, P.; de Almeida, A.T. | A review of energy modeling tools for energy efficiency in smart cities | 2021 | Energy efficiency | Energy efficiency planning | Theoretical | Europe |
[232] | Verma, S. | Energy-efficient routing paradigm for resource-constrained internet of things-based cognitive smart city | 2021 | Energy efficiency | Clusters | Empirical | Asia |
[233] | Hadidi, L.A.; Rahman, S.M.; Maghrabi, A.T. | Smart city: a sustainable solution for enhancing energy efficiency and climate change mitigation in Saudi Arabia | 2021 | Energy efficiency | Savings in power | Empirical | Asia |
[234] | Nuvvula, R.; Devaraj, E.; Srinivasa, K.T. | A comprehensive assessment of large-scale battery integrated hybrid renewable energy system to improve sustainability of a smart city | 2021 | Renewable energy | Solar energy | Empirical | Asia |
References
- Nações Unidas Brasil. População Mundial Deve Chegar a 9,7 Bilhões de Pessoas Em 2050, Diz Relatório Da ONU. Available online: https://brasil.un.org/pt-br/83427-populacao-mundial-deve-chegar-97-bilhoes-de-pessoas-em-2050-diz-relatorio-da-onu (accessed on 12 February 2022).
- Dong, F.; Li, Y.; Li, K.; Zhu, J.; Zheng, L. Can Smart City Construction Improve Urban Ecological Total Factor Energy Efficiency in China? Fresh Evidence from Generalized Synthetic Control Method. Energy 2022, 241, 119976. [Google Scholar] [CrossRef]
- Nações Unidas. ONU Prevê Que Cidades Abriguem 70% Da População Mundial Até 2050. Available online: https://news.un.org/pt/story/2019/02/1660701 (accessed on 12 February 2022).
- População Rural e Urbana|Educa|Jovens-IBGE. Available online: https://educa.ibge.gov.br/jovens/conheca-o-brasil/populacao/18313-populacao-rural-e-urbana.html (accessed on 12 February 2022).
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Hussain, M.M.; Akram, R.; Memon, Z.A.; Nazir, M.H.; Javed, W.; Siddique, M. Demand Side Management Techniques for Home Energy Management Systems for Smart Cities. Sustainability 2021, 13, 11740. [Google Scholar] [CrossRef]
- Mahbub, P.; Goonetilleke, A.; Ayoko, G.; Egodawatta, P.; Yigitcanlar, T. Analysis of Build-up of Heavy Metals and Volatile Organics on Urban Roads in Gold Coast, Australia. Water Sci. Technol. 2011, 63, 2077–2085. [Google Scholar]
- Yigitcanlar, T.; Dodson, J.; Gleeson, B.; Sipe, N. Travel Self-Containment in Master Planned Estates: Analysis of Recent Australian Trends. Urban Policy Res. 2007, 25, 129–149. [Google Scholar]
- Ballas, D. What Makes a ‘Happy City’? Cities 2013, 32, S39–S50. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Dur, F. Making Space and Place for Knowledge Communities: Lessons for Australian Practice. Australas. J. Reg. Stud. 2013, 19, 36–63. [Google Scholar]
- Yigitcanlar, T.; Kankanamge, N.; Vella, K. How Are Smart City Concepts and Technologies Perceived and Utilized? A Systematic Geo-Twitter Analysis of Smart Cities in Australia. J. Urban Technol. 2021, 28, 135–154. [Google Scholar]
- Mattoni, B.; Gugliermetti, F.; Bisegna, F. A Multilevel Method to Assess and Design the Renovation and Integration of Smart Cities. Sustain. Cities Soc. 2015, 15, 105–119. [Google Scholar] [CrossRef]
- Dur, F.; Yigitcanlar, T. Assessing Land-Use and Transport Integration via a Spatial Composite Indexing Model. Int. J. Environ. Sci. Technol. 2015, 12, 803–816. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A Systematic Review of the Smart Energy Conservation System: From Smart Homes to Sustainable Smart Cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Rosales Carreón, J.; Worrell, E. Urban Energy Systems within the Transition to Sustainable Development. A Research Agenda for Urban Metabolism. Resour. Conserv. Recycl. 2018, 132, 258–266. [Google Scholar] [CrossRef]
- Lovins, A.B. Energy efficiency, taxonomic overview. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 383–401. [Google Scholar]
- dos Santos Costa, J.; de Andrade Junior, L.M.L. Energy efficiency applied to electricity consumption: A bibliographic review study. Res. Soc. Dev. 2021, 10, e26210414085. [Google Scholar] [CrossRef]
- Gates, B. How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need; Companhia das Letras: São Paulo, Brazil, 2021; Volume 1, ISBN 978-85-359-3427-4. [Google Scholar]
- International Energy Agency (IEA). Data & Statistics. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20consumption&indicator=TotElecCons (accessed on 12 February 2022).
- International Energy Agency (IEA). World Energy Outlook 2020. Available online: www.iea.org/weo (accessed on 12 February 2022).
- Nações Unidas Brasil. Organização das Nações Unidas Objetivos de Desenvolvimento Sustentável. Available online: https://brasil.un.org/pt-br/sdgs/7 (accessed on 12 February 2022).
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 10 December 2021).
- Yuksel, I.; Kaygusuz, K. Renewable Energy Sources for Clean and Sustainable Energy Policies in Turkey. Renew. Sustain. Energy Rev. 2011, 15, 4132–4144. [Google Scholar]
- Yigitcanlar, T. Towards Smart and Sustainable Urban Electromobility: An Editorial Commentary. Sustainability 2022, 14, 2264. [Google Scholar]
- United Nations. Climate Change COP26 EXPLAINED. Available online: https://ukcop26.org/wp-content/uploads/2021/07/COP26-Explained.pdf (accessed on 12 February 2022).
- IPCC. AR6 Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 20 December 2021).
- Breakthrough Energy. Policy Solutions—Electricity. Available online: https://www.breakthroughenergy.org/us-policy-overview/electricity (accessed on 10 December 2021).
- The Climate Group. EP100|Climate Group the World’s Energy-Smart Companies Committed to Doing More with Less Energy. Available online: https://www.theclimategroup.org/ep100 (accessed on 10 December 2021).
- Tostar, A.; Ferrand, L.; Lee, T.; Roaf, L. Energy Efficiency: The Unsung Hero of Net Zero Carbon. Climate Group. Available online: https://theclimategroup.prod.acquia-sites.com/our-work/news/energy-efficiency-unsung-hero-net-zero-carbon (accessed on 10 December 2021).
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can Cities Become Smart without Being Sustainable? A Systematic Review of the Literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar]
- Jurevičienė, D.; Biekšaitė, A. Valuation of Lithuanian Cities’ Smartness. Econ. Cult. 2020, 17, 104–115. [Google Scholar] [CrossRef]
- Skvarciany, V.; Jurevičienė, D.; Žitkienė, R.; Lapinskaitė, I.; Dudė, U. A Different Approach to the Evaluation of Smart Cities’ Indicators. TalTech J. Eur. Stud. 2021, 11, 130–147. [Google Scholar] [CrossRef]
- Pezzutto, S.; Mosannenzadeh, F.; Grilli, G.; Sparber, W. European Union research and development funding on smart cities and their importance on climate and energy goals. In Smart and Sustainable Planning for Cities and Regions; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 421–435. ISBN 9783319448992. [Google Scholar]
- Sayah, Z.; Kazar, O.; Lejdel, B.; Laouid, A.; Ghenabzia, A. An Intelligent System for Energy Management in Smart Cities Based on Big Data and Ontology. Smart Sustain. Built Environ. 2020, 10, 169–192. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Nações Unidas. Glasgow concentra esperança sobre temas centrais da Ação Climática BR. Available online: https://news.un.org/pt/story/2021/10/1768762 (accessed on 10 December 2021).
