Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Materials
- I.
- Water, which was used as the base fluid.
- II.
- Barite, which was used to increase the mud density.
- III.
- Soda ash, which acted as a hardness control agent.
- IV.
- Caustic soda, which was used to optimize the pH in the range of 9 to 10.
- V.
- Polyanionic cellulose (PAC-LV), which provided additional filtration control.
- VI.
- Xanthum gum, which is the only polymer that provides thixotropy, i.e., the formation of the gel structure.
- VII.
- Potassium chloride (KCl); mud with potassium ions (K+) is very inhibitive to hydratable clays [14].
3.2. Methods
3.2.1. Clay
3.2.2. Preparation of Mud
4. Results and Discussion
4.1. Native Moisture Content and CEC
4.2. XRD Analysis
4.3. Water-Based Mud
4.4. Clay-Concentrated Mud
4.5. KCl-Concentrated Mud
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
API | American Petroleum Institute |
cP | Centipoise |
G10s/10m | Gel after 10 s and 10 min (lb/100 ft2) |
KCl | Potassium Chloride |
NPT | Non Productive Time |
PAC-LV | Polyanionic Cellulose—Low Viscosity |
PV | Plastic Viscosity |
WBM | Water-Based Mud |
OBM | Oil-Based Mud |
XRD | X-ray Diffraction |
YP | Yield Point |
References
- Aftab, A.; Ismail, A.R.; Ibupoto, Z.H.; Akeiber, H.; Malghani, M.G.K. Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renew. Sustain. Energy Rev. 2017, 76, 1301–1313. [Google Scholar] [CrossRef]
- EIA. Projects 48% Increase in World Energy Consumption by 2040. 2016. Available online: www.eia.gov/todayinenergy (accessed on 28 March 2022).
- IEA. Key World Energy Statistics; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Qadri, S.M.T.; Islam, A.; Shalaby, M.R.; Ali, S.H. Integration of 1D and 3D modeling schemes to establish the Farewell Formation as a self-sourced reservoir in Kupe Field, Taranaki Basin, New Zealand. Front. Earth Sci. 2020, 15, 631–648. [Google Scholar] [CrossRef]
- Islam, M.A.; Yunsi, M.; Qadri, S.M.T.; Shalaby, M.R.; Haque, A.K.M.E. Three-dimensional structural and petrophysical modeling for reservoir characterization of the Mangahewa Formation, Pohokura Gas-Condensate Field, Taranaki Basin, New Zealand. Nat. Resour. Res. 2021, 30, 371–394. [Google Scholar] [CrossRef]
- Qadri, S.M.T.; Islam, M.A.; Shalaby, M.R.; Abd El-Aal, A.K. Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand. J. Pet. Explor. Prod Technol. 2021, 11, 11–31. [Google Scholar] [CrossRef]
- Radwan, A.E. Chapter Two—Three-dimensional gas property geological modeling and simulation. In Sustainable Geoscience for Natural Gas Sub-Surface Systems; Wood, D.A., Cai, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–45. [Google Scholar] [CrossRef]
- Haque, A.E.; Qadri, S.T.; Bhuiyan, A.H.; Navid, M.; Nabawy, B.S.; Hakimi, M.H.; Abd-El-Aal, A.K. Integrated wireline log and seismic attribute analysis for the reservoir evaluation: A case study of the Mount Messenger Formation in Kaimiro Field, Taranaki Basin, New Zealand. J. Nat. Gas Sci. Eng. 2022, 99, 104452. [Google Scholar] [CrossRef]
