Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications
Abstract
:1. Introduction
2. Background
- (i)
- energy saving and emission reduction;
- (ii)
- applications of renewable energy;
- (iii)
- the development of district heating systems;
- (iv)
- the economic assessment of sustainable energy.
2.1. Energy Saving and Emission Reduction
2.2. Renewable Energy Applications
2.3. Development of District Heating System
2.4. Economic Assessment of Sustainable Energy
3. Research Topics Represented in This Special Issue
3.1. Energy Saving and Emission Reduction
3.2. Renewable Energy Application
3.3. Development of District Heating System
3.4. Economic Assessment for Sustainable Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbier, E.B.; Burgess, J.C. Sustainability and development after COVID-19. World Dev. 2020, 135, 105082. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Zakari, A.; Tawiah, V.K. The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries. Energy 2021, 222, 119935. [Google Scholar] [CrossRef]
- Vasilev, Y.; Cherepovitsyn, A.; Tsvetkova, A.; Komendantova, N. Promoting Public Awareness of Carbon Capture and Storage Technologies in the Russian Federation: A System of Educational Activities. Energies 2021, 14, 1408. [Google Scholar] [CrossRef]
- Kluza, K.; Ziolo, M.; Bak, I.; Spoz, A. Achieving Environmental Policy Objectives through the Implementation of Sustainable Development Goals. The Case for European Union Countries. Energies 2021, 14, 2129. [Google Scholar] [CrossRef]
- Musial, W.; Ziolo, M.; Luty, L.; Musial, K. Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development. Energies 2021, 14, 2864. [Google Scholar] [CrossRef]
- 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 1 January 2022).
- Thellufsen, J.Z.; Lund, H.; Sorknaes, P.; Ostergaard, P.A.; Chang, M.; Drysdale, D.; Nielsen, S.; Djorup, S.R.; Sperling, K. Smart energy cities in a 100% renewable energy context. Renew. Sustain. Energy Rev. 2020, 129, 109922. [Google Scholar] [CrossRef]
- Hagos, D.A.; Gebremedhin, A.; Zethraeus, B. Towards a flexible energy system—A case study for Inland Norway. Appl. Energy 2014, 130, 41–50. [Google Scholar] [CrossRef]
- Blasio, B.D. City of New York. One New York—The Plan for a Strong and Just City. Available online: http://www.nyc.gov/ (accessed on 1 January 2022).
- Club, S. 100% Commitments in Cities, Counties, & States. Available online: https://www.sierraclub.org/ready-for-100/commitments (accessed on 1 January 2022).
- Muhammad, B.; Khan, S. Understanding the relationship between natural resources, renewable energy consumption, economic factors, globalization and CO2 emissions in developed and developing countries. Nat. Resour. Forum 2021, 45, 138–156. [Google Scholar] [CrossRef]
- Shiraishi, T.; Hirata, R. Estimation of carbon dioxide emissions from the megafires of Australia in 2019–2020. Sci. Rep. 2021, 11, 8267. [Google Scholar] [CrossRef]
- Haden Chomphosy, W.; Varriano, S.; Lefler, L.H.; Nallur, V.; McClung, M.R.; Moran, M.D. Ecosystem services benefits from the restoration of non-producing US oil and gas lands. Nat. Sustain. 2021, 4, 547–554. [Google Scholar] [CrossRef]
- Vujanovic, M.; Wang, Q.; Mohsen, M.; Duic, N.; Yan, J. Recent progress in sustainable energy-efficient technologies and environmental impacts on energy systems. Appl. Energy 2021, 283, 116280. [Google Scholar] [CrossRef]
- Piacentino, A.; Catrini, P.; Markovska, N.; Guzovic, Z.; Mathiesen, B.V.; Ferrari, S.; Duic, N.; Lund, H. Editorial: Sustainable Development of Energy, Water and Environment Systems. Energy 2020, 190, 116432. [Google Scholar] [CrossRef]
- Kilkis, S.; Krajacic, G.; Duic, N.; Rosen, M.A.; Al-Nimr, M.d.A. Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. Energy Convers. Manag. 2020, 225, 113410. [Google Scholar] [CrossRef]
- Mikulcic, H.; Baleta, J.; Klemes, J.J.; Wang, X. Energy transition and the role of system integration of the energy, water and environmental systems. J. Clean. Prod. 2021, 292, 126027. [Google Scholar] [CrossRef]
- Mikulcic, H.; Duic, N.; Schloer, H.; Dewil, R. Troubleshooting the problems arising from sustainable development. J. Environ. Manag. 2019, 232, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Gjorgievski, V.Z.; Markovska, N.; Puksek, T.; Duic, N.; Foley, A. Supporting the 2030 agenda for sustainable development: Special issue dedicated to the conference on sustainable development of energy, water and environment systems 2019. Renew. Sustain. Energy Rev. 2021, 143, 110920. [Google Scholar] [CrossRef]
- Kovac, A. Hydrogen and fuel cells: Preface to the special issue on the 14TH Conference on Sustainable Development of Energy, Water, and Environment Systems (SDEWES2019). Int. J. Hydrogen Energy 2021, 46, 10015. [Google Scholar] [CrossRef]