- Maltese, I.; Mariotti, I.; Boscacci, F. Smart City, Urban Performance and Energy. In Smart Energy in the Smart City; Papa, R., Fistola, R., Eds.; Springer: Singapore, 2016; pp. 25–42. [Google Scholar] [CrossRef]
- Haarstad, H.; Wathne, M.W. Are Smart City Projects Catalyzing Urban Energy Sustainability? Energy Policy 2019, 129, 918–925. [Google Scholar] [CrossRef]
- Pilipczuk, O. Sustainable Smart Cities and Energy Management: The Labor Market. Energies 2020, 13, 6084. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Al-Hadhrami, T.; Tan, C.W.; Yatim, A.H. Towards Green Energy for Smart Cities: Particle Swarm Optimization Based MPPT Approach. IEEE Access 2018, 6, 58427–58438. [Google Scholar] [CrossRef]
- Hoang, A.; Nguyen, X. Integrating Renewable Sources into Energy System for Smart City as a Sagacious Strategy towards Clean and Sustainable Process. J. Clean. Prod. 2021, 305, 127–161. [Google Scholar]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, N. Does Smart City Policy Improve Energy Efficiency? Evidence from a quasi-Natural Experiment in China. J. Clean. Prod. 2019, 229, 501–512. [Google Scholar] [CrossRef]
- Sustainable Energy for All is Funded by Sustainable Energy for All. Available online: https://www.seforall.org/ (accessed on 17 February 2022).
- Philippi Cortese, T.T.; Kniess, C.T.; Maccari, E.A. Cidades Inteligentes e Sustentáveis; Editora Manole: São Paulo, Brazil, 2017; Volume 1, ISBN 9788520451403. [Google Scholar]
- Carrera, B.; Peyrard, S.; Kim, K. Meta-Regression Framework for Energy Consumption Prediction in a Smart: A Case Study of Songdo in South Korea. Sustain. Cities Soc. 2021, 72, 103025. [Google Scholar] [CrossRef]
- Shen, X.; Lu, Y.; Zhang, Y.; Liu, X.; Zhang, L. An Innovative Data Integrity Verification Scheme in the Internet of Things assisted information exchange in transportation systems. Cluster Comput. 2022. [Google Scholar] [CrossRef]
- Caragliu, A.; del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Batista, G.; Storopoli, E. Planejamento de Cidades Inteligentes: Uma Análise Dos Planos Diretores Dos Municípios Brasileiros. Available online: http://bibliotecatede.uninove.br/handle/tede/2713 (accessed on 12 February 2022).
- Manshahia, M.S. Swarm Intelligence-Based Energy-Efficient Data Delivery in WSAN to Virtualise IoT in Smart Cities. IET Wirel. Sens. Syst. 2018, 8, 256–259. [Google Scholar] [CrossRef]
- Sato, M.; Fukuyama, Y.; El-Abd, M.; Iizaka, T.; Matsui, T. Total Optimization of Energy Networks in Smart City by Cooperative Coevolution using Global-best Brain Storm Optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 681–688. [Google Scholar] [CrossRef]
- Konstantinou, C. Toward a Secure and Resilient All-Renewable Energy Grid for Smart Cities. IEEE Consum. Electron. Mag. 2022, 11, 33–41. [Google Scholar] [CrossRef]
- Zhang, X.; Manogaran, G.; Muthu, B.A. IoT Enabled Integrated System for Green Energy into Smart Cities. Sustain. Energy Technol. Assess. 2021, 46, 101208. [Google Scholar] [CrossRef]
- Zhang, W.; Yue, M. The Application of Building Energy Management System Based on IoT Technology in Smart City. Int. J. Syst. Assur. Eng. Manag. 2021, 12, s13198–s021. [Google Scholar]
- Duan, P.; Askari, M.; Hemat, K.; Ali, Z.M. Optimal Operation and Simultaneous Analysis of the Electric Transport Systems and Distributed Energy Resources in the Smart City. Sustain. Cities Soc. 2021, 75, 103306. [Google Scholar] [CrossRef]
- Kumar Garg, A.; Janyani, V.; Batagelj, B. Ring Based Latency-Aware and Energy-Efficient Hybrid WDM TDM-PON with ODN Interconnection Capability for Smart Cities. Opt. Fiber Technol. 2020, 58, 102242. [Google Scholar] [CrossRef]
- Sánchez-Cano, J.E.; García-Quilachamin, W.X.; Pérez-Véliz, J.; Herrera-Tapia, J.; Fuentes, K.A. Review of Methods to Reduce Energy Consumption in A Smart City Based on IoT and 5G Technology. Int. J. Online Biomed. Eng. 2021, 17, 4–21. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Ruiz Maldonado, A.; Rowan, B.; Ryu, A.; Desouza, K.; Corchado, J.; Mehmood, R.; Li, R. Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived and Utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 168. [Google Scholar]
- Deakin, M.; Reid, A. Smart Cities: Under-Gridding the Sustainability of City-Districts as energy Efficient-Low Carbon Zones. J. Clean. Prod. 2018, 173, 39–48. [Google Scholar] [CrossRef]
- Govindarajan, H.K.; Ganesh, L.S. Renewable Energy for Electricity Use in India: Evidence from India’s Smart Cities Mission. Renew. Energy Focus 2021, 38, 36–43. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A. European Smart Cities: The Role of Zero Energy Buildings. Sustain. Cities Soc. 2015, 15, 86–95. [Google Scholar] [CrossRef]
- UNFCCC. Paris Agreement. Text English. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 12 February 2022).