- Hossain, M.E.; Al-Majed, A.A. Fundamentals of Sustainable Drilling Engineering, 1st ed.; Wiley-Scrivener: Austin, TX, USA, 2015; ISBN 100470878177. [Google Scholar] [CrossRef]
- Sehly, K.; Chiew, H.-L.; Li, H.; Song, A.; Leong, Y.-K.; Huang, W. Stability and ageing behaviour and the formulation of potassium-based drilling muds. Appl. Clay Sci. 2015, 104, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Radwan, A.; Abudeif, A.; Attia, M.; Mohammed, M. Pore and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf of Suez, Egypt. J. Afr. Earth Sci. 2019, 156, 133–143. [Google Scholar] [CrossRef]
- Khodja, M.; Canselier, J.P.; Bergaya, F.; Fourar, K.; Khodja, M.; Cohaut, N.; Benmounah, A. Shale problems and water-based drilling fluid optimization in the Hassi Messaoud Algerian oil field. Applied Clay Sci. 2010, 49, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Charlez, P.A.; Heugas, O. Evaluation of Optimal Mud Weight in Soft Shale Levels. In Proceedings of the 32nd US Symposium Rock Mechanics as a Multidisciplinary Science, Norman, France, 10–12 July 1991. [Google Scholar]
- van Oort, E. On the physical and chemical stability of shales. J. Pet. Sci. Eng. 2003, 38, 213–235. [Google Scholar] [CrossRef]
- Simpson, J.P.; Walker, T.O.; Jiang, G.Z. Environmentally Acceptable Water-Based Mud Can Prevent Shale Hydration and Maintain Borehole Stability. SPE Drill. Complet. 1995, 10, 242–249. [Google Scholar] [CrossRef]
- Kazmi, H.A.; Abbasi, I.A. Stratigraphy and Historical Geology of Pakistan: National Centre of Excellence in Geology; University of Peshawar: Peshawar, Pakistan, 2008; p. 210. [Google Scholar]
- Hussain, S.A.; Han, F.Q.; Ma, Z.; Hussain, A.; Mughal, M.S.; Han, J.; Alhassan, A.; Widory, D. Origin and Evolution of Eocene Rock Salts in Pakistan and Implications for Paleoclimate Studies: Insights from Chemistry and Cl Stable Isotopes. Front. Earth Sci. 2021, 9, 644485. [Google Scholar] [CrossRef]
- Pivnik, D.A.; Sercombe, W.J. Compression- and transpression-related deformation in the Kohat Plateau, NW Pakistan. Geol. Soc. Lond. Spéc. Publ. 1993, 74, 559–580. [Google Scholar] [CrossRef]
- Paracha, W. Kohat Plateau with Reference to Himalayan Tectonic General Study. CSEG Rec. 2004, 29, 46–52. [Google Scholar]
- Kadri, I.B. Petroleum Geology of Pakistan; Ferozsons (Pvt.) Ltd.: Lahore, Pakistan, 1995; p. 275. [Google Scholar]
- Amjad, M.R.; Hameed, M.S.; Mujtaba, M.; Munir, M. NPetrophysical and Geochemical Analysis of Chichali Formation for the Source Rock Evaluation: A Case Study of Chanda-01 Well, Upper Indus Basin, Pakistan. Int. J. Econ. Environ. Geol. 2017, 8, 32–39. [Google Scholar]
- Shah, S.M.I. Stratigraphy of Pakistan; The Geological Survey of Pakistan: Islamabad, Pakistan, 2009; Volume 22, 381p.
- Meissner, C.R., Jr.; Master, J.M.; Rashid, M.A.; Hussain, M. Stratigraphy of Kohat Quardangle, Pakistan; Paper 716-D; USGS: Reston, VA, USA, 1974; pp. 1–30.
- API RP 13B-1. Recommended Practice Stand. Proced. For Field Testing Water Based Drilling Fluids. 2003. Available online: http://www.chinajorson.cn/indexfile/upload_c28ad669455b32706a19472d60cafa5a.pdf (accessed on 28 March 2022).