- Raskovic, P.; Vujanovic, M.; Schneider, D.R.; Guzovic, Z.; Duic, N. Advanced visions and problem-solving strategies across energy water and environment systems. Therm. Sci. 2020, 24, 3453–3464. [Google Scholar] [CrossRef]
- Urbaniec, K.; Mikulcic, H.; Duic, N.; Lozano, R. SDEWES-2014 Sustainable Development of Energy, Water and Environment Systems. J. Clean. Prod. 2016, 130, 1–11. [Google Scholar] [CrossRef]
- Calise, F.; Costa, M.; Wang, Q.; Zhang, X.; Duic, N. Recent Advances in the Analysis of Sustainable Energy Systems. Energies 2018, 11, 2520. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Cheng, J.; Guo, H.; Li, Y. Comparative Study on Relative Fossil Energy Carrying Capacity in China and the United States. Energies 2021, 14, 2972. [Google Scholar] [CrossRef]
- Gao, L.; Shang, X.; Yang, F.; Shi, L. A Dynamic Benchmark System for Per Capita Carbon Emissions in Low-Carbon Counties of China. Energies 2021, 14, 599. [Google Scholar] [CrossRef]
- Nardecchia, F.; Groppi, D.; Garcia, D.A.; Bisegna, F.; de Santoli, L. A new concept for a mini ducted wind turbine system. Renew. Energy 2021, 175, 610–624. [Google Scholar] [CrossRef]
- Anastasovski, A.; Raskovic, P.; Guzovic, Z. A review of heat integration approaches for organic rankine cycle with waste heat in production processes. Energy Convers. Manag. 2020, 221, 113175. [Google Scholar] [CrossRef]
- Koci, V.; Petrikova, M.; Fort, J.; Fiala, L.; Cerny, R. Preparation of self-heating alkali-activated materials using industrial waste products. J. Clean. Prod. 2020, 260, 121116. [Google Scholar] [CrossRef]
- Maennel, A.; Kim, H.-G. Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany. Energies 2018, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.E.; Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Tan, H.; Cao, R.; Wang, S.; Wang, Y.; Deng, S.; Duic, N. Proposal and techno-economic analysis of a novel system for waste heat recovery and water saving in coal-fired power plants: A case study. J. Clean. Prod. 2021, 281, 124372. [Google Scholar] [CrossRef]
- Zadravec, T.; Rajh, B.S.; Kokalj, F.; Samec, N. Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study. Renew. Energy 2021, 178, 532–548. [Google Scholar] [CrossRef]
- Costa, M.; Di Blasio, G.; Prati, M.V.; Costagliola, M.A.; Cirillo, D.; La Villetta, M.; Caputo, C.; Martoriello, G. Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit. Appl. Energy 2020, 275, 115418. [Google Scholar] [CrossRef]
- Loy-Benitez, J.; Safder, U.; Nguyen, H.-T.; Li, Q.; Woo, T.; Yoo, C. Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network. Energy 2021, 233, 121099. [Google Scholar] [CrossRef]
- Cipek, M.; Pavković, D.; Krznar, M.; Kljaić, Z.; Mlinarić, T.J. Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials. Energy 2021, 232, 121097. [Google Scholar] [CrossRef]
- Eide, L.I.; Batum, M.; Dixon, T.; Elamin, Z.; Graue, A.; Hagen, S.; Hovorka, S.; Nazarian, B.; Nokleby, P.H.; Olsen, G.I.; et al. Enabling Large-Scale Carbon Capture, Utilisation, and Storage (CCUS) Using Offshore Carbon Dioxide (CO2) Infrastructure Developments A Review. Energies 2019, 12, 1945. [Google Scholar] [CrossRef] [Green Version]
- Sieradzka, M.; Gao, N.; Quan, C.; Mlonka-Medrala, A.; Magdziarz, A. Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture. Energies 2020, 13, 1050. [Google Scholar] [CrossRef] [Green Version]
- Xing, R.; Chiappori, D.V.; Arbuckle, E.J.; Binsted, M.T.; Davies, E.G.R. Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs. Energies 2021, 14, 6374. [Google Scholar] [CrossRef]
- Chi, Y.; Zhao, C.; Lv, J.; Zhao, J.; Zhang, Y. Thermodynamics and Kinetics of CO2/CH4 Adsorption on Shale from China: Measurements and Modeling. Energies 2019, 12, 978. [Google Scholar] [CrossRef] [Green Version]
- Sunaryo; Putra, A.N.; Marwanto, A.; Haddin, M. Potential for Reducing CO2 Emissions in the Operation of Subcritical Power Plants into Supercritical. In Proceedings of the 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), Semarang, Indonesia, 1–2 October 2020; pp. 100–104. [Google Scholar]
- Jung, W.; Jazizadeh, F. Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions. Appl. Energy 2019, 239, 1471–1508. [Google Scholar] [CrossRef]
- Harputlugil, T.; de Wilde, P. The interaction between humans and buildings for energy efficiency: A critical review. Energy Res. Soc. Sci. 2021, 71, 101828. [Google Scholar] [CrossRef]
- Global Status Report for Buildings and Construction. Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. 2019. Available online: https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction (accessed on 1 January 2022).