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building Understanding of Smart City Initiatives; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–53. [Google Scholar]
- Kuznetsov, P.; Rimar, M.; Yakimovich, B.; Kulikova, O.; Lopusniak, M.; Voronin, D.; Evstigneev, V. Parametric Optimization of Combined Wind-Solar Energy Power Plants for Sustainable Smart City Development. Appl. Sci. 2021, 11, 10351. [Google Scholar] [CrossRef]
- Mahmood, D.; Javaid, N.; Ahmed, G.; Khan, S.; Monteiro, V. A Review on Optimization Strategies Integrating Renewable Energy Sources Focusing Uncertainty Factor—Paving Path to Eco-Friendly Smart Cities. Sustain. Comput. Inform. Syst. 2021, 30, 100559. [Google Scholar] [CrossRef]
- Meenakshi; Mothi Kumar, K.E.; Kumari, N. A Geo-Spatial Approach for Quantifying Rooftop Photovoltaic Energy Potential in Karnal Smart City, Haryana-a Case Study. J. Appl. Nat. Sci. 2021, 13, 512–519. [Google Scholar] [CrossRef]
- Lotfi, M.; Almeida, T.; Javadi, M.S.; Osório, G.J.; Monteiro, C.; Catalão, J.P.S. Coordinating Energy Management Systems in Smart Cities with Electric Vehicles. Appl. Energy 2022, 307, 118241. [Google Scholar] [CrossRef]
- Krutwig, M.; Starosta, K.; Tantau, A. Comparative study on quality assurance for mandatory energy audits in Romania and Germany. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 22–23 March 2018. [Google Scholar]
- Biancardi, M.; di Bari, A.; Villani, G. R&D Investment Decision on Smart Cities: Energy Sustainability and Opportunity. Chaos Solitons Fractals 2021, 153, 111554. [Google Scholar] [CrossRef]
- Martín, C.; Castillo-Calzadilla, T.; Zabala, K.; Arrizabalaga, E.; Hernández, P.; Mabe, L.; López, J.R.; Casado, J.M.; Santos, M.N.; Guardo, J.; et al. The Opportunity for Smart City Projects at Municipal Scale: Implementing a Positive Energy District in Zorrozaurre. Ekonomiaz 2021, 99, 119–149. [Google Scholar]
- Chen, Z.; Sivaparthipan, C.B.; Muthu, B.A. IoT Based Smart and Intelligent Smart City Energy Optimization. Sustain. Energy Technol. Assess. 2022, 49, 101724. [Google Scholar] [CrossRef]
- Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K.; Starczewski, T. Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland. Energies 2020, 13, 5795. [Google Scholar]
- Nasr, A.; Kashan, M.; Maleki, A.; Jafari, N.; Hashemi, H. Assessment of Barriers to Renewable Energy Development Using Stakeholders Approach. Entrep. Sustain. Issues 2020, 7, 2526. [Google Scholar]
- Lenhart, J.; van Vliet, B.; Mol, A.P.J. New Roles for Local Authorities in a Time of Climate Change: The Rotterdam Energy Approach and Planning as a Case of Urban Symbiosis. J. Clean. Prod. 2015, 107, 593–601. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.; Buys, L.; Bell, J. Performance Evaluation of Eight Contemporary Passive Solar Homes in Subtropical Australia. Build. Environ. 2012, 56, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Seifhashemi, M.; Capra, B.R.; Milller, W.; Bell, J. The Potential for Cool Roofs to Improve the Energy Efficiency of Single Storey Warehouse-Type Retail Buildings in Australia: A Simulation Case Study. Energy Build. 2018, 158, 1393–1403. [Google Scholar] [CrossRef]
- Vilathgamuwa, M.; Mishra, Y.; Yigitcanlar, T.; Bhaskar, A.; Wilson, C. Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure. Sustainability 2022, 14, 2796. [Google Scholar] [CrossRef]
- Miller, W.; Liu, L.A.; Amin, Z.; Gray, M. Involving Occupants in Net-Zero-Energy Solar Housing Retrofits: An Australian Sub-Tropical Case Study. Sol. Energy 2018, 159, 390–404. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Peng, J.; Chen, X.; Cao, S.; Yang, H. Techno-Economic Design Optimization of Hybrid Renewable Energy Applications for High-Rise Residential Buildings. Energy Convers. Manag. 2020, 213, 112868. [Google Scholar] [CrossRef]
- Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, N.; Esmaeilzadeh, A. Novel Investigation of the Different Omni-Direction-Guide-Vane Angles Effects on the Urban Vertical Axis Wind Turbine Output Power via Three-Dimensional Numerical Simulation. Energy Convers. Manag. 2016, 117, 206–217. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Wind-Sensitive Urban Planning and Design: Precinct Ventilation Performance and Its Potential for Local Warming Mitigation in an Open Midrise Gridiron Precinct. J. Build. Eng. 2020, 29, 101145. [Google Scholar] [CrossRef]
- Australia Net Zero: NSW to Ditch Dark-Coloured Roofs to Prevent Heat Islands. Available online: https://www.afr.com/property/commercial/nsw-to-ditch-dark-coloured-roofs-to-prevent-heat-islands-20211117-p599ok (accessed on 12 February 2022).
- Hajduk, S. The Concept of A Smart City In Urban Management. Bus. Manag. Educ. 2016, 14, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.T.D.; Coccolo, S.; Scartezzini, J.-L. The Influence of Urban Form on the Grid Integration of Renewable Energy Technologies and Distributed Energy Systems. Sci. Rep. 2019, 9, 17756. [Google Scholar] [CrossRef]
- Wang, B.; Geoffroy, S.; Bonhomme, M. Urban Form Study for Wind Potential Development. Environ. Plan. B: Urban Anal. City Sci. 2022, 49, 76–91. [Google Scholar] [CrossRef]
- Lantz, T.L.; Ioppolo, G.; Yigitcanlar, T.; Arbolino, R. Understanding the Correlation between Energy Transition and Urbanization. Environ. Innov. Soc. Transit. 2021, 40, 73–86. [Google Scholar] [CrossRef]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How Can Life Cycle Thinking Support Sustainability of Buildings? Investigating Life Cycle Assessment Applications for Energy Efficiency and Environmental Performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- Liu, A.; Miller, W.; Chiou, J.; Zedan, S.; Yigitcanlar, T.; Ding, Y. Aged Care Energy Use and Peak Demand Change in the COVID-19 Year: Empirical Evidence from Australia. Buildings 2021, 11, 570. [Google Scholar] [CrossRef]
- Madlener, R.; Sunak, Y. Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management? Sustain. Cities Soc. 2011, 1, 45–53. [Google Scholar] [CrossRef]
- Mortoja, M.G.; Yigitcanlar, T. Local Drivers of Anthropogenic Climate Change: Quantifying the Impact through a Remote Sensing Approach in Brisbane. Remote Sens. 2020, 12, 2270. [Google Scholar] [CrossRef]
- Gunningham, N. Averting Climate Catastrophe: Environmental Activism, Extinction Rebellion and Coalitions of Influence. King Law J. 2019, 30, 194–202. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A.; Zuccari, F.; Pieroni, A.; Suppa, T. Blockchain Technology in Smart City: A New Opportunity for Smart Environment and Smart Mobility. In Intelligent Computing & Optimization; Vasant, P., Zelinka, I., Weber, G.W., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 346–354. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Cugurullo, F. The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability 2020, 12, 8548. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol. 2019, 26, 21–46. [Google Scholar] [CrossRef]
