A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes
(This article belongs to the Section D1: Advanced Energy Materials)
Abstract
:1. Introduction
2. Data and Basic Methods
2.1. Data Sources
2.2. Traditional Forcasting Method
2.3. Multivairant Grey Model, GM (1, N)
3. Optimized Grey Forecasting Model
3.1. OGM (1, N)
3.2. OBGM (1, N)
3.3. Grey Relational Analysis (GRA)
4. Results and Discussions
4.1. Identification of the Facotors
4.2. Comparative Analysis
4.3. HHV Forecasting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.B.; Geng, Y. Municipal solid waste management in Dalian: Practices and challenges. Front. Env Sci Eng. 2012, 6, 540–548. [Google Scholar] [CrossRef]
- Yearbook National Bureau of Statistics of China. China Statistical Yearbook 2020; China Statistical Press: Beijing, China, 2021. [Google Scholar]
- Ali, J.; Rasheed, T.; Afreen, M.; Anwar, M.T.; Nawaz, Z.; Anwar, H.; Rizwan, K. Modalities for conversion of waste to energy—Challenges and perspectives. Sci. Total Environ. 2020, 727, 138610. [Google Scholar] [CrossRef] [PubMed]
- Nakhaei, M.; Amiri, V.; Rezaei, K.; Moosaei, F. An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran. Bull. Eng. Geol. Environ. 2015, 74, 233–246. [Google Scholar] [CrossRef]
- Saint-Joly, C.; Desbois, S.; Lotti, J.P. Determinant impact of waste collection and composition on anaerobic digestion performance: Industrial results. Water Sci. Technol. 2000, 41, 291–297. [Google Scholar] [CrossRef]
- Iqbal, A.; Liu, X.; Chen, G.H. Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Sci. Total Environ. 2020, 729, 138622. [Google Scholar] [CrossRef]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Martínez, I.; Grasa, G.; Callén, M.S.; López, J.M.; Murillo, R. Optimised production of tailored syngas from municipal solid waste (MSW) by sorption-enhanced gasification. Chem. Eng. J. 2020, 401, 126067. [Google Scholar] [CrossRef]
- Lu, J.S.; Chang, Y.; Poon, C.S.; Lee, D.J. Slow pyrolysis of municipal solid waste (MSW): A review. Bioresour. Technol. 2020, 312, 123615. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Li, Q.; Zhang, Z.; Wang, X.; Hu, J.; Cao, W. Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel 2020, 265, 116925. [Google Scholar] [CrossRef]
- Boumanchar, I.; Chhiti, Y.; M’hamdi Alaoui, F.E.; Sahibed-dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Manag. Res. 2018, 37, 578–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vouvoudi, E.C.; Rousi, A.T.; Achilias, D.S. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment. Front. Environ. Sci. Eng. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Maksimuk, Y.; Antonava, Z.; Krouk, V.; Korsakova, A.; Kursevich, V. Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel 2020, 263, 116727. [Google Scholar] [CrossRef]