- European Commission. In Focus: Energy Efficiency in Buildings; Report 17 February 2020; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. EU Report—Energy Consumption by End-Use in Residential Buildings; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Xiang-Li, L.; Zhi-Yong, R.; Lin, D. An investigation on life-cycle energy consumption and carbon emissions of building space heating and cooling systems. Renew. Energy 2015, 84, 124–129. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Sarihi, S.; Saradj, F.M.; Faizi, M. A Critical Review of Façade Retrofit Measures for Minimizing Heating and Cooling Demand in Existing Buildings. Sustain. Cities Soc. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Grottera, C.; Barbier, C.; Sanches-Pereira, A.; de Abreu, M.W.; Uchôa, C.; Tudeschini, L.G.; Cayla, J.-M.; Nadaud, F.; Pereira, A.O., Jr.; Cohen, C.; et al. Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households. Renew. Sustain. Energy Rev. 2018, 94, 877–888. [Google Scholar] [CrossRef]
- Doulos, L.T.; Kontadakis, A.; Madias, E.N.; Sinou, M.; Tsangrassoulis, A. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems. Energy Build. 2019, 194, 201–217. [Google Scholar] [CrossRef]
- European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024_en (accessed on 1 January 2022).
- Novelli, N.; Phillips, K.; Shultz, J.; Derby, M.M.; Salvas, R.; Craft, J.; Stark, P.; Jensen, M.; Derby, S.; Dyson, A. Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector. Renew. Energy 2021, 176, 617–634. [Google Scholar] [CrossRef]
- Abuseif, M.; Gou, Z. A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness. Energies 2018, 11, 3196. [Google Scholar] [CrossRef] [Green Version]
- Dongellini, M.; Valdiserri, P.; Naldi, C.; Morini, G.L. The Role of Emitters, Heat Pump Size, and Building Massive Envelope Elements on the Seasonal Energy Performance of Heat Pump-Based Heating Systems. Energies 2020, 13, 5098. [Google Scholar] [CrossRef]
- Simões, N.; Manaia, M.; Simões, I. Energy performance of solar and Trombe walls in Mediterranean climates. Energy 2021, 234, 121197. [Google Scholar] [CrossRef]
- Figaj, R.; Zoladek, M. Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user. Renew. Energy 2021, 172, 955–967. [Google Scholar] [CrossRef]
- Frank, L.; Rödder, M.; Neef, M.; Adam, M. Heating, ventilation, domestic appliances—An energy integrated system concept for the household of the future. Energy 2021, 234, 121303. [Google Scholar] [CrossRef]
- Gatt, D.; Yousif, C.; Cellura, M.; Camilleri, L.; Guarino, F. Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive. Renew. Sustain. Energy Rev. 2020, 127, 9886. [Google Scholar] [CrossRef]
- Prataviera, E.; Romano, P.; Carnieletto, L.; Pirotti, F.; Vivian, J.; Zarrella, A. EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand. Renew. Energy 2021, 173, 544–560. [Google Scholar] [CrossRef]
- Pinto, G.; Piscitelli, M.S.; Vázquez-Canteli, J.R.; Nagy, Z.; Capozzoli, A. Coordinated energy management for a cluster of buildings through deep reinforcement learning. Energy 2021, 229, 120725. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Liu, T.; Calautit, J.; Darkwa, J.; Wood, C. A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renew. Energy 2021, 177, 603–625. [Google Scholar] [CrossRef]
- Nam, K.; Heo, S.; Li, Q.; Loy-Benitez, J.; Kim, M.; Park, D.; Yoo, C. A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions. Appl. Energy 2020, 266, 114893. [Google Scholar] [CrossRef]
- Ferrara, M.; Santa, F.D.; Bilardo, M.; Gregorio, A.D.; Mastropietro, A.; Fugacci, U.; Vaccarino, F.; Fabrizio, E. Design optimization of renewable energy systems for NZEB based on deep residual learning. Renew. Energy 2021, 176, 590–605. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Tancredi, M.; Salvia, M.; Proto, M.; Pepe, A.; Giordano, M.; Afflitto, N.; Sarricchio, G.; Di Leo, S.; Cosmi, C. An educational awareness program to reduce energy consumption in schools. J. Clean. Prod. 2021, 278, 123949. [Google Scholar] [CrossRef]
- Tschulkow, M.; Compernolle, T.; Van den Bosch, S.; Van Aelst, J.; Storms, I.; Van Dael, M.; Van den Bossche, G.; Sels, B.; Van Passel, S. Integrated techno-economic assessment of a biorefinery process: The high-end valorization of the lignocellulosic fraction in wood streams. J. Clean. Prod. 2020, 266, 122022. [Google Scholar] [CrossRef]
- Zhuang, H.; Guan, J.; Leu, S.-Y.; Wang, Y.; Wang, H. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong. J. Clean. Prod. 2020, 272, 122630. [Google Scholar] [CrossRef]
- Bout, C.; Gregg, J.S.; Haselip, J.; Ellis, G. How Is Social Acceptance Reflected in National Renewable Energy Plans? Evidence from Three Wind-Rich Countries. Energies 2021, 14, 3999. [Google Scholar] [CrossRef]