- Li, W.; Yigitcanlar, T.; Erol, I.; Liu, A. Motivations, Barriers and Risks of Smart Home Adoption: From Systematic Literature Review to Conceptual Framework. Energy Res. Soc. Sci. 2021, 80, 102211. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart Energy and Smart Energy Systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Maier, S.; Narodoslawsky, M.; Borell-Damián, L.; Arentsen, M.; Kienberger, M.; Bauer, W.; Ortner, M.; Foxhall, N.; Oswald, G.; Joval, J.-M.; et al. Theory and practice of European co-operative education and training for the support of energy transition. Energy Sustain. Soc. 2019, 9, 29. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Bisello, A.; Vaccaro, R.; D’alonzo, V.; Hunter, G.W.; Vettorato, D. Smart Energy City Development: A Story Told by Urban Planners. Cities 2017, 64, 54–65. [Google Scholar] [CrossRef]
- Kamyab, H.; Klemeš, J.J.; van Fan, Y.; Lee, C.T. Transition to Sustainable Energy System for Smart Cities and Industries. Energy 2020, 207, 118104. [Google Scholar] [CrossRef]
- Pol, O.; Palensky, P.; Kuh, C.; Leutgöb, K.; Page, J.; Zucker, G. Integration of Centralized Energy Monitoring Specifications into the Planning Process of a New Urban Development Area: A Step towards Smart Cities. Elektrotechnik Inf. 2012, 129, 258–264. [Google Scholar] [CrossRef]
- Pirisi, A.; Grimaccia, F.; Mussetta, M.; Zich, R.E. Novel Speed Bumps Design and Optimization for Vehicles’ Energy Recovery in Smart Cities. Energies 2012, 5, 4624–4642. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Molina, J.; Martínez, J.F.; Castillejo, P.; de Diego, R. SMArc: A Proposal for a Smart, Semantic Middleware Architecture Focused on Smart City Energy Management. Int. J. Distrib. Sens. Netw. 2013, 13, 560418. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, Y.; Seya, H. Simulating a Future Smart City: An Integrated Land Use-Energy Model. Appl. Energy 2013, 112, 1466–1474. [Google Scholar] [CrossRef]
- Sanchez-Miralles, A.; Calvillo, C.; Martín, F.; Villar, J. Use of Renewable Energy Systems in Smart Cities. Green Energy Technol. 2014, 2014, 341–370. [Google Scholar] [CrossRef]
- Battista, G.; Evangelisti, L.; Guattari, C.; Basilicata, C.; de Lieto Vollaro, R. Buildings Energy Efficiency: Interventions Analysis under a Smart Cities Approach. Sustainability 2014, 6, 4694–4705. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.V.; Zamora, M.A.; Skarmeta, A.F. User-Centric Smart Buildings for Energy Sustainable Smart Cities. Trans. Emerg. Telecommun. Technol. 2014, 25, 41–55. [Google Scholar] [CrossRef]
- Caponio, G.; Massaro, V.; Mossa, G.; Mummolo, G. Strategic Energy Planning of Residential Buildings in a Smart City: A System Dynamics Approach. Int. J. Eng. Bus. Manag. 2015, 7, 61768. [Google Scholar] [CrossRef]
- Sanseverino, E.R.; Scaccianoce, G.; Vaccaro, V.; Carta, M.; Sanseverino, R.R. Smart Cities and Municipal Building Regulation for Energy Effciency. Int. J. Agric. Environ. Inf. Syst. 2015, 6, 56–82. [Google Scholar] [CrossRef]
- Lützenberger, M.; Masuch, N.; Küster, T.; Freund, D.; Voß, M.; Hrabia, C.E.; Pozo, D.; Fähndrich, J.; Trollmann, F.; Keiser, J.; et al. A Common Approach to Intelligent Energy and Mobility Services in a Smart City Environment. J. Ambient Intell. Humaniz. Comput. 2015, 6, 337–350. [Google Scholar] [CrossRef]
- Jablonski, I. Smart Transducer Interface-From Networked On-Site Optimization of Energy in Research-Demonstrative Office Building to Smart City. IEEE Sens. J. 2015, 15, 2339135. [Google Scholar] [CrossRef]
- Aslam, S.; Hasan, N.U.; Jang, J.W.; Lee, K.G. Optimized Energy Harvesting, Cluster-Head Selection and Channel Allocation for IoTs in Smart Cities. Sensors 2016, 16, 2046. [Google Scholar] [CrossRef] [Green Version]
- Maier, S. Smart Energy Systems for Smart City Districts: Case Study Reininghaus District. Energy Sustain. Soc. 2016, 6, s13705–s016. [Google Scholar]
- Palomar, E.; Chen, X.; Liu, Z.; Maharjan, S.; Bowen, J. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems. Sensors 2016, 16, 1810. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.; Wang, Z.L.; Yang, Y. Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS Nano 2016, 10, 5696–5700. [Google Scholar] [CrossRef]
- Zambon, I.; Monarca, D.; Cecchini, M.; Bedini, R.; Longo, L.; Romagnoli, M.; Marucci, A. Alternative Energy and the Development of Local Rural Contexts: An Approach to Improve the Degree of Smart Cities in the Central-Southern Italy. Contemp. Eng. Sci. 2016, 9, 1371–1386. [Google Scholar] [CrossRef]
- Mahapatra, C.; Moharana, A.K.; Leung, V.C.M. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings. Sensors 2017, 17, 2812. [Google Scholar] [CrossRef] [Green Version]
- Krozer, Y. Innovative Offices for Smarter Cities, Including Energy Use and Energy-Related Carbon Dioxide Emissions. Energy Sustain. Soc. 2017, 7, s13705–s13717. [Google Scholar]
- Chen, Y.; Ardila-Gomez, A.; Frame, G. Achieving Energy Savings by Intelligent Transportation Systems Investments in the Context of Smart Cities. Transp. Res. Part D Transp. Environ. 2017, 54, 381–396. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Pellegrino, R. A Hierarchical Decision-Making Strategy for the Energy Management of Smart Cities. IEEE Trans. Autom. Sci. Eng. 2017, 14, 505–523. [Google Scholar] [CrossRef]
- Brundu, F.G.; Patti, E.; Osello, A.; del Giudice, M.; Rapetti, N.; Krylovskiy, A.; Jahn, M.; Verda, V.; Guelpa, E.; Rietto, L.; et al. IoT Software Infrastructure for Energy Management and Simulation in Smart Cities. IEEE Trans. Ind. Inform. 2017, 13, 832–840. [Google Scholar] [CrossRef]
- Oldenbroek, V.; Verhoef, L.A.; van Wijk, A.J.M. Fuel Cell Electric Vehicle as a Power Plant: Fully Renewable Integrated Transport and Energy System Design and Analysis for Smart City Areas. Int. J. Hydrogen Energy 2017, 42, 8166–8196. [Google Scholar] [CrossRef]
- Nanni, S.; Benetti, E.; Mazzini, G. Indoor Monitoring in Public Buildings: Workplace Wellbeing and Energy Consumptions. An Example of IoT for Smart Cities Application. Adv. Sci. Technol. Eng. Syst. 2017, 2, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Kalli, M. Energy Solutions for Future Smart Cities. Euroheat Power (Engl. Ed.) 2017, 14, 24–26. [Google Scholar]
