Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC †
Abstract
:1. Introduction
2. Data Input and Methodology
2.1. Unit Commitment and Economic Dispatch Model
2.2. Supply Assumption
2.3. Demand Assumption
2.4. Other Assumption
2.5. Scenario Building
3. Results and Discussion
3.1. Generation Mix
3.2. CO2 Emission
3.3. Total Generation Cost
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Trade, Industry and Energy (MOTIE). The 9th Basic Plan of Electricity Supply and Demand; Ministry of Trade, Industry and Energy (MOTIE): Sejong, Korea, 2020. [Google Scholar]
- The Government of the Republic of Korea. 2050 Carbon Neutral Strategy of the Republic of Korea; The Government of the Republic of Korea: Seoul, Korea, 2020.
- Ministry of Trade, Industry and Energy (MOTIE). The 8th Basic Plan of Electricity Supply and Demand; Ministry of Trade, Industry and Energy (MOTIE): Sejong, Korea, 2017.
- Ministry of Trade, Industry and Energy (MOTIE). Third Energy Master Plan; Ministry of Trade, Industry and Energy (MOTIE): Sejong, Korea, 2019.
- Ministry of Economy and Finance (MOEF). The Korean New Deal National Strategy for a Great Transformation; Ministry of Economy and Finance (MOEF): Sejong, Korea, 2020.
- United Nations Framework Convention on Climate Change (UNFCCC). The Republic of Korea’s Enhanced Update of Its First Nationally Determined Contribution; United Nations Framework Convention on Climate Change (UNFCCC): Bonn, Germany, 2021.
- Jeong, W.C.; Lee, D.H.; Roh, J.H.; Park, J.B. Scenario Analysis of the CO2 Emissions in the Electricity Sector in South Korea. In Proceedings of the APAP 2021 Conference, Jeju, Korea, 11–14 October 2021. [Google Scholar]
- Baek, M.; Kim, S. Nationally Determined Contributions Target Achievement and Its Impact on National Energy System. J. Korean Soc. Miner. Energy Resour. Eng. 2018, 55, 452–465. [Google Scholar] [CrossRef]
- Hong, J.H.; Kim, J.; Son, W.; Shin, H.; Kim, N.; Lee, W.K.; Kim, J. Long-Term Energy Strategy Scenarios for South Korea: Transition to a Sustainable Energy System. Energy Policy 2019, 127, 425–437. [Google Scholar] [CrossRef]
- Choi, W.; Yoo, E.; Seol, E.; Kim, M.; Song, H.H. Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea. Appl. Energy 2020, 265, 114754. [Google Scholar] [CrossRef]
- Lim, J.; Kim, D.K. A Study on Korea’s Remaining GHG Emissions Allowance and Capped-Emissions Trajectories under the Paris Agreement Goal. J. Clim. Chang. Res. 2021, 12, 255–270. [Google Scholar] [CrossRef]
- Oh, J.-G. Comparative Analysis of the 2030 GHG Reduction Target for Eleven Major Countries and Its Implications. J. Clim. Chang. Res. 2018, 9, 357–368. [Google Scholar] [CrossRef]
- Ko, D. Evaluation of Korea’s Mid- and Long-Term Greenhouse Gas Mitigation Targets: Meta-Analysis of Burden Sharing Based on Equity. J. Clim. Chang. Res. 2021, 12, 493–504. [Google Scholar] [CrossRef]
- Energy Exemplar, PLEXOS Simulation Software. 2021. Available online: https://energyexemplar.com/ (accessed on 12 July 2021).