- Tina, G.M.; Scavo, F.B.; Merlo, L.; Bizzarri, F. Analysis of water environment on the performances of floating photovoltaic plants. Renew. Energy 2021, 175, 281–295. [Google Scholar] [CrossRef]
- Ribo-Perez, D.; Herraiz-Canete, A.; Alfonso-Solar, D.; Vargas-Salgado, C.; Gomez-Navarro, T. Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER. Renew. Energy 2021, 174, 501–512. [Google Scholar] [CrossRef]
- Di Fraia, S.; Macaluso, A.; Massarotti, N.; Vanoli, L. Geothermal energy for wastewater and sludge treatment: An exergoeconomic analysis. Energy Convers. Manag. 2020, 224, 113180. [Google Scholar] [CrossRef]
- Stancin, H.; Mikulcic, H.; Wang, X.; Duic, N. A review on alternative fuels in future energy system. Renew. Sustain. Energy Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Bak, I.; Barwinska-Malajowicz, A.; Wolska, G.; Walawender, P.; Hydzik, P. Is the European Union Making Progress on Energy Decarbonisation While Moving towards Sustainable Development? Energies 2021, 14, 3792. [Google Scholar] [CrossRef]
- Lemence, A.L.G.; Tamayao, M.-A.M. Energy consumption profile estimation and benefits of hybrid solar energy system adoptin for rural health units in the Philippines. Renew. Energy 2021, 178, 651–668. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Croce, S.; Lindkvist, C.; Probst, M.C.M.; Scognamiglio, A.; Dahlberg, J.; Lundgren, M.; Wall, M. A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies. Renew. Sustain. Energy Rev. 2019, 108, 209–237. [Google Scholar] [CrossRef]
- Anurag, A.; Zhang, J.; Gwamuri, J.; Pearce, J.M. General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies 2017, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Huang, Y.; Zhao, C.; Liu, Y.; Lu, Y.; Chang, Y.; Yang, J. An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images. Energies 2018, 11, 3172. [Google Scholar] [CrossRef] [Green Version]
- Stevovic, I.; Mirjanic, D.; Petrovic, N. Integration of Solar Energy by Nature-Inspired Optimization in the Context of Circular Economy. Energy 2021, 234, 121297. [Google Scholar] [CrossRef]
- Oclon, P.; Cisek, P.; Kozak-Jagiela, E.; Taler, J.; Taler, D.; Skrzyniowska, D.; Fedorczak-Cisak, M. Modeling and experimental validation and thermal performance assessment of a sun-tracked and cooled PVT system under low solar irradiation. Energy Convers. Manag. 2020, 222, 113289. [Google Scholar] [CrossRef]
- Stanek, B.; Grzywnowicz, K.; Bartela, L.; Wecel, D.; Uchman, W. A system analysis of hybrid solar PTC-CPV absorber operation. Renew. Energy 2021, 174, 635–653. [Google Scholar] [CrossRef]
- Moldovan, M.; Rusea, I.; Visa, I. Optimising the thickness of the water layer in a triangle solar thermal collector. Renew. Energy 2021, 173, 381–388. [Google Scholar] [CrossRef]
- Abadie, L.M.; Goicoechea, N. Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain. Energies 2021, 14, 3678. [Google Scholar] [CrossRef]
- Awada, A.; Younes, R.; Ilinca, A. Review of Vibration Control Methods for Wind Turbines. Energies 2021, 14, 3058. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Neshat, M.; Groppi, D.; Marzialetti, P.; Heydari, A.; Sylaios, G.; Garcia, D.A. A primary offshore wind farm site assessment using reanalysis data: A case study for Samothraki island. Renew. Energy 2021, 172, 667–679. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Neshat, M.; Heydari, A.; Razmjoo, A.; Piras, G.; Garcia, D.A. A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement. Renew. Energy 2021, 172, 1301–1313. [Google Scholar] [CrossRef]
- Pustina, L.; Lugni, C.; Bernardini, G.; Serafini, J.; Gennaretti, M. Control of power generated by a floating offshore wind turbine perturbed by sea waves. Renew. Sustain. Energy Rev. 2020, 132, 109984. [Google Scholar] [CrossRef]
- Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S.; Groppi, D.; Heydari, A.; Tjernberg, L.B.; Garcia, D.A.; Alexander, B.; Shi, Q.; et al. Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy 2021, 229, 120617. [Google Scholar] [CrossRef]
- Lovrak, A.; Puksec, T.; Duic, N. A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Mancusi, E.; Bareschino, P.; Brachi, P.; Coppola, A.; Ruoppolo, G.; Urciuolo, M.; Pepe, F. Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems. Renew. Energy 2021, 179, 29–36. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Poblete, I.B.S.; Araujo, O.D.Q.F.; de Medeiros, J.L. Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage. Renew. Sustain. Energy Rev. 2020, 131, 109997. [Google Scholar] [CrossRef]
- Cavaignac, R.S.; Ferreira, N.L.; Guardani, R. Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing. Renew. Energy 2021, 171, 868–880. [Google Scholar] [CrossRef]
- Ancona, M.A.; Bianchi, M.; Branchini, L.; Catena, F.; De Pascale, A.; Melino, F.; Peretto, A. Numerical prediction of off-design performance for a Power-to-Gas system coupled with renewables. Energy Convers. Manag. 2020, 210, 112702. [Google Scholar] [CrossRef]