- Parikh, J.; Channiwala, S.; Ghosal, G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Deng, J. Control problems of grey systems. Syst. Control Leit. 1982, 1, 288–294. [Google Scholar]
- Qian, W.; Wang, J. An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China. Energy 2020, 209, 118499. [Google Scholar] [CrossRef]
- Xu, L.; Gao, P.; Cui, S.; Liu, C. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Manag. 2013, 33, 1324–1331. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 2014, 36, 107–122. [Google Scholar] [CrossRef]
- Zeng, B.; Li, C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application. Comput. Indust. Eng. 2018, 118, 278–290. [Google Scholar] [CrossRef]
- Zhang, Y. The Prediction of the Generation of Municipal Solid Waste Based on Grey Combination Model. Adv. Mater. Res. 2013, 807–809, 1479–1482. [Google Scholar] [CrossRef]
- Intharathirat, R.; Abdul Salam, P.; Kumar, S.; Untong, A. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models. Waste Manag. 2015, 39, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Duman, G.M.; Kongar, E.; Gupta, S.M. Estimation of electronic waste using optimized multivariate grey models. Waste Manag. 2019, 95, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Mansur, F.Z.; Faizal, C.K.M.; Monir, M.U.; Samad, N.A.F.A.; Atnaw, S.M.; Sulaiman, S.A. Co-gasification between coal/sawdust and coal/wood pellet: A parametric study using response surface methodology. Int. J. Hydrog. Energy 2020, 45, 15963–15976. [Google Scholar] [CrossRef]
- Bagheri, M.; Esfilar, R.; Sina Golchi, M.; Kennedy, C.A. Towards a circular economy: A comprehensive study of higher heat values and emission potential of various municipal solid wastes. Waste Manag. 2020, 101, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Jhou, S.-Y. Integrating spent coffee grounds and silver skin as biofuels using torrefaction. Renew. Energy 2020, 148, 275–283. [Google Scholar] [CrossRef]
- Lewis, C.D. Industrial and Business Forecasting Methods; Butterworth Scientific: London, UK, 1982. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Soponpongpipat, N.; Sittikul, D.; Sae-Ueng, U. Higher heating value prediction of torrefaction char produced from non-woody biomass. Front. Energy 2015, 9, 461–471. [Google Scholar] [CrossRef]
- Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; Sun, M.; Liu, S.; Forrest, J. A novel flexible grey multivariable model and its application in forecasting energy consumption in China. Energy 2022, 239, 122441. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Wang, Y. Application of a novel nonlinear multivariate grey Bernoulli model to predict the tourist income of China. J. Comput. Appl. Math. 2019, 347, 84–94. [Google Scholar] [CrossRef]
