Circular Economy Framework for Energy Recovery in Phytoremediation of Domestic Wastewater
Abstract
:1. Introduction
1.1. Integration of Phytoremediation with Bioenergy Production
1.2. Organization of the Paper
2. Materials and Methods
2.1. Review Methodology
2.2. Construction of Hydroponic Tanks
2.3. Selection of the Test Plants
2.4. Harvested Biomass from Phytoremediation of Domestic Wastewater
2.5. Relative Plant Growth Rate (RGR) of the Selected Plants at Different Retention Times
Scenario 1 | 80 g of the three selected plants (E. crassipes, P. stratiotes and S. molesta) were separately cultivated in the hydroponic tanks containing the domestic wastewater. |
Scenario 2 | The treated and untreated water samples were collected at 2-day intervals at different retention times. |
Scenario 3 | Harvesting of the plants (biomass) was carried out every 7 days. |
Scenario 4 | The RGR was calculated at different stages of 6, 12 and 24 h retention times. |
3. Results and Discussion
3.1. Outcome of the Review
3.2. Lifespan of Hydroponic Tanks in Phytoremediation of Domestic Wastewater
3.3. Selection of Aquatic Plants for Phytoremediation of Wastewater
3.4. Outcome of Biomass Harvested from Phytoremediation of Domestic Wastewater
3.4.1. RGR for E. crassipes, P. stratiotes and S. molesta at 24 h Retention Time
3.4.2. RGR for E. crassipes, P. stratiotes and S. molesta at 12 h Retention Time
3.4.3. RGR for E. crassipes, P. stratiotes and S. molesta at 6 h Retention Time
4. Anticipated Challenges in Implementation of CE in Phytoremediation of Wastewater
- Selection of suitable technology for phytoremediation of wastewater by stakeholders and industries is one of the impediments that would hinder the successful deployment of CE concept.
- Monitoring the processes of wastewater phytoremediation requires a long time and space. Thus, there might be an inconsistent flow of valid input information.
- Insufficient information on the capital for investment, policies and data availability are barriers that would hinder the implementation of CE strategies in wastewater phytoremediation, particularly on an industrial scale.
- Another problem is the interdependencies between the plants, microorganisms, treatment systems and the natural environment. Additionally, integrating these essential components requires easy data exchange for proper monitoring, control and manipulations that would promote the plant growth and wastewater treatment process.
- Lack of prior knowledge and competent human resources will have detrimental effects on the efficiency of the phytoremediation technique and, hence, CE adoption.
- Complex methods, costs and energy involving the conversion of the harvested plant biomass into other useful beneficial products such as biofuels, bionic liquids and chemicals.
- There is a lack of understanding and legislation that encourages the utilization of reclaimed resources. The incentives or benefits of reusing wastewater resources are not well articulated, which impedes the implementation of the CE model in wastewater treatment for energy recovery [37].