- Cleary, B.; Duffy, A.; O’Connor, A.; Conlon, M.; Fthenakis, V. Assessing the Economic Benefits of Compressed Air Energy Storage for Mitigating Wind Curtailment. IEEE Trans. Sustain. Energy 2015, 6, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.; Deane, J.P.; Ó Gallachóir, B. Adding Value to EU Energy Policy Analysis Using a Multi-Model Approach with an EU-28 Electricity Dispatch Model. Energy 2017, 130, 433–447. [Google Scholar] [CrossRef]
- Denny, E.; O’Mahoney, A.; Lannoye, E. Modelling the Impact of Wind Generation on Electricity Market Prices in Ireland: An Econometric versus Unit Commitment Approach. Renew. Energy 2017, 104, 109–119. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% Renewable European Power System Feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Tomšić, Ž.; Raos, S.; Rajšl, I.; Ilak, P. Role of Electric Vehicles in Transition to Low Carbon Power System—Case Study Croatia. Energies 2020, 13, 6516. [Google Scholar] [CrossRef]
- Huang, J.; Purvins, A. Validation of a Europe-Wide Electricity System Model for Techno-Economic Analysis. Int. J. Electr. Power Energy Syst. 2020, 123, 106292. [Google Scholar] [CrossRef]
- Brinkerink, M.; Gallachóir, B.; Deane, P. Building and Calibrating a Country-Level Detailed Global Electricity Model Based on Public Data. Energy Strategy Rev. 2021, 33, 100592. [Google Scholar] [CrossRef]
- Dalala, Z.; Al-Omari, M.; Al-Addous, M.; Bdour, M.; Al-Khasawneh, Y.; Alkasrawi, M. Increased Renewable Energy Penetration in National Electrical Grids Constraints and Solutions. Energy 2022, 246, 123361. [Google Scholar] [CrossRef]
- Ramli, N.F.; Kamari, N.A.M.; Abd Halim, S.; Zulkifley, M.A.; Sahri, M.S.M.; Musirin, I. A Non-Convex Economic Dispatch Problem with Point-Valve Effect Using a Wind-Driven Optimisation Approach. J. Electr. Eng. Technol. 2022, 17, 85–95. [Google Scholar] [CrossRef]
- Vasiyullah, S.F.S.; Bharathidasan, S.G. Profit Based Unit Commitment of Thermal Units with Renewable Energy and Electric Vehicles in Power Market. J. Electr. Eng. Technol. 2021, 16, 115–129. [Google Scholar] [CrossRef]
- Energy Exemplar, PLEXOS User Manual. 2021. Available online: https://xpert.energyexemplar.com/ (accessed on 10 December 2021).
- Deane, J.P.; Drayton, G.; Ó Gallachóir, B.P. The Impact of Sub-Hourly Modelling in Power Systems with Significant Levels of Renewable Generation. Appl. Energy 2014, 113, 152–158. [Google Scholar] [CrossRef]
- Kim, T.H.; Shin, H.; Kim, W.; Cho, K.; Lee, S. Consideration of a Combined Cycle Gas Turbine’s Operating Modes in Pricing Mechanisms: A Korean Electricity Market Study. J. Electr. Eng. Technol. 2019, 14, 1919–1931. [Google Scholar] [CrossRef]
- Min, C.G.; Kim, M.K. Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System. Energies 2017, 10, 825. [Google Scholar] [CrossRef] [Green Version]
- KEEI. A Study on the Achievement of Long-Term Greenhouse Gas Reduction Goals in Power Sector (KOREAN); KEEI: Seoul, Korea, 2016. [Google Scholar]
- Electric Power Statistics Information System (EPSIS). 2022. Available online: http://epsis.kpx.or.kr/ (accessed on 3 January 2022).
