Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems
Abstract
:1. Introduction
2. Methodology
2.1. Location and Electric Load Data
2.2. Meteorological Data
2.3. Configuration of the HES
2.4. Multi-Year Module
2.5. Mathematical Model of the System
2.5.1. PV Panels
2.5.2. Battery
2.5.3. Estimation of NPC
2.6. Control Algorithm
3. Results and Discussion
3.1. Optimal Design
3.2. Technical and Environmental Evaluations
3.3. Year–Year Analysis
3.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.; Liu, P.; Li, Z. Optimal design and techno-economic analysis of a hybrid renewable energy system for off-grid power supply and hydrogen production: A case study of West China. Chem. Eng. Res. Des. 2022, 177, 604–614. [Google Scholar] [CrossRef]
- Turkdogan, S. Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Eng. Sci. Technol. Int. J. 2021, 24, 397–404. [Google Scholar] [CrossRef]
- Kumar, D.; Tewary, T. Design and analysis of grid-connected sustainable urban residential energy systems. Int. J. Energy Sect. Manag. 2021, 16, 704–727. [Google Scholar] [CrossRef]
- Tahir, M.U.R.; Amin, A.; Baig, A.A.; Manzoor, S.; Haq, A.U.; Asgha, M.A.; Khawaja, W.A.G. Design and optimization of grid Integrated hybrid on-site energy generation system for rural area in AJK-Pakistan using HOMER software. AIMS Energy 2021, 9, 1113–1135. [Google Scholar] [CrossRef]
- Al-Najjar, H.; El-Khozondar, H.J.; Pfeifer, C.; Al Afif, R. Hybrid grid-tie electrification analysis of bio-shared renewable energy systems for domestic application. Sustain. Cities Soc. 2022, 77, 103538. [Google Scholar] [CrossRef]
- IEA. Renewable Energy Market Update 2021; IEA: Paris, France, 2021.
- Wesly, J.; Brasil, A.C., Jr.; Frate, C.A.; Badibanga, R.K. Techno-economic analysis of a PV-wind-battery for a remote community in Haiti. Case Stud. Chem. Environ. Eng. 2020, 2, 100044. [Google Scholar] [CrossRef]
- Aziz, A.S.; Tajuddin, M.F.N.; Hussain, M.K.; Adzman, M.R.; Ghazali, N.H.; Ramli, M.A.; Zidane, T.E.K. A new optimization strategy for wind/diesel/battery hybrid energy system. Energy 2022, 239, 122458. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Sultan, H.M.; Kamel, S.; Khurshaid, T.; Rahmann, C. Optimal design of stand-alone hybrid PV/wind/biomass/battery energy storage system in Abu-Monqar, Egypt. J. Energy Storage 2021, 44, 103336. [Google Scholar] [CrossRef]
- Mosetlhe, T.; Ntombela, M.; Yusuff, A.; Ayodele, T.; Ogunjuyibe, A. Appraising the efficacy of the hybrid grid-PV power supply for a household in South Africa. Renew. Energy Focus 2021, 37, 14–19. [Google Scholar] [CrossRef]
- Lei, G.; Song, H.; Rodriguez, D. Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique. Energy Rep. 2020, 6, 3365–3376. [Google Scholar] [CrossRef]
- García-Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Techno-economic feasibility analysis through optimization strategies and load shifting in isolated hybrid microgrids with renewable energy for the non-interconnected zone (NIZ) of Colombia. Energies 2020, 13, 6146. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Singh, N. Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm. Int. J. Hydrogen Energy 2020, 45, 10070–10088. [Google Scholar] [CrossRef]
- Owolabi, A.B.; Nsafon, B.E.K.; Roh, J.W.; Suh, D.; Huh, J.-S. Validating the techno-economic and environmental sustainability of solar PV technology in Nigeria using RETScreen Experts to assess its viability. Sustain. Energy Technol. Assess. 2019, 36, 100542. [Google Scholar] [CrossRef]
- Polat, S.; Sekerci, H. The Determination of Optimal Operating Condition For an Off-Grid Hybrid Renewable Energy Based Micro-Grid: A Case Study in Izmir, Turkey. Emitter Int. J. Eng. Technol. 2021, 9, 137–153. [Google Scholar] [CrossRef]
- Liu, S.; You, H.; Liu, Y.; Feng, W.; Fu, S. Research on optimal control strategy of wind–solar hybrid system based on power prediction. ISA Trans. 2022, 123, 179–187. [Google Scholar] [CrossRef]
- Fares, D.; Fathi, M.; Mekhilef, S. Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system. Appl. Energy 2022, 305, 117823. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Mohammad, S.T. Potential of renewable energy resources with an emphasis on solar power in iraq: An outlook. Resources 2019, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- NASA Power. Available online: https://power.larc.nasa.gov/ (accessed on 10 April 2022).
- Prakash, V.J.; Dhal, P.K. Techno-Economic Assessment of a Standalone Hybrid System Using Various Solar Tracking Systems for Kalpeni Island, India. Energies 2021, 14, 8533. [Google Scholar] [CrossRef]
- Lithium Werks. Available online: https://lithiumwerks.com/ (accessed on 15 April 2022).
- Must Energy. Available online: https://www.mustsolar.com/ (accessed on 15 April 2022).
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Mohammed, M.F.; Ramli, M.A. Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy 2020, 191, 116591. [Google Scholar] [CrossRef]
- The Ministry of Electricity of Iraq. Available online: https://moelc.gov.iq/index.php (accessed on 15 August 2022).