- Benayada, B.; Habchi, K.N.; Khodja, M. Stabilization of clay walls during drilling in Southern Algeria. Appl. Energy 2003, 75, 51–60. [Google Scholar] [CrossRef]
- Andrei, A. Bunaciu, Elena gabriela Udriştioiu & Hassan Y. Aboul-Enein. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar]
- Wilson, W.J. The Truly Disadvantaged; University of Chicago Press: Chicago, IL, USA, 1987; p. 254. [Google Scholar]
- Jogun, S.M.; Zukoski, C.F. Rheology of Dense Suspensions of Plate like Particles. J. Rheol. 1996, 40, 1211–1232. [Google Scholar] [CrossRef]
- Chaffey, C.E. Mechanisms and equations for shear thinning and thickening in dispersions. Colloid Polym. Sci. 1977, 255, 691–698. [Google Scholar] [CrossRef]
- Zhou, J.; Jung, C.M.; Pedlow, J.W.; Chenevert, M.E.; Sharma, M.M. A new standardized laboratory protocol to study the interaction of organic-rich shales with drilling and fracturing fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
Sr. # | Parameter | Result |
---|---|---|
1 | Native Moisture Content (%) | 14.21 |
2 | Cation Exchange Capacity (Meq/100 g) | 118 |
MIXTURE | 600Ø (cP) | 300Ø (cP) | 6Ø (cP) | 3Ø (cP) | PV (cP) | YP (lb/100 ft2) | Gel 10 s | Gel 10 min |
---|---|---|---|---|---|---|---|---|
Mud | 23 | 15 | 3 | 2 | 8 | 7 | 2 | 3 |
MIXTURE | 600Ø (cP) | 300Ø (cP) | 6Ø (cP) | 3Ø (cP) | PV (cP) | YP (lb/100ft2) | Gel 10 s | Gel 10 min |
---|---|---|---|---|---|---|---|---|
Mud + 2% Clay | 32 | 19 | 3 | 2 | 13 | 6 | 2 | 3 |
Mud + 4% Clay | 33 | 22 | 6 | 4 | 11 | 11 | 5 | 8 |
Mud + 7% Clay | 37 | 26 | 13 | 11 | 11 | 15 | 11 | 12 |
Mud + 10% Clay | 46 | 25 | 14 | 13 | 21 | 8 | 12 | 14 |
MIXTURE | 600Ø (cP) | 300Ø (cP) | 6Ø (cP) | 3Ø (cP) | PV (cP) | YP (lb/100 ft2) | Gel 10 s | Gel 10 min |
---|---|---|---|---|---|---|---|---|
Mud + 2% Clay + 0.4% KCl | 24 | 14 | 3 | 2 | 10 | 4 | 1 | 1.5 |
Mud + 4% Clay + 1% KCl | 22 | 13 | 3 | 2 | 9 | 4 | 1.5 | 2 |
Mud + 7% Clay + 2% KCl | 19 | 12 | 4 | 2 | 7 | 5 | 1 | 2 |
Mud + 10% Clay + 4% KCl | 16 | 12 | 3 | 3 | 4 | 8 | 2 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadri, S.M.T.; Ahmed, W.; Haque, A.K.M.E.; Radwan, A.E.; Hakimi, M.H.; Abdel Aal, A.K. Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan. Energies 2022, 15, 3424. https://doi.org/10.3390/en15093424
Qadri SMT, Ahmed W, Haque AKME, Radwan AE, Hakimi MH, Abdel Aal AK. Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan. Energies. 2022; 15(9):3424. https://doi.org/10.3390/en15093424
Chicago/Turabian StyleQadri, S. M. Talha, Waqas Ahmed, A. K. M. Eahsanul Haque, Ahmed E. Radwan, Mohammad Hail Hakimi, and Ahmed K. Abdel Aal. 2022. "Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan" Energies 15, no. 9: 3424. https://doi.org/10.3390/en15093424
APA StyleQadri, S. M. T., Ahmed, W., Haque, A. K. M. E., Radwan, A. E., Hakimi, M. H., & Abdel Aal, A. K. (2022). Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan. Energies, 15(9), 3424. https://doi.org/10.3390/en15093424