- Hung, P.; Peng, K. Green-Energy, Water-Autonomous Greenhouse System: An Alternative-Technology Approach towards Sustainable Smart-Green Vertical Greening in Smart Cities. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Bhati, A.; Hansen, M.; Chan, C.M. Energy Conservation through Smart Homes in a Smart City: A Lesson for Singapore Households. Energy Policy 2017, 104, 230–239. [Google Scholar] [CrossRef]
- Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of Things in Smart Cities. IEEE Commun. Mag. 2017, 55, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Barresi, A. Urban Densification and Energy Efficiency in Smart Cities: The Verge Project (Switzerland). Adv. Model. Anal. A 2018, 55, 173–176. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Molina-Ibáñez, E.L.; Rosales-Asensio, E.; López-Rey, Á. Technical Approach for the Inclusion of Superconducting Magnetic Energy Storage in a Smart City. Energy 2018, 158, 1080–1091. [Google Scholar] [CrossRef]
- Cui, J.; Yoon, H.; Youn, B.D. An Omnidirectional Biomechanical Energy Harvesting (OBEH) Sidewalk Block for a Self-Generative Power Grid in a Smart City. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 507–517. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sanchez-Miralles, A.; Villar, J. Synergies of Electric Urban Transport Systems and Distributed Energy Resources in Smart Cities. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2445–2453. [Google Scholar] [CrossRef]
- Hayashi, Y.; Fujimoto, Y.; Ishii, H.; Takenobu, Y.; Kikusato, H.; Yoshizawa, S.; Amano, Y.; Tanabe, S.I.; Yamaguchi, Y.; Shimoda, Y.; et al. Versatile Modeling Platform for Cooperative Energy Management Systems in Smart Cities. Proc. IEEE 2018, 106, 594–612. [Google Scholar] [CrossRef]
- Kai, C.; Li, H.; Xu, L.; Li, Y.; Jiang, T. Energy-Efficient Device-to-Device Communications for Green Smart Cities. IEEE Trans. Ind. Inform. 2018, 14, 1542–1551. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, D.; Chen, J.; Dong, Z. Greening the Smart Cities: Energy-Efficient Massive Content Delivery via D2D Communications. IEEE Trans. Ind. Inform. 2018, 14, 1626–1634. [Google Scholar] [CrossRef]
- Lu, W.; Gong, Y.; Liu, X.; Wu, J.; Peng, H. Collaborative Energy and Information Transfer in Green Wireless Sensor Networks for Smart Cities. IEEE Trans. Ind. Inform. 2018, 14, 1585–1593. [Google Scholar] [CrossRef]
- Rostirolla, G.; Righi, R.D.R.; Barbosa, J.L.V.; da Costa, C.A. ElCity: An Elastic Multilevel Energy Saving Model for Smart Cities. IEEE Trans. Sustain. Comput. 2018, 3, 30–43. [Google Scholar] [CrossRef]
- Andreucci, M.B. Linking Future Energy Systems with Heritage Requalification in Smart Cities. On-Going Research and Experimentation in the City of Trento (IT). Techne 2018, 1, 87–91. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter City: Smart Energy Grid Based on Blockchain Technology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 298–306. [Google Scholar] [CrossRef]
- Causone, F.; Sangalli, A.; Pagliano, L.; Carlucci, S. Assessing Energy Performance of Smart Cities. Build. Serv. Eng. Res. Technol. 2018, 39, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Mutule, A.; Teremranova, J.; Antoskovs, N. Smart City Through a Flexible Approach to Smart Energy. Latv. J. Phys. Tech. Sci. 2018, 55, 3–14. [Google Scholar]
- Condotta, M.; Borga, G. Urban energy performance monitoring for Smart City decision support environments. J. Technol. Archit. Environ. 2018, 1, 73–80. [Google Scholar] [CrossRef]
- Barresi, A. Urban Densification and Energy Efficiency in Smart Cities—The VerGe (Switzerland). J. Technol. Archit. Environ. 2018, 1, 28–32. [Google Scholar] [CrossRef]
- Lanini, L.; Barsanti, E.A. Hybrid Building as Social and Energy Hub for Smart Cities: Unitè 2.0, a Prototype. J. Technol. Archit. Environ. 2018, 1, 49–55. [Google Scholar] [CrossRef]
- Luo, H.; Cai, H.; Yu, H.; Sun, Y.; Bi Zhuming and Jiang, L. A Short-Term Energy Prediction System Based on Edge Computing for Smart. Future Gener. Comput. Syst. Int. J. Escience 2019, 101, 444–457. [Google Scholar] [CrossRef]
- Naseer, S.; Liu, W.; Sarkar, N.I. Energy-Efficient Massive Data Dissemination through Vehicle Mobility in Smart Cities. Sensors 2019, 19, 4735. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Fukuyama, Y.; Iizaka, T.; Matsui, T. Total Optimization of Energy Networks in a Smart City by Multi-Swarm Differential Evolutionary Particle Swarm Optimization. IEEE Trans. Sustain. Energy 2019, 10, 2186–2200. [Google Scholar] [CrossRef]
- Le, L.T.; Nguyen, H.; Dou, J.; Zhou, J. A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in Estimating the Heating Load of Buildings’ Energy Efficiency for Smart City Planning. Appl. Sci. 2019, 9, 2630. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.; Yusoff, S.H.; Zaini, S.A.; Midi, N.S.; Mohamad, S.Y. Energy Efficient Smart Street Light for Smart City Using Sensors and Controller. Bull. Electr. Eng. Inform. 2019, 8, 558–568. [Google Scholar] [CrossRef]
- Corsini, F.; Certomà, C.; Dyer, M.; Frey, M. Participatory Energy: Research, Imaginaries and Practices on People’ Contribute to Energy Systems in the Smart City. Technol. Forecast. Soc. Change 2019, 142, 322–332. [Google Scholar] [CrossRef]
- Aujla, G.S.; Kumar, N.; Singh, M.; Zomaya, A.Y. Energy Trading with Dynamic Pricing for Electric Vehicles in a Smart City Environment. J. Parallel Distrib. Comput. 2019, 127, 169–183. [Google Scholar] [CrossRef]
- Hati, S.; Dey, P.; De, D. WLAN Based Energy Efficient Smart City Design. Microsyst. Technol. 2019, 25, 1599–1612. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent Edge Computing for IoT-Based Energy Management in Smart Cities. IEEE Netw. 2019, 33, 111–117. [Google Scholar] [CrossRef]
- Petritoli, E.; Leccese, F.; Pizzuti, S.; Pieroni, F. Smart Lighting as Basic Building Block of Smart City: An Energy Performance Comparative Case Study. Meas. J. Int. Meas. Confed. 2019, 136, 466–477. [Google Scholar] [CrossRef]
- Muhammad, K.; Lloret, J.; Baik, S.W. Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions. IEEE Commun. Mag. 2019, 57, 60–65. [Google Scholar] [CrossRef]
- Ahuja, K.; Khosla, A. Network Selection Criterion for Ubiquitous Communication Provisioning in Smart Cities for Smart Energy System. J. Netw. Comput. Appl. 2019, 127, 82–91. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Ulyanin, S.; Kämpf, J.; Nagy, Z. Fusing TensorFlow with Building Energy Simulation for Intelligent Energy Management in Smart Cities. Sustain. Cities Soc. 2019, 45, 243–257. [Google Scholar] [CrossRef]
- Cioara, T.; Anghel, I.; Salomie, I.; Antal, M.; Pop, C.; Bertoncini, M.; Arnone, D.; Pop, F. Exploiting Data Centres Energy Flexibility in Smart Cities: Business Scenarios. Inf. Sci. 2019, 476, 392–412. [Google Scholar] [CrossRef]
