Construction of Smart Grid Load Forecast Model by Edge Computing
Abstract
:1. Introduction
2. Recent Related Work
2.1. EC and IoT-Native Edge Devices
2.2. Intelligent PGS Load and Forecast Models
3. Distributed PGS-Oriented RMS by Matching Theory
3.1. RMS by Task Offloading
3.2. MEC Network Architecture and System Power Communication Model
3.3. Online Delay-Awareness Power RAA
Algorithm 1: Distributed matching algorithm. | |
1 | |
2 | |
3 | Initialization: |
4 | Repeat |
5 | While Transaction was not successfully matched do |
6 | The maximum number of transactions randomly scheduled by the main edge node |
7 | If then |
8 | update ; |
9 | ; |
10 | End if |
11 | If then |
12 | If or, then |
13 | ; |
14 | End if |
15 | End if |
16 | End while |
17 | Until ; |
18 | If Each edge node is successfully matched then |
19 | output |
20 | Else |
21 | Return “Failed” |
22 | End if |
23 | Output: is a stable match. |
3.4. Experimental Parameter Settings
4. Results and Discussion
4.1. An RMS by Task Offloading
4.2. Changing Curves of Average Time Delay and System Fixed Control Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, N.; Liu, J.; Kong, Z.; Yan, L.; Yang, J. Life cycle greenhouse gas emissions of Chinese urban household consumption based on process life cycle assessment: Exploring the critical influencing factors. J. Clean. Prod. 2019, 210, 898–906. [Google Scholar] [CrossRef]
- Akbari Vakilabadi, M.; Afzalabadi, A.; Khoeini Poorfar, A.; Rahbari, A.; Bidi, M.; Ahmadi, M.H.; Ming, T. Technical and economical evaluation of grid-connected renewable power generation system for a residential urban area. Int. J. Low-Carbon Technol. 2019, 14, 10–22. [Google Scholar] [CrossRef]
- Sun, K.; Li, K.; Zhang, Z.; Liang, Y.; Liu, Z.; Lee, W. An Integration Scheme of Renewable Energies, Hydrogen Plant, and Logistics Center in the Suburban Power Grid. IEEE Trans. Ind. Appl. 2022, 58, 2771–2779. [Google Scholar] [CrossRef]
- Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [Google Scholar] [CrossRef]
- Kumar, P.M.; Gandhi, U.D. A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Comput. Electr. Eng. 2018, 65, 222–235. [Google Scholar] [CrossRef]
- Iqbal, J.; Khan, M.; Talha, M.; Farman, H.; Jan, B.; Muhammad, A.; Khattak, H.A. A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustain. Cities Soc. 2018, 43, 443–450. [Google Scholar] [CrossRef]
- Lasmar, C.J.; Bishop, T.R.; Parr, C.L.; Queiroz, A.C.M.; Schmidt, F.A.; Ribas, C.R. Geographical variation in ant foraging activity and resource use is driven by climate and net primary productivity. J. Biogeogr. 2021, 48, 1448–1459. [Google Scholar] [CrossRef]
- Azzolin, A.; Dueñas-Osorio, L.; Cadini, F.; Zio, E. Electrical and topological drivers of the cascading failure dynamics in power transmission networks. Reliab. Eng. Syst. Saf. 2018, 175, 196–206. [Google Scholar] [CrossRef]
- Rivera, J.; Nasirifard, P.; Leimhofer, J.; Jacobsen, H.A. Automatic generation of real power transmission grid models from crowdsourced data. IEEE Trans. Smart Grid 2019, 10, 5436–5448. [Google Scholar] [CrossRef]
- Gazafroudi, A.S.; Neumann, F.; Brown, T. Topology-based approximations for N−1 contingency constraints in power transmission networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107702. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge intelligence: The confluence of edge computing and artificial intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef] [Green Version]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Ranaweera, P.; Jurcut, A.D.; Liyanage, M. Survey on Multi-Access Edge Computing Security and Privacy. IEEE Commun. Surv. Tutor. 2021, 23, 1078–1124. [Google Scholar] [CrossRef]
- HaddadPajouh, H.; Khayami, R.; Dehghantanha, A.; Choo, K.K.R.; Parizi, R.M. AI4SAFE-IoT: An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Appl. 2020, 32, 16119–16133. [Google Scholar] [CrossRef]
