Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Case Study
2.2. Data Description
2.3. Recurrent Neural Network
2.4. Long Short-Term Memory Network (LSTM)
2.5. Swish Activation Function
2.6. Experimental Setup
2.7. Network Architecture Design
2.8. Model Performance Evaluation
3. Result and Discussion
3.1. Earhfill Dam Seepage Model Accuracy
3.2. Earthfill Dam Seepage Prediction Model Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F.J.C.C. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, H.; Lv, P.; Wang, C.; Zhang, J.; Yu, J. Seepage safety assessment of concrete gravity dam based on matter-element extension model and FDA. Energies 2019, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Lee, J.-C.; Liu, H. Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics. Energies 2022, 15, 2448. [Google Scholar] [CrossRef]
- Rodríguez-Rángel, H.; Arias, D.M.; Morales-Rosales, L.A.; Gonzalez-Huitron, V.; Valenzuela Partida, M.; García, J. Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems. Energies 2022, 15, 2500. [Google Scholar] [CrossRef]
- Norouzi, R.; Sihag, P.; Daneshfaraz, R.; Abraham, J.; Hasannia, V. Predicting relative energy dissipation for vertical drops equipped with a horizontal screen using soft computing techniques. Water Supply 2021, 21, 4493–4513. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Pandhiani, S.M.; Debnath, S.; Gautam, S. Estimation of permeability of soil using easy measured soil parameters: Assessing the artificial intelligence-based models. ISH J. Hydraul. Eng. 2019, 27, 38–48. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting. Alex. Eng. J. 2021, 61, 279–303. [Google Scholar] [CrossRef]
- Kulisz, M.; Kujawska, J.; Przysucha, B.; Cel, W. Forecasting water quality index in groundwater using artificial neural network. Energies 2021, 14, 5875. [Google Scholar] [CrossRef]
- Benítez, R.; Ortiz-Caraballo, C.; Preciado, J.C.; Conejero, J.M.; Sánchez Figueroa, F.; Rubio-Largo, A. A short-term data based water consumption prediction approach. Energies 2019, 12, 2359. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, X.; Li, J. Improving dam seepage prediction using back-propagation neural network and genetic algorithm. Math. Probl. Eng. 2020, 2020, 1404295. [Google Scholar] [CrossRef]
- Rehamnia, I.; Benlaoukli, B.; Jamei, M.; Karbasi, M.; Malik, A. Simulation of seepage flow through embankment dam by using a novel extended Kalman filter based neural network paradigm: Case study of Fontaine Gazelles Dam, Algeria. Measurement 2021, 176, 109219. [Google Scholar] [CrossRef]
- Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J. Hydrological Time Series Prediction Model Based on Attention-LSTM Neural Network. In Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence, Jakarta, Indonesia, 18–20 September 2019; pp. 21–25. [Google Scholar]
- Liu, B.; Fu, C.; Bielefield, A.; Liu, Y.Q. Forecasting of Chinese primary energy consumption in 2021 with GRU artificial neural network. Energies 2017, 10, 1453. [Google Scholar] [CrossRef]
- Salmasi, F.; Nouri, M. Effect of upstream semi-impervious blanket of embankment dams on seepage. ISH J. Hydraul. Eng. 2017, 25, 143–152. [Google Scholar] [CrossRef]
- Xu, J.; Wei, W.; Bao, H.; Zhang, K.; Lan, H.; Yan, C.; Sun, W. Failure models of a loess stacked dam: A case study in the Ansai Area (China). Bull. Eng. Geol. Environ. 2020, 79, 1009–1021. [Google Scholar] [CrossRef]
- Zaji, A.H.; Bonakdari, H.; Gharabaghi, B. Reservoir water level forecasting using group method of data handling. Acta Geophys. 2018, 66, 717–730. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Elsaraiti, M.; Merabet, A. A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed. Energies 2021, 14, 6782. [Google Scholar] [CrossRef]
- Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K.-W. Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 2020, 12, 1500. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J. Predicting Inflow Rate of the Soyang River Dam Using Deep Learning Techniques. Water 2021, 13, 2447. [Google Scholar] [CrossRef]
- Ouled Sghaier, M.; Hammami, I.; Foucher, S.; Lepage, R. Flood extent mapping from time-series SAR images based on texture analysis and data fusion. Remote Sens. 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Omofunmi, O.; Kolo, J.; Oladipo, A.; Diabana, P.; Ojo, A. A review on effects and control of seepage through earth-fill dam. Curr. J. Appl. Sci. Technol. 2017, 22, 1–11. [Google Scholar] [CrossRef]
- Ismaeel, K.S.; Noori, B.M. Evaluation of seepage and stability of Duhok Dam. Al-Rafidain Eng. J. (AREJ) 2011, 19, 42–58. [Google Scholar] [CrossRef]
- Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 2018, 18, 3682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiseev, I. Experience with Designing and Building Earth-Fill Dams. Hydrotech. Constr. 2000, 34, 412–414. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Cornée, J.-J.; Moissette, P.; Zarkogiannis, S.D.; Pasadakis, N.; Koskeridou, E.; Manoutsoglou, E.; Drinia, H.; Antonarakou, A. Preliminary results based on geochemical sedimentary constraints on the hydrocarbon potential and depositional environment of a Messinian sub-salt mixed siliciclastic-carbonate succession onshore Crete (Plouti section, eastern Mediterranean). Mediterr. Geosci. Rev. 2020, 2, 247–265. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-Khaddar, R.J.W. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Majeed, A. Water-resources situation in Pakistan: Challenges and future strategies. Water Resour. South Present Scenar. Future Prospect. 2003, 20, 33–45. [Google Scholar]
- Ali, S.K.; Janjuhah, H.T.; Shahzad, S.M.; Kontakiotis, G.; Saleem, M.H.; Khan, U.; Zarkogiannis, S.D.; Makri, P.; Antonarakou, A. Depositional Sedimentary Facies, Stratigraphic Control, Paleoecological Constraints, and Paleogeographic Reconstruction of Late Permian Chhidru Formation (Western Salt Range, Pakistan). J. Mar. Sci. Eng. 2021, 9, 1372. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Yang, H.-Q.; Zhang, L.; Yao, Y.-P. Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geosci. Front. 2021, 12, 453–467. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, British, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Assaad, M.; Boné, R.; Cardot, H. A new boosting algorithm for improved time-series forecasting with recurrent neural networks. Inf. Fusion 2008, 9, 41–55. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F.A. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Gers, F. Long Short-Term Memory in Recurrent Neural Networks. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2001. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Cheruyot, R.; Wachera, A.N.J.C.; Systems, I. Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: Case study of Nzoia hydrologic basin. Complex Intell. Syst. 2021, 8, 213–236. [Google Scholar] [CrossRef]
- Kahraman, S. The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 2007, 46, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, S.; Bae, J.H.; Lee, J.; Park, W.J.; Lee, D.; Kim, J.; Lim, K.J. Development and evaluation of the combined machine learning models for the prediction of dam inflow. Water 2020, 12, 2927. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Lee, G.; Yang, D.; Bae, J.H.; Kim, J.; Kim, K.; Lim, K.J. Comparison of Machine Learning Algorithms for Discharge Prediction of Multipurpose Dam. Water 2021, 13, 3369. [Google Scholar] [CrossRef]
- Nourani, V.; Sharghi, E.; Aminfar, M.H. Integrated ANN model for earthfill dams seepage analysis: Sattarkhan Dam in Iran. Artif. Intell. Res. 2012, 1, 22–37. [Google Scholar] [CrossRef] [Green Version]
Input Variables for Network | Target Variables | ||
---|---|---|---|
Reservoir level (ft) | MB/P8-3 | P4-67 gauge (P) | Seepage |
Barrage level In (ft) | MB/T2-6 | P6-77 | |
P6-gauge | P2-57 | P6-78 | |
Actual inflow | P2-62 | Ext gauge (P) | |
Actual outflow | P2-67 | P8-1 | |
Skardu temp min | P2-74 | P8-2 | |
Skardu temp max | MC-1 (house) | P8-6 | |
P2-55 | MD-1 (house) | BB-223 | |
P4-56 gauge(P) | P2-61 | B-661 | |
P4-54 gauge(P) | MA/P2-1 | B-662 | |
P4-65 gauge(P) | MB/P2-1 | B-686 | |
P4-67 | MD/P2-3 | B-764 | |
MB-1 (house) | ME/P2-4 | B-593 | |
MB-1 (house left) | P4-51 gauge (P) | B-756-1 | |
MB-1 (house right) | DFSD gauge | B-756-2 | |
MB-P8/62 | BB-203 (TIC) | ||
MB/P8-1 (New) | BB-204 (TIC) |
Test Data Samples | Mean Squared Error MSE | Correlation Coefficient |
---|---|---|
479 | 0.1249 | 0.9451 |
Sr. No. | Technique | MSE | MAE | MAPE |
---|---|---|---|---|
1. | SVM regression | 0.9124 | 0.1897 | 4.3245 |
2. | GRU | 0.7055 | 0.5866 | 8.2234 |
3. | Bi-LSTM | 0.5136 | 0.1064 | 2.8271 |
4. | RNN–LSTM (proposed method) | 0.5603 | 0.0796 | 3.1469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishfaque, M.; Dai, Q.; Haq, N.u.; Jadoon, K.; Shahzad, S.M.; Janjuhah, H.T. Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan. Energies 2022, 15, 3123. https://doi.org/10.3390/en15093123
Ishfaque M, Dai Q, Haq Nu, Jadoon K, Shahzad SM, Janjuhah HT. Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan. Energies. 2022; 15(9):3123. https://doi.org/10.3390/en15093123
Chicago/Turabian StyleIshfaque, Muhammad, Qianwei Dai, Nuhman ul Haq, Khanzaib Jadoon, Syed Muzyan Shahzad, and Hammad Tariq Janjuhah. 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan" Energies 15, no. 9: 3123. https://doi.org/10.3390/en15093123
APA StyleIshfaque, M., Dai, Q., Haq, N. u., Jadoon, K., Shahzad, S. M., & Janjuhah, H. T. (2022). Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan. Energies, 15(9), 3123. https://doi.org/10.3390/en15093123