- Eggemann, L.; Escobar, N.; Peters, R.; Burauel, P.; Stolten, D. Life cycle assessment of a small-scale methanol production system: A Power-to-Fuel strategy for biogas plants. J. Clean. Prod. 2020, 271, 122476. [Google Scholar] [CrossRef]
- Bedoic, R.; Dorotic, H.; Schneider, D.R.; Cucek, L.; Cosic, B.; Puksec, T.; Duic, N. Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant. Renew. Energy 2021, 173, 12–23. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Nayak, P.K. PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend. Renew. Energy 2019, 135, 288–302. [Google Scholar] [CrossRef]
- Bilgili, F.; Lorente, D.B.; Kuşkaya, S.; Ünlü, F.; Gençoğlu, P.; Rosha, P. The role of hydropower energy in the level of CO2 emissions: An application of continuous wavelet transform. Renew. Energy 2021, 178, 283–294. [Google Scholar] [CrossRef]
- Duan, H.-F.; Gao, X. Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study. Water Resour. Manag. 2019, 33, 3523–3545. [Google Scholar] [CrossRef]
- Dujardin, J.; Kahl, A.; Kruyt, B.; Bartlett, S.; Lehning, M. Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy 2017, 135, 513–525. [Google Scholar] [CrossRef]
- Chen, L.; Huang, K.; Zhou, J.; Duan, H.-F.; Zhang, J.; Wang, D.; Qiu, H. Multiple-risk assessment of water supply, hydropower and environment nexus in the water resources system. J. Clean. Prod. 2020, 268, 122057. [Google Scholar] [CrossRef]
- Gyanwali, K.; Komiyama, R.; Fujii, Y. Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal. Energy 2020, 202, 117795. [Google Scholar] [CrossRef]
- Gajewski, P.; Pienkowski, K. Control of the Hybrid Renewable Energy System with Wind Turbine, Photovoltaic Panels and Battery Energy Storage. Energies 2021, 14, 1595. [Google Scholar] [CrossRef]
- Dai, R.; Li, W.; Mostaghimi, J.; Wang, Q.; Zeng, M. On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method. Appl. Energy 2020, 275, 115387. [Google Scholar] [CrossRef]
- Grabo, M.; Acar, E.; Kenig, E.Y. Modeling and improvement of a packed bed latent heat storage filled with non-spherical encapsulated PCM-Elements. Renew. Energy 2021, 173, 1087–1097. [Google Scholar] [CrossRef]
- Khor, J.O.; Yang, L.; Akhmetov, B.; Leal, A.B.; Romagnoli, A. Application of granular materials for void space reduction within packed bed thermal energy storage system filled with macro-encapsulated phase change materials. Energy Convers. Manag. 2020, 222, 113118. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Culcasi, A.; Gurreri, L.; Zaffora, A.; Cosenza, A.; Tamburini, A.; Micale, G. On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients. Appl. Energy 2020, 277, 115576. [Google Scholar] [CrossRef]
- Liu, T.; Yang, K.; Gong, H.; Jin, Z. Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution. Renew. Energy 2021, 173, 389–400. [Google Scholar] [CrossRef]
- Figaj, R. Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field. Renew. Energy 2021, 177, 193–208. [Google Scholar] [CrossRef]
- Luo, J.; Zou, Y.; Bu, S.; Karaagac, U. Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources. Energies 2021, 14, 4290. [Google Scholar] [CrossRef]
- Hovsapian, R.; Osorio, J.D.; Panwar, M.; Chryssostomidis, C.; Ordonez, J.C. Grid-Scale Ternary-Pumped Thermal Electricity Storage for Flexible Operation of Nuclear Power Generation under High Penetration of Renewable Energy Sources. Energies 2021, 14, 3858. [Google Scholar] [CrossRef]
- Groppi, D.; Pfeifer, A.; Garcia, D.A.; Krajac, G.; Duic, N. A review on energy storage and demand side management solutions in smart energy islands. Renew. Sustain. Energy Rev. 2021, 135, 110183. [Google Scholar] [CrossRef]
- von Rhein, J.; Henze, G.P.; Long, N.; Fu, Y. Development of a topology analysis tool for fifth-generation district heating and cooling networks. Energy Convers. Manag. 2019, 196, 705–716. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; D’Accadia, M.D.; Vicidomini, M. Energy efficiency in small districts: Dynamic simulation and technoeconomic analysis. Energy Convers. Manag. 2020, 220, 113022. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, S.; Deng, J.; Fan, J.; Huang, J.; Kong, W.; Perers, B.; Furbo, S. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends. Energy Convers. Manag. 2019, 189, 67–80. [Google Scholar] [CrossRef]
- Carotenuto, A.; Figaj, R.D.; Vanoli, L. A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis. Energy 2017, 141, 2652–2669. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Prospects of solar photovoltaic-micro-wind based hybrid power systems in western Himalayan state of Himachal Pradesh in India. Energy Convers. Manag. 2015, 105, 1340–1351. [Google Scholar] [CrossRef]
- Caputo, P.; Ferla, G.; Ferrari, S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019, 174, 1210–1218. [Google Scholar] [CrossRef]