- Parks, D. Energy Efficiency Left behind? Policy Assemblages in Sweden’s Most Climate-Smart City. Eur. Plan. Stud. 2019, 27, 318–335. [Google Scholar] [CrossRef] [Green Version]
- Gitelman, L.D.; Kozhevnikov, M.V.; Adam, L.A. Sustainable Energy for Smart City. Int. J. Energy Prod. Manag. 2019, 4, 273–286. [Google Scholar] [CrossRef]
- Al-Nory, M.T. Optimal Decision Guidance for the Electricity Supply Chain Integration with Renewable Energy: Aligning Smart Cities Research with Sustainable Development Goals. IEEE Access 2019, 7, 74996–75006. [Google Scholar] [CrossRef]
- Nagy, Z.; Sebestyén Szép, T.; Szendi, D. Regional Disparities in Hungarian Urban Energy Consumption-A Link between Smart Cities and Successful Cities. Geogr. Tech. 2019, 14, 102. [Google Scholar] [CrossRef]
- Aymen, F.; Mahmoudi, C. A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City. Energies 2019, 12, 929. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Hu, Y. Research on New and Old Kinetic Energy Transformation Supported by Smart City Construction in Big Data Era. J. Adv. Comput. Intell. Intell. Inform. 2019, 23, 102–106. [Google Scholar] [CrossRef]
- Sato, M.; Fukuyama, Y.; Iizaka, T.; Matsui, T. Total Optimization of Energy Networks in a Smart City by Multi-Population Global-Best Modified Brain Storm Optimization with Migration. Algorithms 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart Energy Systems for Sustainable Smart Cities: Current Developments, Trends and Future Directions. Appl. Energy 2019, 237, 581–597. [Google Scholar]
- Huang, X.; Huang, P.; Huang, T. Multi-Objective Optimization of Digital Management for Renewable Energies in Smart Cities. J. Eur. Des Syst. Autom. 2020, 53, 893–902. [Google Scholar] [CrossRef]
- Khattak, H.A.; Tehreem, K.; Almogren, A.; Ameer, Z.; Din, I.U.; Adnan, M. Dynamic Pricing in Industrial Internet of Things: Blockchain Application for Energy Management in Smart Cities. J. Inf. Secur. Appl. 2020, 55, 102615. [Google Scholar] [CrossRef]
- Anthony Jnr, B. Smart City Data Architecture for Energy Prosumption in Municipalities: Concepts, Requirements, and Future Directions. Int. J. Green Energy 2020, 17, 827–845. [Google Scholar] [CrossRef]
- Chithaluru, P.; Al-Turjman, F.; Kumar, M.; Stephan, T. I-AREOR: An Energy-Balanced Clustering Protocol for Implementing Green IoT in Smart Cities. Sustain. Cities Soc. 2020, 61, 102254. [Google Scholar] [CrossRef]
- Gonçalves, D.; Sheikhnejad, Y.; Oliveira, M.; Martins, N. One Step Forward toward Smart City Utopia: Smart Building Energy Management Based on Adaptive Surrogate Modelling. Energy Build. 2020, 223, 110146. [Google Scholar] [CrossRef]
- Giourka, P.; Apostolopoulos, V.; Angelakoglou, K.; Kourtzanidis, K.; Nikolopoulos, N.; Sougkakis, V.; Fuligni, F.; Barberis, S.; Verbeek, K.; Costa, J.M.; et al. The Nexus between Market Needs and Value Attributes of Smart City Solutions towards Energy Transition. An Empirical Evidence of Two European Union (EU) Smart Cities, Evora and Alkmaar. Smart Cities 2020, 3, 604–641. [Google Scholar] [CrossRef]
- Angelakoglou, K.; Kourtzanidis, K.; Giourka, P.; Apostolopoulos, V.; Nikolopoulos, N.; Kantorovitch, J. From a Comprehensive Pool to a Project-Specific List of Key Performance Indicators for Monitoring the Positive Energy Transition of Smart Cities—An Experience-Based Approach. Smart Cities 2020, 3, 705–735. [Google Scholar] [CrossRef]
- Kumar, D. Urban Energy System Management for Enhanced Energy Potential for Upcoming Smart Cities. Energy Explor. Exploit. 2020, 38, 1968–1982. [Google Scholar] [CrossRef]
- Parks, D. Promises and Techno-Politics: Renewable Energy and Malmö’s Vision of a Climate-Smart City. Sci. Cult. 2020, 29, 388–409. [Google Scholar] [CrossRef]
- Gaska, K.; Generowicz, A. SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study. Energies 2020, 13, 3338. [Google Scholar] [CrossRef]
- Palanca, J.; Jordán, J.; Bajo, J.; Botti, V. An Energy-Aware Algorithm for Electric Vehicle Infrastructures in Smart Cities. Future Gener. Comput. Syst. 2020, 108, 454–466. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zheng, S.; Ke, H. The New Smart City Programme: Evaluating the Effect of the Internet of Energy on Air Quality in China. Sci. Total Environ. 2020, 714, 136380. [Google Scholar] [CrossRef]
- Pei, P.; Huo, Z.; Martínez, O.S.; Crespo, R.G. Minimal Green Energy Consumption and Workload Management for Data Centers on Smart City Platforms. Sustainability 2020, 12, 3140. [Google Scholar] [CrossRef] [Green Version]
- Jettanasen, C.; Songsukthawan, P.; Ngaopitakkul, A. Development of Micro-Mobility Based on Piezoelectric Energy Harvesting for Smart City Applications. Sustainability 2020, 12, 2933. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Li, F.M.; Liu, Z.X.; Deng, X.D. A Green Energy Consumption Policy of Bluetooth Mobile Devices for Smart Cities. Computing 2020, 102, 1077–1091. [Google Scholar] [CrossRef]
- Anthony Jnr, B.; Abbas Petersen, S.; Ahlers, D.; Krogstie, J. API Deployment for Big Data Management towards Sustainable Energy Prosumption in Smart Cities-a Layered Architecture Perspective. Int. J. Sustain. Energy 2020, 39, 263–289. [Google Scholar] [CrossRef]
- Gitelman, L.D.; Kozhevnikov, M.V.; Starikov, E.M.; Gamburg, A.V. Technology Entrepreneurship as a Factor of Sustainable Energy in Smart Cities. WIT Trans. Ecol. Environ. 2020, 246, 101–112. [Google Scholar] [CrossRef]
- Deakin, M.; Reid, A.; Mora, L. Smart Cities: The Metrics of Future Internet-Based Developments and Renewable Energies of Urban and Regional Innovation. J. Urban Technol. 2020, 27, 59–78. [Google Scholar] [CrossRef]
- Serban, A.C.; Lytras, M.D. Artificial Intelligence for Smart Renewable Energy Sector in Europe-Smart Energy Infrastructures for next Generation Smart Cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Mekhum, W. Smart Cities: Impact of Renewable Energy Consumption, Information and Communication Technologies and E-Governance on CO2 Emission. J. Secur. Sustain. Issues 2020, 9, 785–795. [Google Scholar] [CrossRef]
- Petrović, N.; Kocić, D. Data-Driven Framework for Energy-Efficient Smart Cities. Serb. J. Electr. Eng. 2020, 17, 41–63. [Google Scholar] [CrossRef] [Green Version]
- Fadeyi, O.; Krejcar, O.; Maresova, P.; Kuca, K.; Brida, P.; Selamat, A. Opinions on Sustainability of Smart Cities in the Context of Energy Posed by Cryptocurrency Mining. Sustainability 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Strielkowski, W.; Veinbender, T.; Tvaronaviciene Manuela and Lace, N. Economic Efficiency and Energy Security of Smart Cities. Econ. Res. -Ekon. Istraz. 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Abbas, S.; Khan, M.A.; Eduardo Falcon-Morales Luis and Rehman, A.; Saeed, Y.; Zareei, M.; Zeb, A.; Mohamed, E.M. Modeling, Simulation and Optimization of Power Plant Energy for IoT Enabled Smart Cities Empowered with Deep Extreme Machine. IEEE Access 2020, 8, 39982–39997. [Google Scholar] [CrossRef]