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Ramli, M.A.M. Feasibility analysis of PV/diesel/battery hybrid energy system using multi-year module. Int. J. Renew. Energy Res. 2018, 8, 1980–1993. [Google Scholar]
- Elsaraf, H.; Jamil, M.; Pandey, B. Techno-Economic Design of a Combined Heat and Power Microgrid for a Remote Community in Newfoundland Canada. IEEE Access 2021, 9, 91548–91563. [Google Scholar] [CrossRef]
- HOMER Energy. Available online: https://www.homerenergy.com/ (accessed on 20 April 2022).
- Barua, P.; Ghosh, B. Feasibility Analysis of Renewable Energy Based Hybrid Power System in a Coastal Area, Bangladesh. In Proceedings of the 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE), Dhaka, Bangladesh, 21–22 December 2020; pp. 1–6. [Google Scholar]
- Stewart, M.; Counsell, J.M.; Al-Khaykan, A. Assessment of Multi-Domain Energy Systems Modelling Methods; World Academy of Science, Engineering and Technology: Paris, France, 2017. [Google Scholar]
- Sitharam, T.G.; Yang, S.Q.; Falconer, R.; Sivakumar, M.; Jones, B.; Kolathayar, S.; Sinpoh, L. Sustainable Water Resource Development Using Coastal Reservoirs; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Alrubaie, A.J.; Al-Khaykan, A.; Malik, R.Q.; Talib, S.H.; Mousa, M.I.; Kadhim, A.M. Review on MPPT Techniques in Solar System. In Proceedings of the 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), Tanjung Pinang, Indonesia, 23–24 February 2022; pp. 123–128. [Google Scholar]
Parameter | Description |
---|---|
1. PV | |
Type | Flat plate |
Nominal efficiency | 18% |
Nominal operating cell temperature | 47 °C |
Tracking system | No tracking |
Ground Reflectance | 20% |
Lifetime | 25 years |
2. Battery | |
Type | Generic 1 kWh Li-Ion |
Maximum Capacity | 276 Ah |
Nominal capacity | 1.02 KWh |
Round trip efficiency | 90% |
Nominal voltage | 3.7 V |
3. Converter | |
Rectifier capacity | 100% |
Efficiency | 93% |
Lifetime | 15 years |
Cost Type | PV | Battery | Converter |
---|---|---|---|
Cost of capital | $640/kW | $500/battery | $645/kW |
Annual O & M cost | $10/kW | $10/battery | $10/kW |
Cost of replacement | $500/kW | $450/battery | $500/kW |
Electricity Consumption Per Month (kWh) | Price ($ Per kWh) | Price (IQD Per kWh) |
---|---|---|
>4000 | 0.0827 | 120 |
3001–4000 | 0.0550 | 80 |
1501–3000 | 0.0240 | 35 |
1–1500 | 0.0069 | 10 |
Parameter | Value | Unit |
---|---|---|
Project lifetime | 20 | Year |
Maximum annual capacity shortage | 1 | % |
Battery minimum SOC | 25 | % |
Real discount rate | 4 | % |
Description | Unit | With Multi-Year Effects | Without Multi-Year Effects | ||
---|---|---|---|---|---|
LF | CC | LF | CC | ||
HES components | |||||
PV | kW | 23 | 7 | 19 | 6 |
Battery | - | 36 | 20 | 30 | 18 |
Converter | kW | 4 | 4 | 4 | 4 |
Grid purchases | kWh/year | 6215 | 11,675 | 6299 | 11,995 |
Economic optimization | |||||
NPC | $ | 55,113 | 33,102 | 40,607 | 26,750 |
Description | Unit | With Multi-Year Effects | Without Multi-Year Effects | ||
---|---|---|---|---|---|
LF | CC | LF | CC | ||
PV production | kWh/year | 33,274 | 10,127 | 28,816 | 9100 |
Renewable fraction | kW | 69.6 | 37.6 | 68.7 | 34.7 |
Unmet load | kWh/year | 114 | 121 | 155 | 129 |
Battery autonomy | hour | 13.2 | 7.23 | 11.8 | 7.06 |
Battery life | year | 9.92 | 7.75 | 15 | 10.2 |
CO2 emissions | kg/year | 3928 | 7379 | 3981 | 7581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khaykan, A.; Al-Kharsan, I.H.; Ali, M.O.; Alrubaie, A.J.; Fakhruldeen, H.F.; Counsell, J.M. Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. Energies 2023, 16, 110. https://doi.org/10.3390/en16010110
Al-Khaykan A, Al-Kharsan IH, Ali MO, Alrubaie AJ, Fakhruldeen HF, Counsell JM. Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. Energies. 2023; 16(1):110. https://doi.org/10.3390/en16010110
Chicago/Turabian StyleAl-Khaykan, Ameer, Ibrahim H. Al-Kharsan, Mohammed Omar Ali, Ali Jawad Alrubaie, Hassan Falah Fakhruldeen, and J. M. Counsell. 2023. "Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems" Energies 16, no. 1: 110. https://doi.org/10.3390/en16010110
APA StyleAl-Khaykan, A., Al-Kharsan, I. H., Ali, M. O., Alrubaie, A. J., Fakhruldeen, H. F., & Counsell, J. M. (2023). Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. Energies, 16(1), 110. https://doi.org/10.3390/en16010110