- Puspitarini, H.D.; Francois, B.; Baratieri, M.; Brown, C.; Zaramella, M.; Borga, M. Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect. Energies 2020, 13, 4156. [Google Scholar] [CrossRef]
- Denarie, A.; Muschera, M.; Calderoni, M.; Motta, M. Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy. Energy 2019, 166, 170–182. [Google Scholar] [CrossRef]
- Ferrari, S.; Zagarella, F.; Caputo, P.; D’Amico, A. Results of a literature review on methods for estimating buildings energy demand at district level. Energy 2019, 175, 1130–1137. [Google Scholar] [CrossRef]
- Penttinen, P.; Vimpari, J.; Junnila, S. Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration. Energies 2021, 14, 3522. [Google Scholar] [CrossRef]
- Doracic, B.; Novosel, T.; Puksec, T.; Duic, N. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat. Energies 2018, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.; Puschnigg, S.; Rodin, V. Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems. Energy 2020, 200, 117579. [Google Scholar] [CrossRef]
- Hiltunen, P.; Syri, S. Low-temperature waste heat enabling abandoning coal in Espoo district heating system. Energy 2021, 231, 120916. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. A novel dynamic simulation model for the thermo-economic analysis and optimisation of district heating systems. Energy Convers. Manag. 2020, 220, 113052. [Google Scholar] [CrossRef]
- Arens, S.; Schlueters, S.; Hanke, B.; von Maydell, K.; Agert, C. Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis. Energies 2020, 13, 432. [Google Scholar] [CrossRef] [Green Version]
- Rosato, A.; Ciervo, A.; Ciampi, G.; Sibilio, S. Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings. Renew. Energy 2019, 143, 596–610. [Google Scholar] [CrossRef]
- Bozhikaliev, V.; Sazdovski, I.; Adler, J.; Markovska, N. Techno-economic, Social and Environmental Assessment of Biomass Based District Heating in a Bioenergy Village. J. Sustain. Dev. Energy Water Environ. Syst.-Jsdewes 2019, 7, 601–614. [Google Scholar] [CrossRef]
- Ostergaard, P.A.; Jantzen, J.; Marczinkowski, H.M.; Kristensen, M. Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems. Renew. Energy 2019, 139, 904–914. [Google Scholar] [CrossRef]
- Aste, N.; Caputo, P.; Del Pero, C.; Ferla, G.; Huerto-Cardenas, H.E.; Leonforte, F.; Miglioli, A. A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy 2020, 206, 118091. [Google Scholar] [CrossRef]
- Dorotic, H.; Ban, M.; Puksec, T.; Duic, N. Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system. Renew. Sustain. Energy Rev. 2020, 132, 110095. [Google Scholar] [CrossRef]
- Askeland, K.; Bozhkova, K.N.; Sorknaes, P. Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources? Renew. Energy 2019, 141, 646–656. [Google Scholar] [CrossRef]
- Pieper, H.; Ommen, T.; Elmegaard, B.; Markussen, W.B. Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy 2019, 176, 156–170. [Google Scholar] [CrossRef]
- Al Quabeh, H.; Saab, R.; Ali, M.I.H. Chilled Water Storage Feasibility with District Cooling Chiller in Tropical Environment. J. Sustain. Dev. Energy Water Environ. Syst.-Jsdewes 2020, 8, 132–144. [Google Scholar] [CrossRef]
- Dorotic, H.; Puksec, T.; Duic, N. Multi-objective optimization of district heating and cooling systems for a one-year time horizon. Energy 2019, 169, 319–328. [Google Scholar] [CrossRef]
- Boehm, H.; Lindorfer, J. Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials. Energy 2019, 179, 1246–1264. [Google Scholar] [CrossRef]
- Aunedi, M.; Pantaleo, A.M.; Kuriyan, K.; Strbac, G.; Shah, N. Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems. Appl. Energy 2020, 276, 115522. [Google Scholar] [CrossRef]
- Djorup, S.; Sperling, K.; Nielsen, S.; Ostergaard, P.A.; Thellufsen, J.Z.; Sorknaes, P.; Lund, H.; Drysdale, D. District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change. Energies 2020, 13, 1172. [Google Scholar] [CrossRef] [Green Version]
- Pavicevic, M.; Novosel, T.; Puksec, T.; Duic, N. Hourly optimization and sizing of district heating systems considering building refurbishment—Case study for the city of Zagreb. Energy 2017, 137, 1264–1276. [Google Scholar] [CrossRef]
- Ouramdane, O.; Elbouchikhi, E.; Amirat, Y.; Gooya, E.S. Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends. Energies 2021, 14, 4166. [Google Scholar] [CrossRef]
- Bluszcz, A.; Manowska, A. Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries. Energies 2020, 13, 4882. [Google Scholar] [CrossRef]
- Tschulkow, M.; Compernolle, T.; Van Passel, S. Optimal timing of multiple investment decisions in a wood value chain: A real options approach. J. Environ. Manag. 2021, 290, 112590. [Google Scholar] [CrossRef]
- Serowaniec, M. Sustainable Development Policy and Renewable Energy in Poland. Energies 2021, 14, 2244. [Google Scholar] [CrossRef]