- Oldenbroek, V.; Smink, G.; Salet, T.; van Wijk, A.J.M. Fuel Cell Electric Vehicle as a Power Plant: Techno-Economic Scenario Analysis of a Renewable Integrated Transportation and Energy System for Smart Cities in Two Climates. Appl. Sci. 2020, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Shu, M.; Wu, S.; Wu, T.; Qiao, Z.; Wang, N.; Xu, F.; Shanthini, A.; Muthu, B.A. Efficient Energy Consumption System Using Heuristic Renewable Demand Energy Optimization in Smart City. Comput. Intell. 2020. [Google Scholar] [CrossRef]
- Tanwar, S.; Popat, A.; Bhattacharya, P.; Gupta, R.; Kumar, N. A Taxonomy of Energy Optimization Techniques for Smart Cities: Architecture and Future Directions. Expert Syst. 2021. [Google Scholar] [CrossRef]
- Arif, A.; Barrigon, F.A.; Gregoretti, F.; Iqbal, J.; Lavagno, L.; Lazarescu, M.T.; Ma, L.; Palomino, M.; Segura, J.L.L. Performance and Energy-Efficient Implementation of a Smart City Application on FPGAs. Real-Time Image Processing 2020, 17, 729–743. [Google Scholar]
- Cho, K.; Yang, J.; Kim, T.; Jang, W. Influence of Building Characteristics and Renovation Techniques on the Energy-Saving Performances of EU Smart City Projects. Energy Build. 2021, 252, 111477. [Google Scholar] [CrossRef]
- Sabory, N.R.; Senjyu, T.; Danish, M.S.S.; Hosham, A.; Noorzada, A.; Amiri, A.S.; Muhammdi, Z. Applicable Smart City Strategies to Ensure Energy Efficiency and Renewable Energy Integration in Poor Cities: Kabul Case Study. Sustainability 2021, 13, 11984. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of Solar Energy in Smart Cities Using an Integration of Artificial Neural Network, Photovoltaic System and Classical Delphi Methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Boeri, A.; Boulanger, S.O.M.; Turci, G.; Pagliula, S. Enabling Strategies for Mixed-Used PEDs: Energy Efficiency between Smart Cities and Industry 4.0. Techne 2021, 22, 170–180. [Google Scholar] [CrossRef]
- Xia, X.; Wu, X.; BalaMurugan, S.; Marimuthu, K. Effect of Environmental and Social Responsibility in Energy-Efficient Management Models for Smart Cities Infrastructure. Sustain. Energy Technol. Assess. 2021, 47, 101525. [Google Scholar] [CrossRef]
- Shen, X.; Yu, H.; Liu, X.; Bin, Q.; Luhach, A.K.; Saravanan, V. The Optimized Energy-Efficient Sensible Edge Processing Model for the Internet of Vehicles in Smart Cities. Sustain. Energy Technol. Assess. 2021, 47, 101477. [Google Scholar] [CrossRef]
- Lu, C.W.; Huang, J.C.; Chen, C.; Shu, M.H.; Hsu, C.W.; Tapas Bapu, B.R. An Energy-Efficient Smart City for Sustainable Green Tourism Industry. Sustain. Energy Technol. Assess. 2021, 47, 101494. [Google Scholar] [CrossRef]
- Wang, C.; Gu, J.; Sanjuán Martínez, O.; González Crespo, R. Economic and Environmental Impacts of Energy Efficiency over Smart Cities and Regulatory Measures Using a Smart Technological Solution. Sustain. Energy Technol. Assess. 2021, 47, 101422. [Google Scholar] [CrossRef]
- Sami, M.S.; Abrar, M.; Akram, R.; Hussain, M.M.; Nazir, M.H.; Khan, M.S.; Raza, S. Energy Management of Microgrids for Smart Cities: A Review. Energies 2021, 14, 5976. [Google Scholar] [CrossRef]
- Ashwin, M.; Alqahtani, A.S.; Mubarakali, A. Iot Based Intelligent Route Selection of Wastage Segregation for Smart Cities Using Solar Energy. Sustain. Energy Technol. Assess. 2021, 46. [Google Scholar] [CrossRef]
- Abu-Rayash, A.; Dincer, I. Development and Analysis of an Integrated Solar Energy System for Smart Cities. Sustain. Energy Technol. Assess. 2021, 46, 101281. [Google Scholar] [CrossRef]
- Gorla, P.; Chamola, V. Battery Lifetime Estimation for Energy Efficient Telecommunication Networks in Smart Cities. Sustain. Energy Technol. Assess. 2021, 46, 101205. [Google Scholar] [CrossRef]
- Khalil, M.I.; Jhanjhi, N.Z.; Humayun, M.; Sivanesan, S.K.; Masud, M.; Hossain, M.S. Hybrid Smart Grid with Sustainable Energy Efficient Resources for Smart Cities. Sustain. Energy Technol. Assess. 2021, 46, 101211. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. Energy-Net: A Deep Learning Approach for Smart Energy Management in IoT-Based Smart Cities. IEEE Internet Things J. 2021, 8, 12422–12435. [Google Scholar] [CrossRef]
- Mutule, A.; Domingues, M.; Ulloa-Vásquez, F.; Carrizo, D.; García-Santander, L.; Dumitrescu, A.M.; Issicaba, D.; Melo, L. Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour. Energies 2021, 14, 4310. [Google Scholar] [CrossRef]
- Miyasawa, A.; Akira, S.; Fujimoto, Y.; Hayashi, Y. Spatial Demand Forecasting Based on Smart Meter Data for Improving Local Energy Self-Sufficiency in Smart Cities. IET Smart Cities 2021, 3, 107–120. [Google Scholar] [CrossRef]
- Bachanek, K.H.; Tundys, B.; Wiśniewski, T.; Puzio, E.; Maroušková, A. Intelligent Street Lighting in a Smart City Concepts—a Direction to Energy Saving in Cities: An Overview and Case Study. Energies 2021, 14, 3018. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine Learning Based System for Managing Energy Efficiency of Public Sector as an Approach towards Smart Cities. Int. J. Inf. Manag. 2021, 58, 391–402. [Google Scholar] [CrossRef]
- Hajduk, S.; Jelonek, D. A Decision-Making Approach Based on Topsis Method for Ranking Smart Cities in the Context of Urban Energy. Energies 2021, 14, 2691. [Google Scholar] [CrossRef]
- Vrabie, C. Converting Municipal Waste to Energy through the Biomass Chain, a Key Technology for Environmental Issues in (Smart) Cities. Sustainability 2021, 13, 4633. [Google Scholar] [CrossRef]
- Xiaoyi, Z.; Dongling, W.; Yuming, Z.; Manokaran, K.B.; Benny Antony, A. IoT Driven Framework Based Efficient Green Energy Management in Smart Cities Using Multi-Objective Distributed Dispatching Algorithm. Environ. Impact Assess. Rev. 2021, 88, 106567. [Google Scholar] [CrossRef]
- Babar, M.; Khattak, A.S.; Jan, M.A.; Tariq, M.U. Energy Aware Smart City Management System Using Data Analytics and Internet of Things. Sustain. Energy Technol. Assess. 2021, 44, 100992. [Google Scholar] [CrossRef]
- Tantau, A.; Şanta, A.M.I. New Energy Policy Directions in the European Union Developing the Concept of Smart Cities. Smart Cities 2021, 4, 241–252. [Google Scholar] [CrossRef]
- Swain, A.; Salkuti, S.R.; Swain, K. An Optimized and Decentralized Energy Provision System for Smart Cities. Energies 2021, 14, 1451. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, D.; Park, L.; Kim, J.; Cho, S. Multiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management. IEEE Syst. J. 2021, 15, 346–354. [Google Scholar] [CrossRef]