- Jha, D.N.; Alwasel, K.; Alshoshan, A.; Huang, X.; Naha, R.K.; Battula, S.K.; Ranjan, R. IoTSim—Edge: A simulation framework for modeling the behavior of Internet of Things and edge computing environments. Softw. Pract. Exp. 2020, 50, 844–867. [Google Scholar] [CrossRef]
- Lv, Z.; Liang, Q. Optimization of collaborative resource allocation for mobile edge computing. Comput. Commun. 2020, 161, 19–27. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lou, R.; Wang, Q. Intelligent edge computing based on machine learning for smart city. Future Gener. Comput. Syst. 2021, 115, 90–99. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf. Syst. 2022, 107, 101840. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, L.; He, C.; Zhang, M.; Krishnamachari, B.; Avestimehr, S. Federated Learning for Internet of Things: Applications, Challenges, and Opportunities. arXiv 2021, arXiv:2111.07494. [Google Scholar]
- Hafeez, G.; Alimgeer, K.S.; Khan, I. Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 2020, 269, 114915. [Google Scholar] [CrossRef]
- Khalid, R.; Javaid, N.; Almogren, A.; Javed, M.U.; Javaid, S.; Zuair, M. A Blockchain-Based Load Balancing in Decentralized Hybrid P2P Energy Trading Market in Smart Grid. IEEE Access 2020, 8, 47047–47062. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A Stacked GRU-RNN-Based Approach for Predicting Renewable Energy and Electricity Load for Smart Grid Operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [Google Scholar] [CrossRef]
- Si, C.; Xu, S.; Wan, C.; Chen, D.; Cui, W.; Zhao, J. Electric load clustering in smart grid: Methodologies, applications, and future trends. J. Mod. Power Syst. Clean Energy 2021, 9, 237–252. [Google Scholar] [CrossRef]
- Alhussein, M.; Aurangzeb, K.; Haider, S.I. Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting. IEEE Access 2020, 8, 180544–180557. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 55, 106995. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995. [Google Scholar] [CrossRef]
- Jin, X.; Zheng, W.Z.; Kong, J.; Wang, X.; Bai, Y.; Su, T.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Dong, Y.; Dong, Z.; Zhao, T.; Li, Z.; Ding, Z. Short term load forecasting with markovian switching distributed deep belief networks. Int. J. Electr. Power Energy Syst. 2021, 130, 106942. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Y.; Li, Y.; Jiang, C.; Abbas, H. User-Oriented Virtual Mobile Network Resource Management for Vehicle Communications. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3521–3532. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, X. Exploring resource management for innovation power network based on deep learning algorithm. Neural Comput. Appl. 2021, 33, 4013–4025. [Google Scholar] [CrossRef]
- Xu, H.; Klaine, P.V.; Onireti, O.; Cao, B.; Imran, M.; Zhang, L. Blockchain-enabled resource management and sharing for 6G communications. Digit. Commun. Netw. 2020, 6, 261–269. [Google Scholar] [CrossRef]
- Yang, H.; Cai, W.; Xia, Y.; Ouyang, W.; Xie, X. Identity authentication system for mobile terminal equipment based on SDN network. Int. J. Inf. Commun. Technol. 2020, 17, 257–273. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Lu, X.; Ding, H.; Guerrero, J.M. Construction of Smart Grid Load Forecast Model by Edge Computing. Energies 2022, 15, 3028. https://doi.org/10.3390/en15093028
Pang X, Lu X, Ding H, Guerrero JM. Construction of Smart Grid Load Forecast Model by Edge Computing. Energies. 2022; 15(9):3028. https://doi.org/10.3390/en15093028
Chicago/Turabian StylePang, Xudong, Xiangchen Lu, Hao Ding, and Josep M. Guerrero. 2022. "Construction of Smart Grid Load Forecast Model by Edge Computing" Energies 15, no. 9: 3028. https://doi.org/10.3390/en15093028
APA StylePang, X., Lu, X., Ding, H., & Guerrero, J. M. (2022). Construction of Smart Grid Load Forecast Model by Edge Computing. Energies, 15(9), 3028. https://doi.org/10.3390/en15093028