- Guo, X.; Liu, S.; Wu, L.; Gao, Y.; Yang, Y. A multi-variable grey model with a self-memory component and its application on engineering prediction. Eng. Appl. Artif. Intell. 2015, 42, 82–93. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.-B. The kernel-based nonlinear multivariate grey model. Appl. Math. Model. 2018, 56, 217–238. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Soto, A.-M.; Chen, G. Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Razaque, A.; Amsaad, F.; Hariri, S.; Almasri, M.; Rizvi, S.S.; Frej, M.B.H. Enhanced Grey Risk Assessment Model for Support of Cloud Service Provider. IEEE Access 2020, 8, 80812–80826. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar] [CrossRef]
- Dashti, A.; Noushabadi, A.S.; Asadi, J.; Raji, M.; Chofreh, A.G.; Klemeš, J.J.; Mohammadi, A.H. Review of higher heating value of municipal solid waste based on analysis and smart modelling. Renew. Sustain. Energy Rev. 2021, 151, 111591. [Google Scholar] [CrossRef]
- Ren, J. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors. Bioresour. Technol. 2018, 247, 1258–1261. [Google Scholar] [CrossRef]
Num. | City | HHV | Proximate Analysis | |||
---|---|---|---|---|---|---|
kcal·kg−1 | Mad/% | Vad/% | Aad/% | FCad/% | ||
1 | Taiyuan | 764 | 34.41 | 14.86 | 48.04 | 2.71 |
2 | Datong | 1258 | 23.04 | 20.08 | 50.74 | 6.14 |
3 | Yangquan | 980.5 | 39.46 | 12.55 | 41.84 | 6.17 |
4 | Changzhi | 1353 | 15.91 | 12.26 | 61.04 | 10.8 |
5 | Jincheng | 1393 | 22.5 | 12.64 | 54.3 | 10.59 |
6 | Shuozhou | 868 | 35.38 | 20.99 | 40.08 | 3.55 |
7 | Xinzhou | 1004 | 25.36 | 14.28 | 56.48 | 3.89 |
8 | Jinzhong | 1212 | 23.52 | 13.52 | 54.94 | 8.01 |
9 | Linfen | 1046 | 25.13 | 14.92 | 54.91 | 5.05 |
10 | Yuncheng | 919 | 18.62 | 8.7 | 65.72 | 6.96 |
11 | Lvlinag | 947.5 | 24.01 | 11.43 | 59.59 | 4.98 |
12 | Yuanping | 968 | 21.41 | 13.33 | 60.56 | 4.72 |
13 | Dingxiang | 947 | 23.68 | 12.8 | 58.83 | 4.7 |
14 | Fenyang | 1259 | 14.79 | 11.43 | 64.25 | 9.53 |
15 | Xiaoyi | 1267 | 25.3 | 14.95 | 52.09 | 7.67 |
City Num. | Ultimate Analysis (wt.%, Air Dried Basis) | |||||
---|---|---|---|---|---|---|
C | H | O | N | S | Cl | |
1 | 8.61 | 1.09 | 7.00 | 0.29 | 0.59 | 0.16 |
2 | 15.34 | 1.30 | 8.89 | 0.44 | 0.25 | 0.20 |
3 | 10.61 | 0.91 | 6.39 | 0.31 | 0.51 | 0.18 |
4 | 13.28 | 1.31 | 7.52 | 0.45 | 0.51 | 0.13 |
5 | 15.26 | 1.21 | 5.91 | 0.39 | 0.45 | 0.18 |
6 | 14.47 | 1.16 | 8.28 | 0.34 | 0.29 | 0.14 |
7 | 9.80 | 1.16 | 5.98 | 0.37 | 0.87 | 0.17 |
8 | 12.08 | 1.17 | 7.03 | 0.36 | 0.83 | 0.19 |
9 | 10.86 | 1.12 | 6.97 | 0.31 | 0.71 | 0.18 |
10 | 8.28 | 1.23 | 5.06 | 0.40 | 0.69 | 0.17 |
11 | 8.08 | 1.12 | 6.60 | 0.36 | 0.25 | 0.18 |
12 | 9.60 | 1.25 | 6.11 | 0.39 | 0.70 | 0.16 |
13 | 9.15 | 1.20 | 6.36 | 0.41 | 0.39 | 0.13 |
14 | 12.01 | 1.27 | 6.46 | 0.35 | 0.90 | 0.16 |
15 | 12.95 | 1.23 | 6.62 | 0.39 | 1.43 | 0.17 |