- Uspenskaia, D.; Specht, K.; Kondziella, H.; Bruckner, T. Challenges and Barriers for Net-zero/Positive Energy Buildings and Districts—Empirical Evidence from the Smart City Project Sparcs. Buildings 2021, 11, 78. [Google Scholar] [CrossRef]
- Elkamel, M.; Ahmadian, A.; Diabat, A.; Zheng, Q.P. Stochastic Optimization for Price-Based Unit Commitment in Renewable Energy-Based Personal Rapid Transit Systems in Sustainable Smart Cities. Sustain. Cities Soc. 2021, 65, 346–354. [Google Scholar] [CrossRef]
- Avotins, A.; Adrian, L.R.; Porins, R.; Apse-Apsitis, P.; Ribickis, L. Smart City Street Lighting System Quality and Control Issues to Increase Energy Efficiency and Safety. Balt. J. Road Bridge Eng. 2021, 16, 28–57. [Google Scholar] [CrossRef]
- Vukovic, N.; Koriugina, U.; Illarionova, D.; Pankratova, D.; Kiseleva, P.; Gontareva, A. Towards Smart Green Cities: Analysis of Integrated Renewable Energy Use in Smart Cities. Strateg. Plan. Energy Environ. 2021, 40, 75–94. [Google Scholar] [CrossRef]
- Nesmachnow, S.; Colacurcio, G.; Rossit, D.G.; Toutouh, J.; Luna, F. Optimizing Household Energy Planning in Smart Cities: A Multiobjective Approach. Rev. Fac. De Ing. Univ. De Antioq. 2020, 101, 8–19. [Google Scholar] [CrossRef]
- Chen, L.; Han, P. The Construction of a Smart City Energy Efficiency Management System Oriented to the Mobile Data Aggregation of the Internet of Things. Complexity 2021, 2021, 9988282. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Wang, J. Fuzzy Rough Set Based Sustainable Methods for Energy Efficient Smart City Development. J. Intell. Fuzzy Syst. 2021, 40, 8173–8183. [Google Scholar] [CrossRef]
- Farid, A.M.; Alshareef, M.; Badhesha, P.S.; Boccaletti, C.; Cacho, N.A.A.; Carlier, C.I.; Corriveau, A.; Khayal, I.; Liner, B.; Martins, J.S.B.; et al. Smart City Drivers and Challenges in Energy and Water Systems. IEEE Potentials 2021, 40, 6–10. [Google Scholar] [CrossRef]
- Shin, C.E.S.; Cho, Y. Efficient Energy Consumption Prediction Model for a Data Analytic-Enabled Industry Building in a Smart City. Build. Res. Inf. 2021, 49, 127–143. [Google Scholar] [CrossRef]
- Martins, F.; Patrão, C.; Moura, P.; de Almeida, A.T. A Review of Energy Modeling Tools for Energy Efficiency in Smart Cities. Smart Cities 2021, 4, 1420–1436. [Google Scholar]
- Verma, S. Energy-efficient Routing Paradigm for Resource-constrained Internet of Things-based Cognitive Smart City. Expert Syst. 2021, e12905. [Google Scholar] [CrossRef]
- Hadidi, L.A.; Rahman, S.M.; Maghrabi, A.T. Smart City-a Sustainable Solution for Enhancing Energy Efficiency and climate Change Mitigation in Saudi Arabia. Int. J. Glob. Warm. 2021, 24, 91–107. [Google Scholar]
- Nuvvula, R.; Devaraj, E.; Srinivasa, K.T. A Comprehensive Assessment of Large-Scale Battery Integrated Hybrid Renewable Energy System to Improve Sustainability of a Smart City. Energy Sources Part A Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
Primary Data | Secondary Data | |||
---|---|---|---|---|
Inclusionary | Exclusionary | Inclusionary | Exclusionary | |
Journal articles | Duplicate records | Energy in smart cities | Not related to energy sustainability | |
Peer-reviewed | Books and chapters | Energy sustainability | Not related to cities | |
Full-text available online | Industry reports | Relevant to the research objective | Irrelevant research objectives | |
Published in English | Government reports | |||
Conferences |
Selection Criteria |
---|
|
|
|
|
|
Journal | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Energies | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 5 | 11 |
Sustainable Energy Technologies and Assessments | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 10 |
Sustainability | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 7 |
Sustainable Cities and Society | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 5 |
Smart Cities | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 |
IEEE Access | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 4 |
Sensors | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 3 |
IEEE Transactions on Industrial Informatics | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 0 | 0 | 7 |
Applied Sciences | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
Journal of Cleaner Production | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 |
Green Energy and Technology | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 3 |
Techne-Journal of Technology for Architecture and Environment | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 6 |
Energy and Buildings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
Techne | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 |
Future Generation Computer Systems | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Energy Policy | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
IEEE Communications Magazine | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Energy, Sustainability and Society | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
Applied Energy | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Expert Systems | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
Other | 1 | 1 | 1 | 4 | 2 | 6 | 10 | 14 | 16 | 21 | 76 |
Total | 2 | 2 | 3 | 4 | 6 | 12 | 20 | 24 | 31 | 50 | 154 |
Continent | Number of Studies | Empirical | Theoretical | Electricity Consumption (TWh) |
---|---|---|---|---|
Asia | 69 | 49 | 20 | 11,985.5 |
Europe | 70 | 38 | 32 | 3837.9 |
North America | 7 | 4 | 3 | 5056.2 |
Africa | 3 | 2 | 1 | 732.4 |
Latin and Central America | 3 | 3 | 0 | 1109.5 |
Oceania | 2 | 1 | 1 | 1912.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortese, T.T.P.; Almeida, J.F.S.d.; Batista, G.Q.; Storopoli, J.E.; Liu, A.; Yigitcanlar, T. Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review. Energies 2022, 15, 2382. https://doi.org/10.3390/en15072382
Cortese TTP, Almeida JFSd, Batista GQ, Storopoli JE, Liu A, Yigitcanlar T. Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review. Energies. 2022; 15(7):2382. https://doi.org/10.3390/en15072382
Chicago/Turabian StyleCortese, Tatiana Tucunduva Philippi, Jairo Filho Sousa de Almeida, Giseli Quirino Batista, José Eduardo Storopoli, Aaron Liu, and Tan Yigitcanlar. 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review" Energies 15, no. 7: 2382. https://doi.org/10.3390/en15072382
APA StyleCortese, T. T. P., Almeida, J. F. S. d., Batista, G. Q., Storopoli, J. E., Liu, A., & Yigitcanlar, T. (2022). Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review. Energies, 15(7), 2382. https://doi.org/10.3390/en15072382