- Wagner, O.; Adisorn, T.; Tholen, L.; Kiyar, D. Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market. Energies 2020, 13, 730. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef] [Green Version]
- Rosecky, M.; Somplak, R.; Slavik, J.; Kalina, J.; Bulkova, G.; Bednar, J. Predictive modelling as a tool for effective municipal waste management policy at different territorial levels. J. Environ. Manag. 2021, 291, 112584. [Google Scholar] [CrossRef]
- Vellini, M.; Bellocchi, S.; Gambini, M.; Manno, M.; Stilo, T. Impact and costs of proposed scenarios for power sector decarbonisation: An Italian case study. J. Clean. Prod. 2020, 274, 123667. [Google Scholar] [CrossRef]
- Lekavicius, V.; Bobinaite, V.; Galinis, A.; Pazeraite, A. Distributional impacts of investment subsidies for residential energy technologies. Renew. Sustain. Energy Rev. 2020, 130, 109961. [Google Scholar] [CrossRef]
- Rong, Y.; Du, P.; Sun, F.; Zeng, S. Quantitative analysis of economic and environmental benefits for land fallowing policy in the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2021, 286, 112234. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, M.; Zeng, S.; Wang, C. Screening and mitigating major threats of regional development to water ecosystems using ecosystem services as endpoints. J. Environ. Manag. 2021, 293, 112787. [Google Scholar] [CrossRef]
- Perkovic, L.; Leko, D.; Brettschneider, A.L.; Mikulcic, H.; Varbanov, P.S. Integration of Photovoltaic Electricity with Shallow Geothermal Systems for Residential Microgrids: Proof of Concept and Techno-Economic Analysis with RES2GEO Model. Energies 2021, 14, 1923. [Google Scholar] [CrossRef]
- Simionescu, M.; Bilan, Y.; Krajnakova, E.; Streimikiene, D.; Gedek, S. Renewable Energy in the Electricity Sector and GDP per Capita in the European Union. Energies 2019, 12, 2520. [Google Scholar] [CrossRef] [Green Version]
- Moser, R.; Xia-Bauer, C.; Thema, J.; Vondung, F. Solar Prosumers in the German Energy Transition: A Multi-Level Perspective Analysis of the German ‘Mieterstrom’ Model. Energies 2021, 14, 1188. [Google Scholar] [CrossRef]
- Kolin, S.K.; Sedlar, D.K.; Kurevija, T. Relationship between electricity and economic growth for long-term periods: New possibilities for energy prediction. Energy 2021, 228, 539. [Google Scholar] [CrossRef]
- Mimica, M.; Dominkovic, D.F.; Capuder, T.; Krajacic, G. On the value and potential of demand response in the smart island archipelago. Renew. Energy 2021, 176, 153–168. [Google Scholar] [CrossRef]
- Heydari, A.; Nezhad, M.M.; Pirshayan, E.; Garcia, D.A.; Keynia, F.; De Santoli, L. Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm. Appl. Energy 2020, 277, 115503. [Google Scholar] [CrossRef]
- Schellenberg, C.; Lohan, J.; Dimache, L. Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage. Renew. Sustain. Energy Rev. 2020, 131, 109966. [Google Scholar] [CrossRef]
- Jimenez-Navarro, J.-P.; Kavvadias, K.; Filippidou, F.; Pavicevic, M.; Quoilin, S. Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system. Appl. Energy 2020, 270, 115134. [Google Scholar] [CrossRef]
- Liu, A.; Miller, W.; Cholette, M.E.; Ledwich, G.; Crompton, G.; Li, Y. A multi-dimension clustering-based method for renewable energy investment planning. Renew. Energy 2021, 172, 651–666. [Google Scholar] [CrossRef]
- Rosso-Ceron, A.M.; Leon-Cardona, D.F.; Kafarov, V. Soft computing tool for aiding the integration of hybrid sustainable renewable energy systems, case of Putumayo, Colombia. Renew. Energy 2021, 174, 616–634. [Google Scholar] [CrossRef]
- Khosravi, A.; Santasalo-Aarnio, A.; Syri, S. Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil. Energy 2021, 234, 121309. [Google Scholar] [CrossRef]
- Van Fan, Y.; Varbanov, P.S.; Klemes, J.J.; Romanenko, S.V. Urban and industrial symbiosis for circular economy: Total EcoSite Integration. J. Environ. Manag. 2021, 279, 111829. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Shah, R.R. Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany. Renew. Energy 2021, 177, 915–931. [Google Scholar] [CrossRef]
- Nastasi, B.; Mazzoni, S.; Groppi, D.; Romagnoli, A.; Garcia, D.A. Optimized integration of Hydrogen technologies in Island energy systems. Renew. Energy 2021, 174, 850–864. [Google Scholar] [CrossRef]
- Baldinelli, A.; Barelli, L.; Bidini, G.; Cinti, G. Micro-cogeneration based on solid oxide fuel cells: Market opportunities in the agriculture/livestock sector. Int. J. Hydrogen Energy 2021, 46, 10036–10048. [Google Scholar] [CrossRef]
- Chin, H.H.; Wang, B.; Varbanov, P.S.; Klemes, J.J.; Zeng, M.; Wang, Q.-W. Long-term investment and maintenance planning for heat exchanger network retrofit. Appl. Energy 2020, 279, 115713. [Google Scholar] [CrossRef]
- Salim, H.K.; Stewart, R.A.; Sahin, O.; Dudley, M. Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renew. Sustain. Energy Rev. 2020, 134, 110176. [Google Scholar] [CrossRef]