Proximate Analysis | |||||
Water Content | Volatile Content | Ash | Fixed Carbon | ||
0.5759 | 0.6361 | 0.7247 | 0.6157 | ||
Elemental Analysis | |||||
C | H | O | N | S | Cl |
0.8049 | 0.7502 | 0.7218 | 0.7814 | 0.5292 | 0.7617 |
Models | Variable | Modelling MAPE * (%) | Accuracy | Prediction MAPE (%) | |
---|---|---|---|---|---|
Traditional Models | |||||
1 | Proximate analysis | 12.634 | ←G G→ | 15.45 | |
2 | Elemental analysis | 11.99 | ←G E→ | 7.45 | |
Multivariate Grey Prediction Models | |||||
POBGM (1, N) | |||||
(1,2) | Ash | 61.04 | ←I I→ | 1555.00 | |
(1,3) | Ash, Vad | 40.40 | ←R I→ | 887.35 | |
(1,4) | Ash, Vad, FC | 5.42 | ←E E→ | 2.89 | |
(1,5) | Ash, Vad, FC, MC | 5.41 | ←E E→ | 3.06 | |
EOBGM (1, N) | |||||
(1,2) | C | 16.39 | ←G I→ | 79.16 | |
(1,3) | C N | 11.12 | ←G R→ | 25.16 | |
(1,4) | C N Cl | 9.27 | ←E G→ | 15.98 | |
(1,5) | C N Cl H | 7.72 | ←E G→ | 14.64 | |
(1,6) | C N Cl H O | 4.90 | ←E R→ | 38.33 | |
(1,7) | C N Cl H O S | 0.0026 | ←E I→ | 123,173.23 |
Type | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | a | c | d | b2 | b3 | b4 | b5 | b6 | b7 | |
POBGM | 2 | −0.54 | −1532.21 | 1951.21 | 16.74 | |||||
3 | −0.52 | 1348.74 | 1928.10 | 15.14 | −4.6621 | |||||
4 | 2.23 | 152.52 | −153.49 | 8.91 | 56.8333 | 152.37 | ||||
5 | 2.23 | 145,846.98 | 153.49 | 1468.46 | 1517.3970 | 1613.02 | 1460.57 | |||
2 | −0.47 | −331.90 | 1659.18 | −18.24 | ||||||
EOBGM | 3 | −0.11 | −1210.68 | 1414.10 | −27.48 | 3816.6772 | ||||
4 | 0.16 | −3087.30 | 1095.48 | 8.86 | 5543.4456 | 6680.63 | ||||
5 | 0.70 | −2960.29 | 578.08 | 38.62 | 8572.7496 | 9620.30 | −1270.18 | |||
6 | −0.05 | −7208.66 | 267.51 | −42.33 | 13306.5705 | 16865.80 | −1863.00 | 319.64 | ||
7 | −1.45 | −2395.25 | 3576.35 | 23.90 | 5903.7691 | −6479.40 | −1631.27 | 15.00 | 1907.87 |
X1(0) | (a): ξ = 0.05 | (b): ξ = 0.15 | (c): ξ = 0.25 | (d): ξ=0.35 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | |
764.00. | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 |
1258.00 | 1377.97 | 119.97 | 9.54 | 1235.77 | −22.23 | 1.77 | 1139.48 | −118.52 | 9.42 | 3877.55 | 2619.55 | 208.23 |
980.50 | 983.65 | 3.15 | 0.32 | 959.05 | −21.45 | 2.19 | 927.54 | −52.96 | 5.40 | 1915.93 | 935.43 | 95.40 |
1353.00 | 1499.66 | 146.66 | 10.84 | 1414.45 | 61.45 | 4.54 | 1363.20 | 10.20 | 0.75 | 2737.34 | 1384.34 | 102.32 |
1393.00 | 1333.11 | −59.89 | 4.30 | 1276.75 | −116.25 | 8.35 | 1246.21 | −146.79 | 10.54 | 2593.84 | 1200.84 | 86.21 |
868.00 | 1026.27 | 158.27 | 18.23 | 972.35 | 104.35 | 12.02 | 944.78 | 76.78 | 8.85 | 2080.16 | 1212.16 | 139.65 |
1004.00 | 988.13 | −15.87 | 1.58 | 933.73 | −70.27 | 7.00 | 874.37 | −129.63 | 12.91 | 1982.58 | 978.58 | 97.47 |
1212.00 | 1298.84 | 86.84 | 7.17 | 1230.78 | 18.78 | 1.55 | 1184.37 | −27.63 | 2.28 | 2457.40 | 1245.40 | 102.76 |