Future Perspective
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Jan, E. The Circular Economy a new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Newnes, A.T.; Marshall, Y.; Grainger, C.; Neal, M.; Scullion, J.; Gwynn-jones, D. A circular economic approach to the phytoextraction of Zn from basic oxygen steelmaking filtercake using Lemna minor and CO 2. Sci. Total Environ. 2021, 766, 144256. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Kapsalis, V.C.; Aravossis, K.G.; Zamparas, M.; Mitsikas, A. Evaluating circular economy under a multi-parametric approach: A technological review. Sustain. 2019, 11, 6139. [Google Scholar] [CrossRef] [Green Version]
- Fogarassy, C.; Horvath, B. The development of a circular evaluation (cev) tool–case study for the 2024 budapest olympics. Hung. Agric. Eng. 2017, 31, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A. Circular economy in wastewater treatment plant–challenges and barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef] [Green Version]
- Mavragani, A.; Nikolaou, I.E.; Tsagarakis, K.P. Open economy, institutional quality, and environmental performance: A macroeconomic approach. Sustainability 2016, 8, 601. [Google Scholar] [CrossRef] [Green Version]
- Michelini, G.; Moraes, R.N.; Cunha, R.N.; Costa, J.M.H.; Aldo, R. From linear to circular economy: PSS conducting the transition. Procedia CIRP 2017, 64, 2–6. [Google Scholar] [CrossRef]
- Hagenvoort, J.; Ortega-Reig, M.; Botella, S.; Garcia, C.; de Luis, A.; Palau-Salvador, G. Reusing treated waste—Water from a circular economy perspective — The case of the Real Acequia. Water 2019, 11, 1830. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.; Bressers, H.; Gutierrez, C.; de Boer, C. Towards circular economy–a wastewater treatment perspective, the Presa Guadalupe case. Manag. Res. Rev. 2018, 41, 554–571. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.H. Microbial biotechnology and circular economy in wastewater treatment. Microb. Biotechnol. 2017, 10, 1102–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvimba, J.N.; Musvoto, E.V.; Nhamo, L.; Mabhaudhi, T.; Nyambiya, I.; Chapungu, L.; Sawunyama, L. Energy pathway for transitioning to a circular economy within wastewater services. Case Stud. Chem. Environ. Eng. 2021, 4, 100144. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Kamali, M.; Walvekar, P.; Aminabhavi, T.M. Waste-to-energy nexus: A sustainable development. Environ. Pollut. 2020, 267, 115501. [Google Scholar] [CrossRef]
- Ghimire, U.; Sarpong, G.; Gude, V.G. Transitioning wastewater treatment plants toward circular economy and energy sustainability. ACS Omega 2021, 6, 11794–11803. [Google Scholar] [CrossRef]
- Mustafa, H.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2020, 12, 355–365. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Eng. J. 2021, 12, 2585–2592. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Performance of Pistia stratiotes, Salvinia molesta, and Eichhornia crassipes aquatic plants in the tertiary treatment of domestic wastewater with varying retention times. Appl. Sci. 2020, 10, 9105. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, W.; Zeng, Z.; Li, H.; Yang, X.; He, Z. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass and Bioenergy 2012, 42, 212–218. [Google Scholar] [CrossRef]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Osman, A.; Roslan, A.; Ibrahim, M.; Hassan, M. Potential use of Pennisetum purpureum for phytoremediation and bioenergy production: A mini review. AsPac J. Mol. Biol. Biotechnol. 2020, 28, 14–26. [Google Scholar] [CrossRef]
- Kutty, S.R.M.; Ngatenah, S.N.I.; Mohamed, H.I.; Malakahmad, A. Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. World Acad. Sci. Eng. Technol. 2009, 60, 1115–1123. [Google Scholar]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res. 2010, 17, 84–96. [Google Scholar] [CrossRef]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation 2017, 19, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viles, E.; Santos, J.; Arévalo, T.F.; Tanco, M.; Kalemkerian, F. A new mindset for circular economy strategies: Case studies of circularity in the use of water. Sustainability 2020, 12, 9781. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Carreón, J.R.; Worrell, E. Resources, conservation & recycling towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2020, 151, 104498. [Google Scholar] [CrossRef]