Class | Details | Reference |
---|---|---|
Demand | Annual Peak/Energy | 9th BPE [1] |
Hourly Load pattern (‘20) | KPX | |
Thermal | Capacity | 9th BPE |
Technical Data | EPSIS/KEPCO/[25] | |
Renewable | Annual Energy | 9th BPE |
PV, Wind Hourly pattern (‘19) | OGD | |
Fuel | 2018~2020 Average | EPSIS |
Emission | Emission factor (kg/kWh) | KEEI [27] |
Resource | 2019 (Actual) | 2030 (9th Plan) | 2030 (Updated NDC) | |||
---|---|---|---|---|---|---|
Capacity [MW] | Share [%] | Capacity [MW] | Share [%] | Capacity [MW] | Share [%] | |
Nuclear | 23,250 | 18.5 | 20,400 | 11.8 | 20,400 | 9.1 |
Coal | 36,992 | 29.5 | 32,612 | 18.9 | 32,612 | 14.6 |
LNG | 39,655 | 31.6 | 55,496 | 32.1 | 55,496 | 24.8 |
RES | 15,791 | 12.6 | 58,043 | 33.6 | 103,884 | 46.4 |
PSH | 4700 | 3.7 | 5200 | 3.0 | 5200 | 2.3 |
Other | 4950 | 4.1 | 1237 | 0.6 | 1237 | 0.6 |
Ammonia | - | - | - | - | 5000 | 2.2 |
Sum | 125,338 | 100 | 172,988 | 100 | 223,829 | 100 |
Year | The 9th BPE | Updated NDC | ||
---|---|---|---|---|
Electricity Consumption (GWh) | Peak Demand (GW) | Electricity Consumption (GWh) | Peak Demand (GW) | |
2019 | 520,499 | 90,314 | 520,499 | 90,314 |
2026 | 532,767 | 97,582 | 537,880 | 98,519 |
2030 | 542,307 | 100,383 | 567,000 | 104,954 |
Emission Factor | Coal | LNG | Oil | Nuclear | RES | Ammonia |
---|---|---|---|---|---|---|
CO2 [tCO2/MWh] | 0.85 | 0.38 | 0.70 | 0 | 0 | 0 |
Fuel Price | Nuclear | Bituminous | Anthracite | Oil | LNG |
---|---|---|---|---|---|
[KRW/Gcal] | 2444 | 24,165 | 25,361 | 71,030 | 49,788 |
X-1 | Details | X-2 | Details |
---|---|---|---|
A-1 | Based on the 9th BPE without constraint | A-2 | Based on the updated NDC without constraint |
B-1 | A-1+ CF limit of Coal ‘21~’25 60%, ‘26~’30 55% | B-2 | A-2 + CF limit of Coal ‘21~’25 60%, ‘26~’30 55% |
C-1 | B1 + slow deployment (75%) | C-2 | B-2 + slow deployment (75%) |
D-1 | A-1 + GHG emission constraints | D-2 | A-2 + GHG emission constraints |
CF [%] | A-1 | B-1 | C-1 | D-1 | A-2 | B-2 | C-2 | D-2 |
---|---|---|---|---|---|---|---|---|
NUCLEAR | 83.7 | |||||||
COAL | 80.1 | 55.0 | 55.0 | 53.9 | 69.9 | 55.0 | 55.0 | 38.8 |
LNG | 15.1 | 29.2 | 31.0 | 29.8 | 10.1 | 18.4 | 20.3 | 27.5 |
OIL | - | |||||||
RENEWABLE | 22.7 | 22.7 | 22.7 | 22.7 | 19.0 | 19.0 | 18.8 | 19.0 |
PSH | 11.5 | 1.6 | 1.4 | 2.0 | 20.7 | 13.8 | 12.6 | 9.9 |
OTHER | 67.3 | |||||||
AMMONIA | - | 50.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, W.-C.; Lee, D.-H.; Roh, J.H.; Park, J.-B. Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC. Energies 2022, 15, 3310. https://doi.org/10.3390/en15093310
Jeong W-C, Lee D-H, Roh JH, Park J-B. Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC. Energies. 2022; 15(9):3310. https://doi.org/10.3390/en15093310
Chicago/Turabian StyleJeong, Woo-Cheol, Da-Han Lee, Jae Hyung Roh, and Jong-Bae Park. 2022. "Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC" Energies 15, no. 9: 3310. https://doi.org/10.3390/en15093310
APA StyleJeong, W. -C., Lee, D. -H., Roh, J. H., & Park, J. -B. (2022). Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC. Energies, 15(9), 3310. https://doi.org/10.3390/en15093310