Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of SnO2 Thin Films
2.3. Preparation of the Device
2.4. Test and Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [Green Version]
- N.E.C. 2021. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 14 December 2021).
- Xiao, Z.; Song, Z.; Yan, Y. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Adv. Mater. 2019, 31, 1803792. [Google Scholar] [CrossRef]
- Brenner, T.M.; Egger, D.A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic—inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007. [Google Scholar] [CrossRef]
- Park, N.-G. Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1903106. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the Application of SnO2 in Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1802757. [Google Scholar] [CrossRef]
- Tran, V.-H.; Amabde, R.; Ambade, S.; Lee, S.-H.; Lee, I.-H. Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 1645–1653. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Xu, H.; Zheng, H.; Zhang, T.; Zhang, P.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.; et al. SnO2-Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar RRL 2019, 3, 1800292. [Google Scholar] [CrossRef]
- Yang, G.; Chen, C.; Yao, F.; Chen, Z.; Zhang, Q.; Zheng, X.; Ma, J.; Lei, H.; Qin, P.; Xiong, L.; et al. Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells. Adv. Mater. 2018, 30, 1706023. [Google Scholar] [CrossRef]
- Mohamad Noh, M.F.; Arzaee, N.A.; Safaei, J.; Mohamed, N.A.; Kim, H.P.; Mohd Yusoff, A.R.; Jang, J.; Mat Teridi, M.A. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. J. Alloys Compd. 2019, 773, 997–1008. [Google Scholar] [CrossRef]
- Correa Baena, J.P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Srimath Kandada, A.R.; Zakeeruddin, S.M.; et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.; Wu, Z.; Li, J.; Bu, T.; Li, W.; Li, W.; Huang, F.; Zhang, Q.; Cheng, Y.-B.; Zhong, J. High performance perovskite sub-module with sputtered SnO2 electron transport layer. Sol. Energy 2019, 183, 306–314. [Google Scholar] [CrossRef]
- Ramarajan, R.; Purushothamreddy, N.; Dileep, R.K.; Kovendhan, M.; Veerappan, G.; Thangaraju, K.; Paul Joseph, D. Large-area spray deposited Ta-doped SnO2 thin film electrode for DSSC application. Sol. Energy 2020, 211, 547–559. [Google Scholar] [CrossRef]
- Mahmood, K.; Khalid, A.; Nawaz, F.; Mehran, M.T. Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. J. Colloid Interface Sci. 2018, 532, 387–394. [Google Scholar] [CrossRef]
- Taheri, B.; Calabrò, E.; Matteocci, F.; Di Girolamo, D.; Cardone, G.; Liscio, A.; Di Carlo, A.; Brunetti, F. Automated Scalable Spray Coating of SnO2 for the Fabrication of Low-Temperature Perovskite Solar Cells and Modules. Energy Technol. 2020, 8, 1901284. [Google Scholar] [CrossRef]
- Bishop, J.E.; Read, C.D.; Smith, J.A.; Routledge, T.J.; Lidzey, D.G. Fully Spray-Coated Triple-Cation Perovskite Solar Cells. Sci. Rep. 2020, 10, 6610. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, L.; Dall’Agnese, C.; Chen, G.; Li, A.-J.; Wang, X.-F. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Front. Chem. Sci. Eng. 2021, 15, 180–186. [Google Scholar] [CrossRef]
- Smith, J.; Game, O.; Bishop, J.; Spooner, E.; Kilbride, R.; Greenland, C.; Jayaprakash, R.; Alanazi, T.; Cassella, E.; Tejada, A.; et al. Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 5552–5562. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Ni, J.; Zhou, X.; Liu, Y.; Yin, J.; Wang, J.; Wang, D.; Zhang, Y.; Li, J.; Cai, H.; et al. High-Performance Electron Transport Layer Via Ultrasonic Spray Depositon for Commercialized Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 11570–11580. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, W.M.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics, Inc.: Eden Prairie, MN, USA, 1992; p. 231. [Google Scholar]
- Wang, Y.; Gao, P.; Sha, L.; Chi, Q.; Yang, L.; Zhang, J.; Chen, Y.; Zhang, M. Spatial separation of electrons and holes for enhancing the gas-sensing property of a semiconductor: ZnO/ZnSnO3 nanorod arrays prepared by a hetero-epitaxial growth. Nanotechnology 2018, 29, 175501. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.V.; Bayan, E.M.; Khubezhov, S.A.; Varzarev, Y.N.; Volkova, M.G. Investigation of Rapid Gas-Sensitive Properties Degradation of ZnO–SnO2 Thin Films Grown on the Glass Substrate. Chemosensors 2020, 8, 40. [Google Scholar] [CrossRef]
- Bhangare, B.; Ramgir, N.S.; Jagtap, S.; Debnath, A.K.; Muthe, K.P.; Terashima, C.; Aswal, D.K.; Gosavi, S.W.; Fujishima, A. XPS and Kelvin probe studies of SnO2/RGO nanohybrids based NO2 sensors. Appl. Surf. Sci. 2019, 487, 918–929. [Google Scholar] [CrossRef]
- Hu, J.; Tu, J.; Li, X.; Wang, Z.; Yan, L.; Li, Q.; Wang, F. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO2 Nanospheres and Sn3O4 Nanoparticles. Nanomaterials 2017, 7, 336. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, W.; He, A.; Xie, S.; Yang, X.; Wu, L. Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying. Energies 2022, 15, 3211. https://doi.org/10.3390/en15093211
Long W, He A, Xie S, Yang X, Wu L. Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying. Energies. 2022; 15(9):3211. https://doi.org/10.3390/en15093211
Chicago/Turabian StyleLong, Wu, Aoxi He, Shenghui Xie, Xiutao Yang, and Lili Wu. 2022. "Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying" Energies 15, no. 9: 3211. https://doi.org/10.3390/en15093211
APA StyleLong, W., He, A., Xie, S., Yang, X., & Wu, L. (2022). Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying. Energies, 15(9), 3211. https://doi.org/10.3390/en15093211