- Mustapa, S.I.; Ishak, W.W.; Hayder, G.; Jais, A. Circular economy: Life cycle cost analysis of management alternatives for sewage sludge in Malaysia. Glob. Bus. Manag. Res. An Int. J. 2020, 12, 484–496. [Google Scholar]
- Czikkely, M.; Oláh, J.; Lakner, Z.; Fogarassy, C.; Popp, J. Wastewater treatment with adsorptions by mushroom compost: The circular economic valuation concept for material cycles. Int. J. Eng. Bus. Manag. 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Espíndola, G.J.A.; Cordova, F.; Casiano Flores, C. The importance of urban rainwater harvesting in circular economy: The case of Guadalajara city. Manag. Res. Rev. 2018, 41, 533–553. [Google Scholar] [CrossRef]
- Silveira, C.F.; de Assis, L.R.; de Sousa Oliveira, A.P.; Calijuri, M.L. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation. Sci. Total Environ. 2021, 789, 147861. [Google Scholar] [CrossRef] [PubMed]
- Arias, B.G.; Merayo, N.; Millán, A.; Negro, C. Sustainable recovery of wastewater to be reused in cooling towers: Towards circular economy approach. J. Water Process Eng. 2021, 41, 102064. [Google Scholar] [CrossRef]
- Nika, C.E.; Vasilaki, V.; Expósito, A.; Katsou, E. Water Cycle and Circular Economy: Developing a circularity assessment framework for complex water systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef] [PubMed]
- Surinkul, N.; Threedeach, S.; Chiemchaisri, W.; Chiemchaisri, C. Circular economy approach for wastewater treatment farming in Bangpakong River basin. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012052. [Google Scholar] [CrossRef]
- Saidan, M.N.; Al-Addous, M.; Al-Weshah, R.A.; Obada, I.; Alkasrawi, M.; Barbana, N. Wastewater reclamation in major Jordanian industries: A viable component of a circular economy. Water 2020, 12, 1276. [Google Scholar] [CrossRef]
- Kakwani, N.S.; Kalbar, P. Review of Circular Economy in Urban Water Sector: Challenges. J. Environ. Manage. 2020, 271, 111010. [Google Scholar] [CrossRef]
- Somoza-Tornos, A.; Rives-Jiménez, M.; Espuña, A.; Graells, M. A circular economy approach to the design of a water network targeting the use of regenerated water. Comput. Aided Chem. Eng. 2019, 47, 119–124. [Google Scholar] [CrossRef]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment–The Polish perspective. N. Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef]
- Pahunang, R.R.; Buonerba, A.; Senatore, V.; Oliva, G.; Ouda, M.; Zarra, T.; Muñoz, R.; Puig, S.; Ballesteros, F.C.; Li, C.W.; et al. Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Sci. Total Environ. 2021, 792, 148479. [Google Scholar] [CrossRef]
- Jedelhauser, M.; Binder, C.R. The spatial impact of socio-technical transitions—The case of phosphorus recycling as a pilot of the circular economy. J. Clean. Prod. 2018, 197, 856–869. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Sakinah, N.; Said, M.; Fauzul, M.; Rozaimah, S.; Abdullah, S.; Razi, A.; Fitri, I.; Abu, H. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Sci. Total Environ. 2021, 790, 148219. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Aldaya, M.; Ercin, A.E.; Milà I Canals, L.; Hoekstra, A.Y. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 2012, 33, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, H.M.; Hayder, G. Evaluation of water lettuce, giant salvinia and water hyacinth systems in phytoremediation of domestic wastewater. H2Open J. 2021, 4, 167–181. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Potentials in bioremediation of domestic wastewater comparison of pistia stratiotes and lemna minor plants potentials in bioremediation of domestic wastewater. J. — Inst. Eng. Malaysia 2021, 82, 17–22. [Google Scholar]
- Mustafa, H.M.; Hayder, G.; Solihin, M.; Saeed, R. Applications of constructed wetlands and hydroponic systems in phytoremediation of wastewater. IOP Conf. Ser. Earth Environ. Sci. 2021, 708. [Google Scholar] [CrossRef]
- Hayder, G.; Mustafa, H.M. Cultivation of aquatic plants for biofiltration of wastewater. Lett. Appl. NanoBioScience 2021, 10, 1919–1924. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Performance of Salvinia molesta plants in tertiary treatment of domestic wastewater. Heliyon 2021, 7, e06040. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G.; Jagaba, A. Microalgae: A sustainable renewable source for phytoremediation of wastewater and feedstock supply for biofuel generation. Biointerface Res. Appl. Chem. 2021, 11, 7431–7444. [Google Scholar] [CrossRef]