- Pudelko, A.; Postawa, P.; Stachowiak, T.; Malinska, K.; Drozdz, D. Waste derived biochar as an alternative filler in biocomposites—Mechanical, thermal and morphological properties of biochar added biocomposites. J. Clean. Prod. 2021, 278, 123850. [Google Scholar] [CrossRef]
- Lotric, A.; Sekavcnik, M.; Kustrin, I.; Mori, M. Life-cycle assessment of hydrogen technologies with the focus on EU critical raw materials and end-of-life strategies. Int. J. Hydrogen Energy 2021, 46, 10143–10160. [Google Scholar] [CrossRef]
- Larrain, M.; Van Passel, S.; Thomassen, G.; Kresovic, U.; Alderweireldt, N.; Moerman, E.; Billen, P. Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. J. Clean. Prod. 2020, 270, 122442. [Google Scholar] [CrossRef]
- Thema, J.; Vondung, F. Expenditure-Based Indicators of Energy Poverty—An Analysis of Income and Expenditure Elasticities. Energies 2020, 14, 8. [Google Scholar] [CrossRef]
- Bagasi, A.A.; Calautit, J.K.; Karban, A.S. Evaluation of the Integration of the Traditional Architectural Element Mashrabiya into the Ventilation Strategy for Buildings in Hot Climates. Energies 2021, 14, 530. [Google Scholar] [CrossRef]
- Bagasi, A.A.; Calautit, J.K. Experimental field study of the integration of passive and evaporative cooling techniques with Mashrabiya in hot climates. Energy Build. 2020, 225, 110325. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Teng, T.; Li, C. Research on Estimation Method of Fuel Cell Health State Based on Lumped Parameter Model. Energies 2020, 13, 6425. [Google Scholar] [CrossRef]
- De Blasio, C.; Salierno, G.; Sinatra, D.; Cassanello, M. Modeling of Limestone Dissolution for Flue Gas Desulfurization with Novel Implications. Energies 2020, 13, 6164. [Google Scholar] [CrossRef]
- Kudela, L.; Chýlek, R.; Pospíšil, J. Efficient Integration of Machine Learning into District Heating Predictive Models. Energies 2020, 13, 6381. [Google Scholar] [CrossRef]
- Calixto, S.; Cozzini, M.; Manzolini, G. Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches. Energies 2021, 14, 379. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Vicidomini, M.; Song, J.; Pantaleo, A.M.; Abdelhady, S.; Shaban, A.; Markides, C.N. Energy and Economic Assessment of Energy Efficiency Options for Energy Districts: Case Studies in Italy and Egypt. Energies 2021, 14, 1012. [Google Scholar] [CrossRef]
- ten Caat, N.; Graamans, L.; Tenpierik, M.; van den Dobbelsteen, A. Towards Fossil Free Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative to District Heating: Amsterdam Case Study. Energies 2021, 14, 347. [Google Scholar]
- Goričanec, D.; Ivanovski, I.; Krope, J.; Urbancl, D. The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration. Energies 2020, 13, 6311. [Google Scholar] [CrossRef]
- Meurer, A.; Kern, J. Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production. Energies 2021, 14, 1836. [Google Scholar] [CrossRef]
- Solis, C.M.A.; San Juan, J.L.G.; Mayol, A.P.; Sy, C.L.; Ubando, A.T.; Culaba, A.B. A Multi-Objective Life Cycle Optimization Model of an Integrated Algal Biorefinery toward a Sustainable Circular Bioeconomy Considering Resource Recirculation. Energies 2021, 14, 1416. [Google Scholar] [CrossRef]
- Adisorn, T.; Tholen, L.; Thema, J.; Luetkehaus, H.; Braungardt, S.; Huenecke, K.; Schumacher, K. Towards a More Realistic Cost–Benefit Analysis—Attempting to Integrate Transaction Costs and Energy Efficiency Services. Energies 2021, 14, 152. [Google Scholar] [CrossRef]
- Gerbelová, H.; Spisto, A.; Giaccaria, S. Regional Energy Transition: An Analytical Approach Applied to the Slovakian Coal Region. Energies 2021, 14, 110. [Google Scholar] [CrossRef]
Weather Zone | Primary Energy Saving (%) | Simple Pay-Back (Year) | CO2 Avoided Emissions |
---|---|---|---|
Naples | 58.2 | 5 | 56.8 |
Fayoum | 66.7 | 23 | 66.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.; Vicidomini, M.; Calise, F.; Duić, N.; Østergaard, P.A.; Wang, Q.; da Graça Carvalho, M. Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications. Energies 2022, 15, 2954. https://doi.org/10.3390/en15082954
Chu W, Vicidomini M, Calise F, Duić N, Østergaard PA, Wang Q, da Graça Carvalho M. Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications. Energies. 2022; 15(8):2954. https://doi.org/10.3390/en15082954
Chicago/Turabian StyleChu, Wenxiao, Maria Vicidomini, Francesco Calise, Neven Duić, Poul Alborg Østergaard, Qiuwang Wang, and Maria da Graça Carvalho. 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications" Energies 15, no. 8: 2954. https://doi.org/10.3390/en15082954
APA StyleChu, W., Vicidomini, M., Calise, F., Duić, N., Østergaard, P. A., Wang, Q., & da Graça Carvalho, M. (2022). Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications. Energies, 15(8), 2954. https://doi.org/10.3390/en15082954