1046.00 | 1018.73 | −27.27 | 2.61 | 968.94 | −77.06 | 7.37 | 926.16 | −119.85 | 11.46 | 2069.77 | 1023.77 | 97.88 |
919.00 | 1097.05 | 178.05 | 19.37 | 1038.42 | 119.42 | 12.99 | 971.21 | 52.21 | 5.68 | 2159.22 | 1240.22 | 134.95 |
8.22 | 6.42 | 7.48 | 118.32 | |||||||||
(e): ξ = 0.45 | (f): ξ = 0.5 | (i): ξ = 0.55 | (j): ξ = 0.65 | |||||||||
x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | |
764.00. | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | |
1674.55 | 416.55 | 33.11 | 1267.45 | 9.45 | 0.75 | 1438.32 | 180.32 | 14.33 | 1893.00 | 635.00 | 50.48 | |
1131.13 | 150.63 | 15.36 | 969.79 | −10.71 | 1.09 | 1030.43 | 49.93 | 5.09 | 1523.77 | 543.27 | 55.41 | |
1595.18 | 242.18 | 17.90 | 1383.89 | 30.89 | 2.28 | 1463.41 | 110.41 | 8.16 | 1810.90 | 457.90 | 33.84 | |
1512.60 | 119.60 | 8.59 | 1330.65 | −62.35 | 4.48 | 1424.15 | 31.15 | 2.24 | 1855.74 | 462.74 | 33.22 | |
1166.78 | 298.78 | 34.42 | 998.30 | 130.30 | 15.01 | 1080.36 | 212.36 | 24.47 | 1526.14 | 658.14 | 75.82 | |
1119.62 | 115.62 | 11.52 | 921.37 | −82.63 | 8.23 | 1012.70 | 8.70 | 0.87 | 1415.38 | 411.38 | 40.98 | |
1401.58 | 189.58 | 15.64 | 1196.81 | −15.19 | 1.25 | 1264.86 | 52.86 | 4.36 | 1585.71 | 373.71 | 30.83 | |
1189.52 | 143.52 | 13.72 | 1005.70 | −40.30 | 3.85 | 1105.63 | 59.63 | 5.70 | 1505.64 | 459.64 | 43.94 | |
1234.31 | 315.31 | 34.31 | 1026.91 | 107.91 | 11.74 | 1128.04 | 209.04 | 22.75 | 1542.45 | 623.45 | 67.84 | |
20.51 | 5.41 | 9.77 | 48.04 | |||||||||
(k): ξ = 0.75 | (l): ξ = 0.85 | (m): ξ = 0.95 | (n): ξ= 0.500667307066868 | |||||||||
x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | x1(0)(k) | △(k) | re(k) | |
764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | 764.00 | 0.00 | 0.00 | |
1977.68 | 719.68 | 57.21 | 1071.99 | −186.01 | 14.79 | 944.89 | −313.11 | 24.89 | 1258.21 | 0.21 | 0.02 | |
3822.85 | 2842.35 | 289.89 | 1154.71 | 174.21 | 17.77 | 1113.45 | 132.95 | 13.56 | 980.95 | 0.45 | 0.05 | |
9909.00 | 8556.00 | 632.37 | 1376.25 | 23.25 | 1.72 | 1281.88 | −71.12 | 5.26 | 1371.56 | 18.56 | 1.37 | |
28,801.36 | 27,408.36 | 1967.58 | 1025.45 | −367.55 | 26.39 | 1152.02 | −240.98 | 17.30 | 1326.27 | −66.73 | 4.79 | |
87,582.77 | 86,714.77 | 9990.18 | 1284.83 | 416.83 | 48.02 | 966.79 | 98.79 | 11.38 | 997.92 | 129.92 | 14.97 | |
272,022.56 | 271,018.56 | 26,993.88 | 431.28 | −572.72 | 57.04 | 818.97 | −185.03 | 18.43 | 915.38 | −88.62 | 8.83 | |
849,023.53 | 847,811.53 | 69,951.45 | 2457.82 | 1245.82 | 102.79 | 1376.55 | 164.55 | 13.58 | 1191.19 | −20.81 | 1.72 | |
2,654,524.81 | 2,653,478.81 | 253,678.66 | −1512.57 | −2558.57 | 244.61 | 565.81 | −480.19 | 45.91 | 999.86 | −46.14 | 4.41 | |
8,304,352.45 | 8,303,433.45 | 903,529.21 | 5555.04 | 4636.04 | 504.47 | 1262.34 | 343.34 | 37.36 | 1019.57 | 100.57 | 10.94 | |
140,787.83 | 113.06 | 20.85 | 5.23 |