- Quilliam, R.S.; van Niekerk, M.A.; Chadwick, D.R.; Cross, P.; Hanley, N.; Jones, D.L.; Vinten, A.J.A.; Willby, N.; Oliver, D.M. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? J. Environ. Manage. 2015, 152, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Aswathy, M. Wastewater treatment using constructed wetland with water lettuce (Eichornia Crasipies). Int. J. Civ. Eng. Technol. 2017, 8, 1413–1421. [Google Scholar]
- Sun, H.; Wang, Z.; Gao, P. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiol Plant 2013, 35, 355–364. [Google Scholar] [CrossRef]
- Polomski, R.F.; Taylor, M.D.; Bielenberg, D.G.; Bridges, W.C.; Klaine, S.J.; Whitwell, T. Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water. Air. Soil Pollut. 2009, 197, 223–232. [Google Scholar] [CrossRef]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A Green Technology to Remove Environmental Pollutants. Am. J. Clim. Chang. 2013, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Prasetyo, S.; Anggoro, S.; Soeprobowati, T.R. The growth rate of water hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java. J. Ecol. Eng. 2021, 22, 222–231. [Google Scholar]
- Bakan, B.; Bernet, N.; Bouchez, T.; Boutrou, R.; Choubert, J.M.; Dabert, P.; Duquennoi, C.; Ferraro, V.; García-Bernet, D.; Gillot, S.; et al. Circular economy applied to organic residues and wastewater: Research challenges. Waste and Biomass Valorization 2021. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Lim, J.S.; Klemeš, J.J.; Le, P.T.K. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019, 232, 1482–1491. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Heal. 2018, 2, 32–45. [Google Scholar] [CrossRef]
Authors | Area | CE Strategies | Type of Article | Case Study/ Country |
---|---|---|---|---|
Kakwani and Kalbar [37] | Urban water sector | Review | India | |
Espíndola et al. [31] | Urban rainwater harvesting | Case study/cradle to cradle | Research | Gaudalajara city, Mexico |
Somoza-Tornos et al. [38] | Regenerated water | Performance assessment (CE Model design) | Research | Spain |
Silveira et al. [32] | Swine wastewater | Case study/lifecycle assessment | Research | Minas Gerais, Brazil |
Arias et al. [33] | Wastewater recovery to be reused for in cooling towers | Case study/lifecycle assessment | Research | Spain |
Nika et al. [34] | Complex water systems | Developed circularity assessment framework | Research | Fictional city |
Kaszycki et al. [39] | Wastewater treatment and waste management | Case study: zero waste path in circular bioeconomy | Research | Poland |
Pahunang et al. [40] | Gas emissions from wastewater | Lifecycle assessment | Review | Not mentioned |
Surinkul et al. [35] | Wastewater treatment farming | Surveys, questionnaires and water samplings were taken from farms | Research | Thailand |
Zvimba et al. [14] | Dry waste sludge | Case study: waste to energy | Research | Not mentioned |
Saidan et al. [36] | Reclamation of wastewater | Lifecycle assessment | Research | Jordan |
Jedelhauser and Binder [41] | Phosphorous recovery from dry sewage sludge | Spatial analysis based on a triangulation of methods | Research | Germany |
Ghimire et al. [16] | Wastewater treatment plants | Mini-Review | USA | |
Kurniawan et al. [42] | Phytoremediation of wastewater | CE initiatives | Review | Malaysia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, H.M.; Hayder, G.; Mustapa, S.I. Circular Economy Framework for Energy Recovery in Phytoremediation of Domestic Wastewater. Energies 2022, 15, 3075. https://doi.org/10.3390/en15093075
Mustafa HM, Hayder G, Mustapa SI. Circular Economy Framework for Energy Recovery in Phytoremediation of Domestic Wastewater. Energies. 2022; 15(9):3075. https://doi.org/10.3390/en15093075
Chicago/Turabian StyleMustafa, Hauwa Mohammed, Gasim Hayder, and Siti Indati Mustapa. 2022. "Circular Economy Framework for Energy Recovery in Phytoremediation of Domestic Wastewater" Energies 15, no. 9: 3075. https://doi.org/10.3390/en15093075
APA StyleMustafa, H. M., Hayder, G., & Mustapa, S. I. (2022). Circular Economy Framework for Energy Recovery in Phytoremediation of Domestic Wastewater. Energies, 15(9), 3075. https://doi.org/10.3390/en15093075