Sample Scale | Actual Data | Predicted Value | Absolute Deviation | Relative Deviation |
---|---|---|---|---|
kcal·kg−1 | kcal·kg−1 | kcal·kg−1 | % | |
Eight samples (Modeling MAPE % = 12.0145) | ||||
9 | 1046 | 95.2940 | −950.7060 | 90.8897 |
10 | 919 | 1340.7320 | 421.7320 | 45.8903 |
11 | 947.5 | 1262.7320 | 315.2320 | 33.2699 |
12 | 968 | 1231.4700 | 263.4700 | 27.2180 |
13 | 947 | 1186.2230 | 239.2230 | 25.2611 |
14 | 1259 | 1427.3070 | 168.3070 | 13.3683 |
15 | 1267 | 1196.3640 | −70.6360 | 5.5751 |
Prediction MAPE % | 34.4960 | |||
Nine samples (Modeling MAPE % = 2.6756) | ||||
10 | 919 | 1522.7460 | 603.7460 | 65.6960 |
11 | 947.5 | 1157.5170 | 210.0170 | 22.1654 |
12 | 968 | 1145.4470 | 177.4470 | 18.3313 |
13 | 947 | 1118.0910 | 171.0910 | 18.0666 |
14 | 1259 | 1412.0670 | 153.0670 | 12.1578 |
15 | 1267 | 1233.4060 | 33.5940 | 2.6515 |
Prediction MAPE % | 23.1781 | |||
Ten samples (Modeling MAPE % = 5.4103) | ||||
11 | 947.5 | 1000.6920 | 53.1920 | 5.6139 |
12 | 968 | 973.9140 | 5.9140 | 0.6110 |
13 | 947 | 949.9670 | 2.9670 | 0.3133 |
14 | 1259 | 1283.2380 | 24.2380 | 1.9252 |
15 | 1267 | 1180.3450 | 86.6550 | 6.8394 |
Prediction MAPE % | 3.0606 | |||
Eleven samples (Modeling MAPE % = 6.4045) | ||||
12 | 968 | 1565.0840 | 597.0840 | 61.6822 |
13 | 947 | 992.2070 | 45.2070 | 4.7737 |
14 | 1259 | 1333.7110 | 74.7110 | 5.9342 |
15 | 1267 | 1228.9080 | 38.0920 | 3.0065 |
Prediction MAPE % | 18.8491 | |||
Twelve samples (Modeling MAPE % = 5.6208) | ||||
13 | 947 | 683.1850 | 263.8150 | 38.6155 |
14 | 1259 | 1246.9930 | 12.0070 | 0.9629 |
15 | 1267 | 1165.4240 | 101.5760 | 8.7158 |
Prediction MAPE % | 16.0980 |
No. | Actual Data | POBGM (1, 5) Model | ||
---|---|---|---|---|
Prediction Data | Lower Limit | Upper Limit | ||
11 | 947.50 | 1000.69 | For Testing | |
12 | 968.00 | 973.91 | 963.80 | 984.03 |
13 | 947.00 | 949.97 | 927.71 | 972.22 |
14 | 1259.00 | 1283.24 | 1261.99 | 1304.48 |
15 | 1267.00 | 1180.35 | 1090.31 | 1270.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Chen, Z.; Chen, J.; Ting, Z.J.; Zhang, R.; Ji, G.; Zhao, M. A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes. Energies 2022, 15, 2593. https://doi.org/10.3390/en15072593
Dong W, Chen Z, Chen J, Ting ZJ, Zhang R, Ji G, Zhao M. A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes. Energies. 2022; 15(7):2593. https://doi.org/10.3390/en15072593
Chicago/Turabian StyleDong, Weiguo, Zhiwen Chen, Jiacong Chen, Zhao Jia Ting, Rui Zhang, Guozhao Ji, and Ming Zhao. 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes" Energies 15, no. 7: 2593. https://doi.org/10.3390/en15072593
APA StyleDong, W., Chen, Z., Chen, J., Ting, Z. J., Zhang, R., Ji, G., & Zhao, M. (2022). A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes. Energies, 15(7), 2593. https://doi.org/10.3390/en15072593